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ABSTRACT

Context. The dynamical region of the Jovian irregular satellites presents an interesting web of resonances that are not yet fully under-
stood. Of particular interest is the influence of the resonances on the stochasticity of the individual orbits of the satellites, as well as
on the long-term chaotic diffusion of the different families of satellites.
Aims. We make a systematic numerical study of the satellite region to determine the important resonances for the dynamics, to search
for the chaotic zones, and to determine their influences on the dynamics of the satellites. We also compare these numerical results to
previous analytical works.
Methods. Using extensive numerical integrations of the satellites along with an indicator of chaos (MEGNO), we show global and
detailed views of the retrograde and prograde regions for various dynamical models of increasing complexity and indicate the appear-
ance of the different types of resonances and the implied chaos.
Results. Along with secular and mean motion resonances that shape the dynamical regions of the satellites, we report a number of
resonances involving the Great Inequality, and which are present in the system thanks to the wide range of the values of frequencies
of the pericenter available for the satellites. The chaotic diffusion of the satellites is also studied and shows the long-term stability of
the Ananke and Carme families, in contrast to the Pasiphae family.

Key words. planets and satellites: dynamical evolution and stability – celestial mechanics

1. Introduction

The irregular satellites of the giant planets are one of the most
peculiar populations of small bodies discovered in the Solar
System. These objects are characterized by their typically high
semi-major axis ratio ( a

a�
) where a� is the semi-major axis of

the Sun1, which can, for example, reach 1
27 for the outermost

Jovian satellite ( 1
390 for the Moon), and their highly eccentric

and highly inclined orbits (respectively in the ranges [0.1–0.44]
and [16◦–53◦]). Because they are highly perturbed by the Sun in
first approximation, the satellites thus present large oscillations
of their orbital elements. One direct consequence of this strong
perturbation is that the classical separation between “fast” and
“slow” angles, where the corresponding frequencies of the mean
motion and the precessions are often separated by several orders
of magnitude, does not hold here. Indeed, for the irregular satel-
lites the typical periods of precession of the secular angles are
usually not longer that 50 times their period of revolution, except
for the particular cases of satellites in some secular resonances.

This particularity has been the main problem in any ap-
plication of analytical methods. Indeed, the classical pertur-
bation method, which consists in using first-order averaging
over the mean anomalies of the satellites and the Sun (e.g. the

� Tables 1 and 2 are available in electronic form at
http://www.aanda.org
1 All the orbital elements in this paper are expressed in a jovicentric
reference frame.

suppression of the terms containing the mean anomalies in the
development of the solar disturbing function), although reliable
and powerful for other classes of objects, generally fails here.
The problem comes from the fact that a simple averaging over
the mean anomaly of the Sun suppresses important terms in the
disturbing function, in particular the evection one, which has a
strong effect on the frequency of the pericenter of the satellites.

Today, several works have coped with this problem by devel-
oping and using higher order perturbation methods (see Beaugé
et al. 2006; Ćuk & Burns 2004). Special care has been taken in
the study of (i) the secular resonance ν� = �̇ − �̇� (Saha &
Tremaine 1993; Whipple & Shelus 1993; Beaugé & Nesvorný
2007; Nesvorný et al. 2003; Yokoyama et al. 2003; Ćuk &
Burns 2004; Correa Otto et al. 2009), which is one of the most
important secular resonances acting on the satellites; (ii) the
Lidov-Kozaï resonance for distant satellites (Beaugé et al. 2006;
Beaugé & Nesvorný 2007; Carruba et al. 2002; Ćuk & Burns
2004; Nesvorný et al. 2003); and (iii) the evection resonance
�̇ − n� (Yokoyama et al. 2008; Frouard et al. 2010; Nesvorný
et al. 2003). In most of these works, the important need for the
development of high-order perturbation methods or numerical
ones is clearly stressed.

Concerning the dynamical studies of the Jovian satellites,
an important step has been taken in the early nineties with the
work of Saha & Tremaine (1993), where the authors used semi-
analytical and numerical tools to investigate the dynamics of the
satellites. In particular they computed the Maximal Lyapunov
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Exponent from the numerical integrations of Pasiphae, Sinope,
Himalia, and Leda over two million years. Their results showed
a possible presence of chaos, mainly for Sinope, probably orig-
inated from the overlapping of the secular resonance ν� and the
mean motion resonance (MMR) 6:1 with the Sun. Later works
have shown that at least the totality of the satellites known in
2003 with a precisely determined orbit (30 objects) do not escape
over a very long time (Nesvorný et al. 2003; see also Yokoyama
et al. 2003), and averaged elements were found for these satel-
lites that show their organization in families (Nesvorný et al.
2003, 2004), an important fact that was confirmed analytically
(Beaugé & Nesvorný 2007). Concerning stability studies of the
phase space structure of the satellite region, numerical integra-
tions of fictitious satellites (Carruba et al. 2002; Yokoyama et al.
2003; Nesvorný et al. 2003; Hinse et al. 2010) confirm the dif-
ferent dynamical portraits obtained between prograde and ret-
rograde regions (Hénon 1969, 1970). The study of the overall
dynamical structure of the Jovian satellite region with the deter-
mination of the various important mean motion resonances for
the three-body problem has been done by Hinse et al. (2010).

The aim of this paper is to investigate the long-term stabil-
ity of the Jovian irregular satellites in a numerical way. We used
long-term numerical integrations with a model taking the per-
turbations of the giant planets on the motion of the satellite into
account, along with a chaos indicator, to precisely investigate
the chaoticity of all the satellites, extending the works of Saha
& Tremaine (1993), Beaugé & Nesvorný (2007), Nesvorný et al.
(2003) and Hinse et al. (2010). The chaotic diffusion of the satel-
lites is shown, as well as the reasons for their chaotic behavior.
Stability maps of different dynamical models were computed in
order to precisely show the locations and influences of the im-
portant resonances for the dynamics of the satellites. Another
interest of this paper is the numerical confirmation of earlier an-
alytical results found by previous authors.

This paper is organized as follows. In the next section we
present the results of our numerical integrations of the real satel-
lites, while their chaotic diffusion is more precisely described in
Sect. 3. In Sect. 4, stability maps of the satellite regions and fam-
ilies are shown. Finally, we give our conclusions and point out
future interesting work in Sect. 5.

2. Long-term integrations of the Jovian irregular
satellites

We numerically integrate the motion of the known satellites
(considered as massless particles) by using a symplectic integra-
tor of type SBAB4 (Laskar & Robutel 2001). The Hamiltonian
of the satellite is integrated in the jovicentric frame and its or-
bit is perturbed by the Sun and the giant planets, which are
integrated using a Hamiltonian expressed in Poincaré variables
(Laskar & Robutel 1995; Goździewski et al. 2008).

To check the chaoticity of the orbits, we also use a numer-
ical indicator of chaos. There are a variety of methods that are
used to determine the level of stochasticity of a given orbit and
which are either based on the Lyapunov Exponents theory (see a
review in Skokos 2010) such as the FLI (Froeschlé et al. 1997),
the OFLI (Fouchard et al. 2002), the MEGNO (Cincotta et al.
2003), or the GALI (Skokos et al. 2007), or they are based on
spectral methods, such as the frequency analysis (Laskar 2005),
the spectral number (Ferraz-Mello et al. 2005), or the 0–1 test
(Gottwald & Melbourne 2009). Using the frequency analysis,
a two-dimensional view in the frequency space of the web of
resonances of a mapping has been realized for the first time by

8

Fig. 1. Estimations of the MLE of seven satellites obtained from their
MEGNO evolutions, in function of the integration time.

Laskar (1993). Detailed views of the Hamiltonian case in the ac-
tion space using the FLI indicator have been made by Froeschlé
et al. (2000), which led to the first numerical evidence of the
so-called Arnold diffusion (Lega et al. 2003).

We use the MEGNO indicator, which has been tested and
used in the case of the Jovian irregular satellites by Hinse
et al. (2010). We computed the MEGNO along the lines of
Goździewski et al. (2008). The chaos indicators based on the
Lyapunov Exponents theory are computed by using the infor-
mation contained in the time evolution of one or several tan-
gent vectors. The unique tangent vector used to determine the
MEGNO is computed along with the equations of motion, by
numerically integrating the variational equations (see a compre-
hensive recipe in Mikkola & Innanen 1999). The choice of the
initial tangent vector δx0 is a recurring problem for chaos indi-
cators based on the tangent vector method, so following Barrio
et al. (2009), we choose the initial vector as the normalized gra-
dient of the Hamiltonian H defining the motion of the satellite
δx0 = ∇H/‖∇H‖.

An online least square fit is then applied to the MEGNO evo-
lution for the last 85% of the numerical integration to give an
indication of the Maximal Lyapunov Exponent (MLE). If such
a fit is not used, we recall that in first approximation and when
considering very linear MEGNO evolutions, the MLE can be
directly deduced from the MEGNO value at the end of the in-
tegration by the relation MLE = 2 MEGNO

T where T is the inte-
gration time. The estimation of the MLE for different satellites
computed with this relation is shown in Fig. 1.

The initial positions of the bodies were obtained from the
JPL ephemerid service for the date January 1, 2008 00:00:00.00
(CT) (Julian date: 2454466.5). We made a barycentric correction
of the position of the giant planets in order to add the masses of
the inner planets into that of the Sun, and we used two differ-
ent timesteps for the integrations, 0.01 year for prograde orbits,
and 0.04 year for retrograde ones (see Nesvorný et al. 2003).
The maximum relative differences of the Hamiltonians during
the integrations stayed under 10−8 for the orbit of the satellite
and 10−9 for the planets. We finally integrated the motion of the
satellites over 100 million years. The averaged orbital elements
of each satellite over the whole timespan were also computed.
As a check concerning the reliability of our integrations, they
can be compared with the ones found by Nesvorný et al. (2003)
and show very similar values.

Table 1 shows the final MEGNO value along with an es-
timation of the Lyapunov time TL (= 1

MLE ) and the averaged
orbital elements for each satellite. Quite surprisingly, the vast
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majority of the satellites are found to be chaotic and only three
satellites which are the bulk of the Himalia prograde group show
no signs of chaos during the timespan of the integration. One can
see in Table 1 that the most chaotic objects are either parts of
the Pasiphae family or do not actually belong to a well-defined
family. The dynamical families already found by Nesvorný et al.
(2003, 2004) and Beaugé & Nesvorný (2007) are of course re-
covered and we propose the membership of two additional satel-
lites not previously studied. We did not use the Gauss equations
(Nesvorný et al. 2003) in this work to determine their member-
ship, but we hope that the proximity in averaged orbital elements
of these new satellites compared to the families is convincing
(Thelxinoe in the Ananke family, Herse in the Carme family).
The (*) in Tables 1 and 2 refers to the satellites not previously
studied by Nesvorný et al. (2003).

Saha & Tremaine (1993) determined the MLE of the satel-
lites Ananke, Carme, Pasiphae and Sinope over 2 million years
by using the so-called two-particle method (Benettin et al. 1976).
In a paper discussing the precision of the two-particle method
against the variational method, Tancredi et al. (2001) computed
the MLE of the four satellites again but with the more pre-
cise variational method and found slightly different behaviors
for their MLEs. To check the similarity of our results with that
of Tancredi et al. (2001), we did the same computations with
our numerical integrator, which uses the variational method. We
found very similar evolutions of the MLEs, in particular, we
recovered the result that, over the same limited integration pe-
riod, Sinope and Pasiphae show clear signs of chaotic evolution.
Carme and Ananke show a very weak, but still visible chaos in
our simulations. We can observe the same behavior in Tancredi,
Sánchez & Roig (2001). Even if their simulations show very lin-
ear evolutions of the MLE of Carme and Ananke, one can still
observe slightly unstable behaviors at the very end of their com-
putations (see the Fig. 8a of their paper).

As explained above, the first 15% of the MEGNO evolution
are not used for computing the MLE. The aim is to get rid of the
initial transient evolution of the tangent vector; however, for a
few satellites, the MLE is found to be slower to converge, allow-
ing a good fit of the linear part of the MEGNO only for the last
60−50% evolution. For example, this problem can be observed
in the evolution of the MLE of Elara, Themisto and Helike in
Fig. 1. For all the satellites concerned (Elara, Themisto, Carme,
Callirhoe, Helike, and Hegemone), we made these improved
estimations of the MLEs, with the effect of obtaining slightly
higher values. We note the special case of Helike, whose LCE
does not seem to converge for the considered timespan; the TL
value given for this satellite corresponds to the last 85% of its
MEGNO evolution and has to be considered with caution.

Using their analytical model, Beaugé & Nesvorný (2007)
found the fundamental secular frequencies of the satellites. But
as their model was built in the framework of the restricted three-
body problem, it is interesting to check the values they found
analytically, with a numerical model that takes the perturbations
of the giant planets into account. To this end we made a sec-
ond set of numerical integrations with the aim of determining
the frequencies g and s of the satellites, which are related to the
longitude of pericenter and the longitude of the node, respec-
tively. We recall the definition of the longitude of pericenter �
of a satellite and its frequency g:

Prograde orbit : � = Ω + ω, g = νH + νG
Retrograde orbit : � = Ω − ω, g = νH − νG

where Ω is the longitude of node, ω the argument of pericenter,
and νH and νG their respective frequencies. The longitude of the
node and its frequency s = νH are unchanged from their classical
definitions. As we have shown that the vast majority of the satel-
lites are chaotic, their orbits do not lie on quasi-periodic torus,
hence their fundamental frequencies cannot be defined and thus
we cannot expect the convergence of Fourier-based algorithms.
Nevertheless, as the majority of the satellites are not heavily
chaotic, and in particular for the most stable ones, we hope that a
good definition of “stable” frequencies can be found. The times-
pan needed for the determination of the secular frequencies must
not be too long to avoid chaotic diffusion effects, but has to be
long enough to determine the most important frequencies of the
system.

– A timespan of 1 050 000 years was thus chosen, which is
enough to resolve the secular frequencies of Jupiter, Saturn,
and Uranus.

– The initial timesteps being 0.01 year and 0.04 year, the out-
put has to be decimated in order to have acceptable data for
the frequency analysis, thus an output every eight years was
chosen.

– To avoid aliasing from high frequencies related to the mean
motion of the satellite (typically from 130◦/yr to 1030◦/yr),
we used a digital online low-pass filter based on the Kaiser
Window (Kaiser & Reed 1977; Quinn et al. 1991). The spec-
ifications of the filter are listed here :

Prograde Retrograde
Parameter β 20
Parameter x0 0.0005 0.002
Number of points 24 001 6001
Frequency pass (wpass) 9◦/yr
Frequency stop (wstop) 27.72◦/yr
Ripple 8 × 10−7

Attenuation 4 × 10−10

The reader can refer to Quinn et al. (1991) for a complete pre-
sentation of the Kaiser Window and its parameters.

The maximum frequency of interest for the retrograde satel-
lites being approximately 6◦/yr, we chose a higher frequency
pass to avoid any influence by the filter on the frequencies of in-
terest. The new sampling frequency given by the eight year out-
put being ws = 45◦/yr, it satisfies the condition ws ≥ wstop +wpass
to avoid aliasing in the frequencies below the frequency pass
wpass (Carpino et al. 1987). An example of using the filter for
the eccentricity of the retrograde satellite Pasithee is shown in
Fig. 2.

The frequency analysis FMFT algorithm (Šidlichovský &
Nesvorný 1996) based on the frequency analysis algorithm
(Laskar 2005) is then applied to the time series of the equinoctal
elements k + ih and q + ip defined by

k = e cos(�) h = e sin(�)
q = sin(i/2) cos(Ω) p = sin(i/2) sin(Ω).

The secular frequencies and periods of the satellites are listed in
Table 2. Not surprisingly, the secular frequencies of the satellites
in each of the Ananke and Carme families are quite the same.

Concerning the Lidov-Kozaï resonance, while most of the
satellites appear to be perturbed by the resonance but in a circula-
tion mode, we found the libration of prograde Carpo around 90◦
during the entire integration and the close proximity of prograde
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Fig. 2. Evolution of the osculating eccentricity of Pasithee over
50 000 years. Also shown is the corresponding online filtered eccen-
tricity obtained using the Kaiser Window.

Themisto to the resonance found by previous authors (Beaugé
& Nesvorný 2007). The satellite Euporie appears to be in the
Lidov-Kozaï resonance for the entire integration (Nesvorný et al.
2003; Ćuk & Burns 2004), its argument of pericenter ω librat-
ing around 90◦. Although its motion is chaotic, it shows a very
limited chaotic diffusion (see next section Fig. 5), and ω has a
constant maximum deviation of ±30◦ around its libration value
during the timespan of the integration.

The case of 2003J18 is very interesting : we found that some-
times its motion alternates between circulation and libration in
the resonance, and sometimes between the two centers of libra-
tion of the resonance (±90◦). This is by far the most chaotic
satellite of the Jovian irregulars, but its motion does not seem
to have a strong chaotic diffusion in the proper elements space
(see next section Fig. 5).

Concerning the ν� resonance, we found the temporary libra-
tions of the already known Pasiphae (libration around�−�� =
0) and Sinope (libration around 0). Besides these satellites, we
found three satellites that experience long periods of libration
around 0: Cyllene, Helike and Hegemone. The evolution of their
resonant argument is shown in Fig. 3.

These satellites have indeed long periods of precession of
their pericenter as indicated in Table 2. Inspection of the peri-
ods shows that 2003J02 has an exceptionally low value of its
frequency of pericenter g, and the satellite indeed switches be-
tween circulation and libration in the resonance ν� around 0 (see
Fig. 3).

However, we do note a bad convergence of the frequency
analysis algorithm for 2003J02, which makes its values hardly
reliable. In fact, this object is the farthest Jovian satellite known
and is located in a very chaotic zone (see Sect. 4). We thus made
two numerical integrations with 0.01 and 0.04 year timesteps to
check how the timestep modifies the results. The satellite did
not survive in the two integrations and shows an escape after
11.3 million years for the 0.01 year timestep and 73 million years
for the 0.04 year timestep. In the two integrations the escape
takes place after a rise of the satellite’s eccentricity, typical of
the Lidov-Kozaï mechanism. We can hardly conclude about its
macroscopic instability at this point, but do give in Table 2
the results corresponding to the 0.01 year timestep integration.
Because the MEGNO evolution is very linear for this satellite,
we used the simple relation shown above to obtain the MLE from
the MEGNO, and we note that even if the orbital evolutions are
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Fig. 3. Evolution of the resonant angle � − �� of the satellites (from
top to bottom): Cyllene, Helike, Hegemone, and 2003J02.

different in the two integrations, the Lyapunov times obtained
are very close to each other (1687 and 1806 years).

Among the satellites not belonging to any families, we also
found several temporary librators much less affected by the res-
onance: Autonoe, Sponde, Orthosie and 2003J10. Their resonant
arguments can be found in libration around π for periods of typ-
ically 500 000 to 106 years.

3. Chaotic diffusion of the real satellites

To study the chaotic diffusion, we use moving averaging win-
dows in the spirit of Morbidelli & Nesvorný (1999). From the
output of the 100 million year integration of a given satellite
sampled every 4000 years, any orbital element x = [a, e, i] is
replaced by its averaged value,

〈x(t)〉 = 1
N

t′=t+5 Myr∑
t′=t−5 Myr

x(t′), (1)

where N is the number of points in each window. If the length of
the windows is long enough (here we set 10 Myr), the outputs of
this averaging method can be considered as numerically defined
“proper” elements. Quasi-periodic orbits will present constant
〈x(t)〉 during the timespan or limited oscillations coming from
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Fig. 4. Evolutions of the osculating and averaged eccentricity of Sinope
over 100 Myr. The averaged evolution is computed using Eq. (1).

non-averaged long periods, while chaotic ones will show non
quasi-periodic variations. An example of this averaging method
is shown in Fig. 4 for the retrograde satellite Sinope. The av-
eraging method induces a loss of 5 Myr of the evolution at the
beginning and the end of the integration.

Proceeding in the same way for all the satellites, we show the
long-term evolution for the retrograde group in Fig. 5, along with
ellipses indicating the known families (Nesvorný et al. 2003;
Beaugé & Nesvorný 2007). From the figures, we can observe
evident chaotic diffusion for the Pasiphae family and the highly-
eccentric satellites lying in the range 〈a〉 = [0.155:0.165] AU.
These satellites experience typical mean evolutions along the
MMR 6:1 with strong oscillations in eccentricity, while their dif-
fusion in semi-major axis are limited.

In the same spirit as in Knežević & Milani (2000) and to
better differentiate the different magnitudes of diffusion, we de-
termine for each averaged evolution the standard deviation σx
and the maximum excursion Δx = 〈xmax〉 − 〈xmin〉 for the semi-
major axis, eccentricity, and inclination. The results are listed in
Table 1.

In constrast to the Pasiphae family, the Ananke and Carme
families show very limited diffusion in semi-major axis, eccen-
tricity, and inclination. We note the interesting case of the satel-
lite Helike at an almost constant averaged semi-major axis of
0.1398 AU, which shows on the maps (denoted by red color)
important vertical diffusions in eccentricity and inclination, cor-
responding to an evolution in the MMR 7:1 with the Sun. For
example, the argument n − 7n� + s − 4g + 11s6 − 2g7 is in libra-
tion for the first 30 000 years of integration, and then alternates
between libration and circulation owing to the chaoticity of the
orbit. This satellite has already been found temporarily librat-
ing in the ν� resonance (Fig. 3): in fact, the high-eccentricity
periods of the orbit due to the MMR 7:1 put the satellite in the
ν� resonance, thus these high-eccentricity periods are perfectly
correlated to the libration periods in the ν� resonance shown in
Fig. 3.

We have not shown the chaotic evolution of the satellite
S2003/J2, because in our numerical integrations, as said in
Sect. 2, this outermost satellite escapes before the end of the
integration timespan.

Concerning the prograde satellites, there is evidence of
very long periods present in their evolutions, as their averaged
evolutions show characteristic quasi-periodic oscillations. For
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Fig. 5. Chaotic diffusion of the retrograde satellites over 100 Myr in
semi-major axis/eccentricity (top) and semi-major axis/inclination (bot-
tom). The colors used to distinguish the satellites are conserved between
the two figures. Ellipses indicate the known retrograde families. See the
online version for the color figures of the paper.

example, in the averaged evolution of Himalia, Elara, and Leda,
we have found some frequencies ranging from ∼1.1 million
years in the semi-major axis of Himalia and Leda, up to ∼33 mil-
lion years in the eccentricity of Himalia.

4. Stability maps

While individual long-term integrations of the satellites give lim-
ited information on the underlying dynamics of the satellite re-
gion, much more information can be obtained from stability
maps. Stability maps are commonly used to study dynamical
systems, and they allow a general understanding of their reso-
nant structure by highlighting chaotic and stable zones. Aside
from their use in many other physical domains, stability maps
have been used in celestial mechanics to study the dynamics
of various objects like asteroids (Robutel & Laskar 2001), bi-
nary asteroids (Breiter et al. 2005), Trojans asteroids (Robutel
& Gabern 2006), satellites (Callegari & Yokoyama 2010), plan-
ets of the Solar System (Michtchenko & Ferraz-Mello 2001), or
extrasolar planetary systems (Érdi et al. 2004).

As we look now for the global dynamical structure acting
on the satellites, we integrate a large number of fictitious or-
bits whose initial orbital elements were taken on regular grids
of 600 × 600 orbits in semi-major axis and eccentricity or in-
clination. To highlight the different dynamical mechanisms, we
use different dynamical models. Here, we have numerically
integrated each orbit for a 100 000 year timespan for retrograde
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maps, and 25 000 years for prograde ones (this reduced time for
prograde objects is due to computational possibilities). In each
map, the initial angles of the fictitious satellites have been set to
zero, except for the upper map of Fig. 6 where�(0) = 90◦. The
numerical integration is stopped and the satellite is considered
as lost if the distance of the satellite from the planet is less than
the semi-major axis of the outermost Galilean satellite Callisto
(taken as a = 0.0125 AU). In the same way, a satellite is consid-
ered to have been ejected if its distance exceed the Hill Sphere
of Jupiter (rh = 0.355 AU) while having a positive orbital energy
at the same time.

As the orbital elements of the irregular satellites typically
present large oscillations, stability maps are highly dependent
on the initial orbital elements chosen for the fictitious satellites.
Of course, one can wait to observe the same dynamical struc-
tures (although moved and distorted) by changing the initial or-
bital elements. Another complication is the common difficulty of
trying to indicate the positions of several real satellites on such
stability maps, because real objects cannot have the same initial
orbital elements. To overcome the first problem and limit the sec-
ond one, we plotted the maps by using averaged orbital elements
computed over the integration timespan. Moreover, this allows a
better comparison with the results given by analytical models,
which are usually given in terms of mean or proper variables.
Frequency maps can also be used to overcome this problem (see
Guzzo 2005).

In addition, the way of presenting the orbits in averaged el-
ements allows to observe tiny secular resonances, barely notice-
able when observed in initial osculating elements. This explains
why the stability maps in this paper appear distorted, as with
works using frequency maps, even if the free initial orbital ele-
ments are chosen on a rectangular grid.

4.1. The retrograde region

To show the different dynamical mechanisms and resonances
and how they appear, we made maps for several dynamical mod-
els (Fig. 6):

– the three-body problem (Sun + Jupiter + satellite) with the
Sun on a fixed, elliptic, and inclined orbit (R3BP: Fig. 6 up),

– the three-body problem (Sun + Jupiter + satellite) with the
Sun on its actual quasi-periodic orbit (R3BPQP: Fig. 6 mid-
dle);

– the complete model used above in this paper for long-term
integrations of the real satellites, which is a restricted 6 body
problem: Sun + 4 giant planets + satellite (R6BP: Fig. 6 bot-
tom).

The initial inclination in all these maps has been set to 150◦.
All the stability maps in this paper follow the color code of the
MEGNO: a value of 2 (blue) indicates stable orbits, while values
over 4 (yellow) are considered to be clearly chaotic. Orbits show-
ing a MEGNO value <2 (black and dark blue) have a resonant
behavior, while values between 2 and 4 are considered mildly
chaotic for the considered timespan. The MEGNO criterion has
been succesfully used for the Jovian irregular satellites system
in the frame of the restricted three body problem by Hinse et al.
(2010), where the authors give in particular a clear view of the
position of several important MMRs, as well as general prograde
and retrograde views of the outer satellite regions.

As expected, the R3BP model shows the basic dynamics and,
in particular, the secular resonance ν�, recognizable as the large
horizontal resonance across the map. This resonance will be used

Fig. 6. Stability maps in semi-major axis vs eccentricity of the retro-
grade region for different models: R3BP (up), R3BPQP (middle), and
complete model (bottom). The initial inclination is 150◦. See text for
comments.

as a landmark in the following. In this model resonant arguments
have the general form

k1n + k2n� + k3g + k4s with
4∑

i=1

ki = 0.

Mean motion resonances are clearly visible as nearly vertical
strips over the whole map, and, in particular, to the far right,
where several MMRs are expanded into “multiplet” structures
(Morbidelli 2002) corresponding to different resonant arguments
in the same MMR. We can also distinguish the family of reso-
nances n� + k4s ≈ 0, as the oblique resonances.
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The R3BPQP model (Fig. 6, middle) has been obtained
by integrating the complete system, but without taking the
direct perturbations of Saturn, Uranus, and Neptune into ac-
count on the motion of the satellite. The orbit of the Sun is
thus quasi-periodic, and its frequencies can be found for exam-
ple in Applegate et al. (1986), Carpino et al. (1987), or Robutel
& Gabern (2006). Resonances can now be created between the
frequencies of the satellites and all the frequencies of the outer
Solar System contained in the spectrum of the motion of the Sun.
In the R3BPQP model, the main resonances of the R3BP are
conserved, although we can see that the ν� resonance is con-
siderably broader and more chaotic. This occurs because in this
model the longitude of pericenter of the Sun is no longer fixed
and because very slow varying arguments of type (� − Φ), with
Φ any of the secular angles of the giant planets, are now present
in the same location (see Beaugé & Nesvorný 2007), making
these resonances overlap. The main difference brought by the
R3BPQP is the appearance of several secular resonances linked
to the Great Inequality νGI = 2n5 − 5n6 = −1467′′/yr between
Jupiter and Saturn. These resonances have the general form

jg + ks + pνGI + l�g� +
8∑

i=6

ligi +

8∑
i=6

mi si = 0, (2)

where the d’Alembert rules must be assured, implying j + k −
3p + l� +

∑8
i=6(li +mi) = 0. In particular, a number of low-order

resonances of the form

p1g + p2νGI ≈ 0 (3)

can be found across the whole map. Indeed, in the maps of Fig. 6,
and following the analytical results of Ćuk & Burns (2004) and
Beaugé et al. (2006), we know that for retrograde orbits the fre-
quency g can show a large number of values depending on the
orbital elements. g can be positive or negative, while the fre-
quency s is always positive and only experiences slight varia-
tions.

The value of g is positive for orbital elements under the sec-
ular resonance ν�, and takes lower values while the eccentricity
increases and while the orbit approaches the resonance ν�. All
the orbits above the resonance show a frequency g < 0, with
|g| increasing as the distance from ν� increases. This explains
why we can easily find resonances in Eq. (3) with positive and
negative values of p1, using the same fixed value for p2.

In particular we can find the resonances g+ νGI and 2g+ νGI

under ν�, which have basically the same shape that ν�. Above ν�
we have found, following the previous discussion, their “sym-
metric” counterparts g − νGI (which is important for the Carme
family) and 2g − νGI by means of numerical integrations of or-
bits in this area. In the following we also see that the resonance
g + 2νGI is very important for the Ananke family.

Our final dynamical model is the complete one (Fig. 6 bot-
tom). The introduction of the direct perturbations of the giant
planets on the motion of the satellite basically adds more chaos
to the global picture, making the resonances fuzzier than in pre-
vious models. We note that resonances of the type of Eq. (3) are
in general broader, as for 2g + νGI .

4.1.1. Effect of the initial inclination

The effect of different initial inclinations for the complete model
is shown on the stability map of Fig. 7, which is the complement
of Fig. 6 (bottom). See also Fig. 7 (right) of Hinse et al. (2010)
for the R3BP model. Along with the various vertical MMRs,

Fig. 7. Stability map in semi-major axis vs. inclination for the complete
model. The initial eccentricity for all orbits is 0.2.

the ν� resonance is clearly visible as the large resonance that
crosses the map almost horizontally and ends in the upper right
of the map. Chaos in the bottom right of the map originates from
the Lidov-Kozaï resonance (Beaugé & Nesvorný 2007) and the
overlapping of MMRs.

We also computed maps similar to Fig. 6 (bottom) with dif-
ferent initial inclinations in Fig. 8. Each map has a different av-
eraged inclination value. From these maps, we can state that the
location of the ν� resonance is in very good agreement with
the analytical results of Beaugé & Nesvorný (2007) (see their
Fig. 9). In particular the location of the resonance noticeably
moves to higher proper eccentricity with higher inclination. The
map with an initial inclination of 140◦ is comparatively more
chaotic because of the proximity of the orbits with the Lidov-
Kozaï resonance. We indicate in the maps the location and sizes
of the close-up maps used to investigate the retrograde families
in detail.

4.1.2. Ananke, Carme and Pasiphae families

Close-up maps centered on the three retrograde families were
made to study them in detail. Except for the semi-major axis
and eccentricity, initial orbital elements were chosen equal to
those of Ananke, Carme, and Pasiphae with the same method as
in Michtchenko & Ferraz-Mello (2001) or Guzzo (2005, 2006).
The diffusion in orbital elements of the members of the fami-
lies is shown on the maps. We note that such a method is only
“rigorous” for the study of the satellite used to compute the sta-
bility map; however, the proximity in averaged elements of the
satellites belonging to a family reduces the dynamical differ-
ences and makes an unique map still usable.

Figure 9 is dedicated to the Ananke family area. The top
panel is the stability map, while the bottom one shows the main
dynamical features in the vicinity of the satellites and explained
in the following. First, we observe that the members of the fam-
ily are spread around the vertical 7:1 MMR with the Sun at
a ∼ 0.14 AU. The different vertical lines of this resonance, which
lies in the range [0.139:0.141], correspond to various combina-
tions of n − 7n� with secular angles of the satellite or the plan-
ets and the long-term evolution of some of the real satellites are
clearly influenced by these resonances. Of course, other MMRs
are clearly seen on the map.
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Fig. 8. Stability maps in semi-major axis vs. eccentricity of the retrograde region with an initial inclination of 160◦ (up) and 140◦ (bottom). The
locations and sizes of the close-up maps are shown with black rectangles.

Several slow arguments corresponding to Eq. (2) can be
found on the map. The s+8νGI type resonance family is very im-
portant. Indeed, the striking resonance seen on the map close to
the satellites corresponds to the argument s+8νGI +10g�+13g6,
although we point out that other resonant arguments may be
found at the same location. The direction of this resonance on the
map indicates the general direction where the frequency of the
node s is constant, thus the orbits with s = const. are located on
lines parallel to this resonance. In particular, the three satellites
Thelxinoe, Iocaste, and Hermippe are placed according to this
direction (see Fig. 9 bottom), where the evolution of s + 8νGI
is closer to zero. For example, Thelxinoe shows a very slow
evolution of s + 8νGI + 23g�, while Iocaste is in libration in

the resonance s + 8νGI + 20s7 + 3s6 for the first 60 000 years of
integration (Fig. 10).

By computing the same map as Fig. 9 along with a Fourier
transform to obtain the fundamental frequencies of the fictitious
orbits, we found that the argument 4g − s  0 correspond to a
curve that goes through the family, although we did not found
a satellite in such a resonance. Combination of the s + 8νGI
and 4g − s families in this region implies that g + 2νGI  0.
The remaining satellites of the family follow such a family of
resonance. In particular, Fig. 11 shows the time evolution of the
resonant angle g + 2νGI + g� + 2g6 + 3g7 and the MEGNO for
2003J16 (gray color in Fig. 9) for 1 million years. The resonant
angle librates for 400 000 years then circulates as the orbit shows
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Fig. 9. Close-up stability map of the Ananke family along with the
chaotic diffusion in orbital elements of the known satellites of the family
(up). A sketch of the main dynamical features along with the averaged
positions of the known satellites is also shown (bottom).

Fig. 10. Evolution of the angle s + 8νGI + 20s7 + 3s6 for Iocaste.

clear signs of chaotic behavior. The satellites of the Ananke fam-
ily show similar evolutions.

These results can be seen from the frequency analysis of the
Ananke family (Table 2), where the periods of the longitude of
the pericenter T� of the satellites are about half the period of the
Great Inequality (883 years) and the period of precession of the
node TΩ is close to 1

8 of this value.
We note the presence of chaos due to the overlapping of sec-

ular and mean motion resonances, and postulate that the chaos
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Fig. 11. Evolution of the satellite 2003J16. Resonant angle g + 2νGI +
g� + 2g6 + 3g7 (up) and MEGNO (bottom). The horizontal line in the
bottom figure represents the MEGNO value for quasi-periodic orbits.

Fig. 12. Close-up stability map of the Carme family along with the
chaotic diffusion in orbital elements of the known satellites of the fam-
ily. The positions of the g − νGI and s + 10νGI secular resonances are
indicated by the dotted lines.

observed for the Ananke family arises mainly from the overlap-
ping of the s + 8νGI secular resonance and the 7:1 MMR, while
other weaker resonances of the s + 8νGI family also overlap the
7:1 MMR.

In Fig. 12 is shown the Carme family in detail. The fam-
ily (except 2000J17) lies between the chaotic 6:1 MMR at a =
0.152 AU (on the left) and the 17:3 MMR at a = 0.157 AU (on
the right). The mean motion resonances seem to be more chaotic
in this dynamical region and we note that multiplets of mean mo-
tion resonances overlap; for example, the vertical chaotic strip
which corresponds to the 17:3 MMR contains not only this res-
onance, but also some multiplets of the 6:1 MMR of the form
n − 6n� + g + 2s.

The secular resonance g − νGI is present on the map and
draws an approximately linear curve from the bottom left to
the upper right of the map, passing through the Carme family.
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Fig. 13. Evolution of the resonant angle g − νGI − 2g6 − 2s8 for 2003J9.

This resonance cannot be seen in the small-sized Fig. 12, but en-
largement of the figure allows this feature to be detected, thanks
to the use of averaged orbital elements. Although none of the
members of the family seem to be exactly in the resonance, the
averaged positions of some of the satellite are very closed to it
and are strongly influenced. For example, the evolution of the
angle g − νGI − 3g6 − g8 + g� − s8 can be found alternating
from libration to circulation for Kale during the first 7 million
years, but a better example is given by the evolution of the angle
g − νGI − 2g6 − 2s8 for 2003J9 in Fig. 13, which shows periods
of libration up to 30 million years long.

As for the Ananke family, this influence of the Great
Inequality is confirmed by the frequency analysis of the Carme
family (Table 2) where the periods of the longitude of the peri-
center of the satellites are close to the period of the Great
Inequality. In another way, the frequency of precession of the
node s for these satellites are very close to a commensurability
s+ 10νGI . Indeed, we have found that the satellites of the family
are strongly influenced by this resonance. They satisfy commen-
surabilities of the form

s + 10νGI + l�g� +
8∑

i=6

ligi +

8∑
i=6

misi (4)

with l�+
∑8

i=6(li+mi) = −29. For example, we find a 200 000 year
libration of the argument s+10νGI+l4g6+4g8+17s8 for Pasithee,
and a 450 000 year libration of the angle s+ 10νGI + 4g6 + 4s7 +
20s8 + s6 for Kallichore. This resonance does not appear in the
stability map (Fig. 12), probably owing to the limited integration
time of the map (100 000 years). Indeed, the chaotic diffusion
computed for some of the real satellites of the family (100 mil-
lion years) are clearly shaped in the direction of the resonance.
The location of the resonance in Fig. 12 was determined by com-
puting the frequencies of the fictitious orbits of the map.

The Pasiphae family is shown in Fig. 14. We superimposed
the chaotic diffusion of the satellites of the Pasiphae family on
the map, but also those of a few satellites not belonging to actual,
known families: Autonoe, Eurydome, Hegemone and Sponde.
We chose these satellites in such a way that their averaged in-
clination approximately matches that of the stability map at the
same values of averaged semi-major axis and averaged eccen-
tricity. Because the secular resonances are very sensitive to in-
clination and to avoid misinterpretations, we limit the number of
satellites shown by allowing differences in averaged inclination
of only a few degrees.

In contrast to the two previous retrograde families, the dy-
namical region of the Pasiphae family is much more chaotic, and
the resonant web is clearly visible. For clarity, a separate sketch
of some of the mean motion and secular resonances is also dis-
played with the chaotic diffusion of the satellites in Fig. 14.

Fig. 14. Close-up stability map of the Pasiphae family (up) and sketch
of the main resonances (bottom). The chaotic diffusion in orbital ele-
ments of the known satellites of the family and Autonoe, Eurydome,
Hegemone, and Sponde is also shown.

The most important features are the two MMRs (6:1 and
23:4) that surround the majority of the satellites, and the secu-
lar resonance ν� (S1) that again divides the map horizontally. As
said above, the frequency of the longitude of pericenter g goes
to zero in this location and changes its sign, thus allowing the ν�
resonance, and also resonances of the type

g + l�g� +
8∑

i=6

ligi +

8∑
i=6

misi (5)

where l� +
∑8

i=6(li + mi) = −1.
Many resonances can be found near the location where g ∼ 0

and we find resonances involving the Great Inequality (S2) of the
type

jg + νGI + l�g� +
8∑

i=6

ligi +

8∑
i=6

misi, (6)

where j ≥ 2 and j + l� +
∑8

i=6(li + mi) = 3, while the resonance
g + νGI is indicated by S3.

As g increases when the eccentricity is decreased, reso-
nances of the type

g + pνGI , (7)
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Fig. 15. Stability map in semi-major axis/eccentricity of the prograde
region. Averaged orbital elements of the known prograde satellites are
indicated by green crosses.

where p ≥ 2, are present, like the g + 2νGI resonance indicated
by S5. We note that we can also find the 4g + s resonance at
approximately the same location, and the resonances 2g + s and
3g+s discussed in Beaugé & Nesvorný (2007) are found at lower
eccentricities and thus do not appear on the stability map.

Above the ν� resonance, g has a negative sign and the reso-
nances g− νGI (S6) and g− 2νGI (S4) can be found. While these
resonances overlap with the MMR 23:4 close to the pasiphae
family, the chaos observed for the real satellites could only orig-
inates in the overlap of the ν� resonance with resonances defined
by Eqs. (5) and (6), but also with the resonance s + 11νGI (S7),
which overlaps the other resonances very close to the averaged
position of Pasiphae. Indeed the chaotic evolution of this satel-
lite seems to visit the location of the ν� resonance, as well as the
resonances defined by Eqs. (5) and (6).

4.2. The prograde region

Figure 15 show the prograde region. In the same way as with the
retrograde families, we computed the stability map using the ini-
tial orbital elements of Himalia, with semi-major axis and eccen-
tricity taken as free parameters. As already mentioned in Hinse
et al. (2010), we can see that the prograde region, which is closer
to the planet than the retrograde one, is much less perturbed and
dynamically “active”. Apart from the chaotic resonance located
in the right of the stability map, which can be identified as the
g + 8νGI + 20g� + 3g6 resonance and its immediate vicinity, no
chaotic orbits are found with the MEGNO indicator, which is
why we restricted the MEGNO scale on the map in a tiny range
of 10−3 around the stable value of 2. Indeed the MEGNO allows
us to detect and distinguish resonant and unstable orbits located
on border of resonances from quasi-periodic orbits (Cincotta &
Simó 2000).

The averaged positions of the six known prograde satellites
are indicated on the map with crosses because their chaotic dif-
fusion is hardly visible. The positions of Themisto and Carpo are
indicated, but their averaged inclination does not match those of
the stability map, which thus cannot be used to determine their
stability.

Himalia, Leda, Lysithea, and Elara are located close to the
g+ s resonance, which can be found near the location given ana-
lytically by Beaugé & Nesvorný (2007), as well as the resonance

2g+3s. These resonances are neither detected by the MEGNO on
the stability map nor by a particular pattern that could be visible
with the use of the averaged elements. Once again we show the
location of these resonances on the stability map by computing
the frequencies of the orbits of the map.

On the other hand, several resonances are clearly visible on
the stability map. Himalia, Leda, Lysithea, and Elara in particu-
lar, are located close to a resonance satisfying g − s + 7νGI ∼ 0.
This resonance belongs to the family defined by

g − s + pνGI + l�g� +
8∑

i=6

ligi +

8∑
i=6

misi, (8)

where p+ l�+
∑8

i=6(li +mi) = 0, and where the different possible
arguments share the same shape on the stability map. Of this
small prograde group, Elara is the closest to the g− s+ 7νGI ∼ 0
resonance, in semi-major axis, eccentricity, and inclination (we
have not found an exact resonant argument satisfying Eq. (8)
for this satellite) and is the only object to be detected as having
a chaotic orbit. Thus we believe that the chaos of Elara comes
from a possible overlapping of the g − s + 7νGI ∼ 0 resonance
with the g + s resonance, while longer numerical integrations
would be necessary to check this hypothesis.

5. Discussion

One of the results presented above is the presence of commensu-
rabilities involving the Great Inequality very close to or within
the retrograde satellite families Ananke, Carme, and Pasiphae, as
well as for the prograde group. Among these resonances, those
involving the frequency of precession of the pericenter g typi-
cally have a low order.

Ćuk & Burns (2004) point out that the Great Inequality is
dynamically important for the prograde irregular satellites of
Saturn. In particular, they show that the fictitious satellites satis-
fying 2g+ νGI +g6 = 0 (which implies T� = 1850 years) are un-
stable on short timescales. This resonance induces thus a strong
instability that could have had a sweeping effect on the objects
captured by Saturn in the past (Ćuk & Gladman 2004). The ac-
tual Saturnian prograde satellites are not in such a resonance, but
are located in inclinations above and below the resonant one.

The situation is not that clear for the Saturnian retrograde
satellites, although the authors point out the case of Thrymr,
which has a precession period close to that of the Great
Inequality. In a general way, by checking the precession val-
ues of the irregular satellites of Saturn, Uranus, and Neptune
found analytically by Beaugé & Nesvorný (2007), it seems that
no important clusterings of satellites occur near commensura-
bilities involving the Great Inequality, except maybe a group of
eight Saturnian satellites including Suttungr and Mundilfari near
a 4g − 3νGI commensurability.

On the other hand, some individual satellites are very close to
some resonances like Saturn’s 2004S7 (s + 3νGI ) and Bergelmir
(s+2νGI), Uranus’ Ferdinand (3g−νGI), or Neptune’s Psamathe
(s + νGI ). One can see that commensurabilities of type s + pνGI
for the satellites of Saturn, Uranus, and Neptune tend to have
a lower order than in the case of Jupiter, where the satellites
have higher values of s. While numerical simulations are needed,
there are thus no a priori reasons to find a smaller importance of
the Great Inequality in the dynamical evolution of the retrograde
satellites of Saturn, Uranus and Neptune, or even with the so-
called “Lesser Inequality” n7−2n8 between Uranus and Neptune,
for the satellites of these planets.
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There is confidence that the irregular satellites of the gi-
ant planets were captured during the planetary migration pe-
riod caused by the gravitational scattering due to the primor-
dial planetesimal disk (Nesvorný et al. 2007; Bottke et al. 2010).
Studying the evolution of the various resonances described in
this paper during the planetary migration, as considered by the
models of Tsiganis et al. (2005) or Hahn & Malhotra (1999),
would require careful numerical integrations. These models
show that Jupiter and Saturn have migrated inward and outward
respectively. In particular, they imply that no drastic change have
occurred in the frequency of precession of Jupiter g5 (the ampli-
tude of the g5 mode also changed, see Morbidelli et al. 2009),
so we can only expect a very small change in the location of the
ν� resonance. This is not the case for resonances involving the
Great Inequality. If we use the relation giving the temporal evo-
lution of the semi-major axis a5(t) and a6(t) of Malhotra (1995)
and take Jupiter and Saturn in their 1:2 mean motion resonance
as initial conditions, we can see that low-order resonances of
type jg + kνGI have likely crossed all the maps of Fig. 8 during
the planetary migration. Carruba et al. (2004) show that a similar
mechanism occurred in the region where satellites are librating
in the Lidov-Kozaï resonance. Their results indicate that a pow-
erful sweeping of objects inside the Lidov-Kozaï resonance, and
caused by secondary resonances with the Great Inequality, had
been acting during the migration of Jupiter and Saturn.

For the mean motion resonances between the satellites and
the Sun of type pn = (p + q)n�, the change in semi-major axis
Δa of their nominal location during this period is given by the
simple relation

Δa = Δa5

( p + q
p

)− 2
3
(m5 + m�

m5

)− 1
3

, (9)

where Δa5 is the change in semi-major axis of Jupiter (0.2 AU),
and m5 and m� are the masses of Jupiter and the Sun. This gives
a change of ∼0.01 AU toward the planet for the MMRs found to
be close to the families (6:1, 17:3, 23:4, 7:1).

6. Conclusion

We used long-term numerical integrations of the known Jovian
irregular satellites, along with a chaos indicator, to obtain a view
of their mean evolution and their chaotic diffusion in the mean
orbital elements space. The results show that, while the majority
of the satellites show signs of chaos, the Ananke and Carme fam-
ilies only show restricted chaotic diffusion. On the other hand,
the Pasiphae family is strongly diffusive. We plan to investigate
its evolution in greater detail in future works.

By means of stability maps, we investigated the dynamical
background of the prograde and retrograde regions, as well as
the families’ regions. The results show that, besides the known
secular resonances already studied, resonances that involved the
Great Inequality between Jupiter and Saturn are quite numer-
ous in the retrograde region. In particular, one of the most strik-
ing things is that the Ananke and Carme families are found very
close to resonances of the type jg + ks + pνGI . Whether or not
these resonances were important in the past dynamical history of
the irregular satellite system is interesting and should be studied.

As previous analytical results by several authors were nu-
merically confirmed in an extensive way, we can state here that,
even if the three-body problem gives very good results in defin-
ing the dynamic of the satellites and predicting precession fre-
quency values, a better approximation is given when the Sun’s
orbit is taken to be quasi-periodic. This modelization must go

beyond the classical Laplace-Lagrange secular approximation,
as the effect of the Great Inequality must be taken into account
and its related frequency itself should be present in the system.

The methods and numerical investigations presented here
can be applied straighforwardly to the similar populations of ir-
regular satellites orbiting other giant planets. Of particular inter-
est is the case of Saturn, where resonances involving the Great
Inequality were found to be very important in the dynamics of
the satellites, but also in the case of Uranus and Neptune where
a reduced number of satellites is known, leading to an interest in
the sizes of the stable and chaotic zones around these two plan-
ets.

Because some of the satellites seems to follow a “stable
chaotic” behavior, it would be interesting to check whether their
orbits fulfill the conditions for applying the Nekhoroshev the-
orem (Nekhoroshev 1977), in order to use its spectral formu-
lation (Guzzo 2002; Pavlović & Knežević 2009 and references
therein), and thus study their stability over longer timespans.
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Tobias C. Hinse for useful discussions on the dynamics of irregular satellites.
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Table 1. Results of the 100 million year integration of the satellites.

Satellite 〈a〉 〈e〉 〈i〉 Megno TL σa σe σi Δa Δe Δi

(AU) (deg) (years) (AU) (deg) (AU) (deg)
Prograde group

Himalia 0.0765 0.1597 28.602 1.81 stable 0.05 3.92 39.6 0.31 20.10 266.7
Elara 0.0783 0.2122 28.067 9.60 4 098 361 0.21 8.42 2790.6 1.07 46.38 17 583.9
Lysithea 0.0782 0.1167 27.644 2.00 stable 0.04 88.32 1122.2 0.24 313.38 4085.4
Leda 0.0745 0.1630 28.086 2.01 stable 0.18 53.00 943.6 1.11 271.48 4931.0
Themisto 0.0495 0.2546 44.389 545.04 69 444 0.03 401.74 5524.2 0.12 2239.23 34 151.5
Carpo (*) 0.1139 0.4229 53.144 1490.97 33557 5.41 264.32 5194.8 26.88 1095.74 24 442.0

Ananke family
Ananke 0.1406 0.2438 147.705 162.53 306 129 1.24 205.56 3049.6 7.07 866.93 13 248.8
Iocaste 0.1408 0.2260 148.635 285.43 173 039 3.33 104.74 3116.0 20.57 556.34 17 444.8
Praxidike 0.1400 0.2410 148.011 1146.58 33 886 2.79 58.04 4676.9 0.05 284.77 22 918.0
Harpalyke 0.1396 0.2392 147.807 1049.08 42 952 4.43 52.07 1426.4 22.30 273.06 6352.3
Thyone 0.1402 0.2411 147.619 848.01 57 206 4.72 26.45 4348.9 22.68 133.20 20 367.7
Hermippe 0.1411 0.2202 150.084 62.34 859 049 10.23 73.82 4905.6 47.50 405.81 28 528.3
Euanthe 0.1392 0.2427 148.000 1454.65 33 312 5.04 46.18 1754.2 24.26 229.10 8438.8
2003J16 (*) 0.1386 0.2362 147.628 884.23 59 312 3.60 169.65 4209.0 20.15 802.68 19 353.9
Mneme (*) 0.1391 0.2388 147.752 106.93 466 919 4.01 324.56 7705.3 20.86 1802.96 40 557.9
Thelxinoe (*) 0.1402 0.2286 150.713 134.79 383 527 7.77 84.58 3459.7 37.80 472.33 19 479.7

Carme family
Carme 0.1547 0.2619 164.519 556.27 56179 6.55 84.41 2206.4 35.98 416.92 11 406.1
Kalyke 0.1557 0.2558 164.651 1174.44 43 545 5.78 70.18 2640.3 36.75 321.74 12 780.2
Erinome 0.1540 0.2736 164.372 210.13 255 461 12.07 135.98 1066.0 61.52 618.31 5061.9
Isonoe 0.1536 0.2543 164.792 52.56 926 900 4.04 38.19 1182.5 18.15 158.05 6719.7
Taygete 0.1544 0.2599 164.748 51.24 902 368 2.41 24.76 3657.0 13.49 122.30 18 690.9
Chaldene 0.1533 0.2582 164.683 128.75 396 116 5.59 108.18 2563.5 27.37 835.70 12 059.9
Pasithee 0.1527 0.2744 164.572 169.37 365 565 10.47 80.63 3783.3 49.80 398.23 17 440.4
Kale 0.1540 0.2659 164.466 947.10 55 335 8.06 105.95 4057.5 40.50 573.26 19 154.0
Aitne 0.1541 0.2705 164.550 1366.89 36 578 7.03 78.87 1650.4 38.29 350.12 10 304.4
Eukelade (*) 0.1542 0.2698 164.722 58.85 765 413 1.81 30.16 804.2 10.46 132.23 4096.1
2003J05 (*) 0.1553 0.2554 164.782 472.66 109 538 6.38 81.31 2781.6 34.90 494.19 12 618.4
Arche (*) 0.1544 0.2573 164.526 17.64 2 812 262 2.03 12.87 1273.9 11.77 88.06 7112.3
Kallichore (*) 0.1540 0.2579 164.636 604.61 77 760 8.19 99.66 4509.3 45.26 454.62 23 867.7
2003J19 (*) 0.1556 0.2632 164.641 496.83 113 623 7.05 64.11 1743.6 38.58 394.83 8151.2
2003J9 (*) 0.1546 0.2709 164.550 29.73 1 573 482 2.46 36.17 0428.3 12.65 198.53 2266.1
Herse (*) 0.1520 0.2457 164.465 97.41 504 692 0.89 41.03 4216.8 5.06 204.93 19 813.3

Pasiphae family
Pasiphae 0.1568 0.4012 148.712 4089.53 9087 6.25 1006.23 35600.8 36.04 3811.57 136 968.2
Megaclite 0.1581 0.4263 149.752 916.06 73 282 12.07 79.53 5973.0 59.91 500.91 36 264.9
2003J04 (*) 0.1586 0.3753 146.822 2672.96 17 519 6.63 233.38 5942.7 41.75 1266.15 34 420.8
Cyllene (*) 0.1580 0.4136 147.213 5464.17 9772 17.73 971.95 32673.5 88.79 3553.04 140 856.3

Other satellites
Autonoe 0.1588 0.3187 150.759 4870.90 10 116 18.14 465.55 11633.6 74.00 1649.62 449 531.8
Callirhoe 0.1591 0.2964 145.072 3088.88 12 820 13.91 237.06 10839.3 64.20 1223.68 468 475.3
Helike (*) 0.1398 0.1631 156.207 3561.37 15 742 2.75 1770.12 101714.9 18.03 5317.68 3 034 247.6
Aoede (*) 0.1589 0.4417 155.930 2518.58 18 446 5.94 177.45 12345.3 34.64 935.99 468 323.0
2003J23 (*) 0.1554 0.2892 144.482 2042.03 26 659 5.21 274.02 7912.4 31.90 1346.63 360 419.6
Eurydome 0.1530 0.2863 148.928 120.76 407 729 3.48 39.67 3034.7 17.86 205.63 14 6036.5
Hegemone (*) 0.1561 0.3561 152.479 3687.31 8771 14.71 818.84 21 359.9 60.21 2544.48 766 995.9
Euporie 0.1288 0.1482 145.425 86.72 608 869 0.52 148.24 3551.8 3.33 781.07 182 316.4
Sponde 0.1573 0.3215 149.245 2058.82 21 836 13.77 336.61 8770.1 61.33 1202.19 431 989.5
Orthosie 0.1397 0.2916 144.120 1389.60 38 452 3.59 240.42 10 202.6 19.51 1056.06 494 229.6
Sinope 0.1579 0.2630 157.814 5890.24 8009 18.92 1005.06 16 314.9 83.41 4119.96 710 624.0
2003J02 (*) 0.1904 0.3800 154.290 3349.03 1687 – – – – – –
2003J03 (*) 0.1338 0.2090 146.820 56.89 978 744 4.65 295.51 6123.5 22.42 1489.61 32 446.0
2003J10 (*) 0.1525 0.4358 163.536 513.58 97 757 4.54 56.60 3171.6 26.16 208.43 15 917.6
Kore (*) 0.1616 0.3483 142.715 17505.48 2475 36.90 792.35 17 126.7 130.63 2937.66 77 155.1
2003J15 (*) 0.1493 0.2060 145.472 352.21 135 390 5.75 84.95 5806.9 29.31 460.46 33 523.3
2003J18 (*) 0.1357 0.0980 145.388 39219.53 1363 6.40 245.59 10 204.4 24.65 1481.72 47 437.5

Notes. For each satellite is shown the averaged semi-major axis 〈a〉, averaged eccentricity 〈e〉, averaged inclination 〈i〉, the final MEGNO value
and the Lyapunov time TL. From the averaged evolution (see Sect. 3), we determine the standard deviation σ (×10−5) and maximum excursion Δ
(×10−5) for the semi-major axis, eccentricity and inclination (see text for details). The (*) stands for satellites not previously studied by Nesvorný
et al. (2003).

A44, page 14 of 15



J. Frouard et al.: The long-term dynamics of the Jovian irregular satellites

Table 2. Results of the frequency analysis of the satellites.

Satellite νG νH T� TΩ
(deg/yr) (deg/yr) (years) (years)

Prograde group
Himalia 2.5797 –1.2291 266.56 292.90
Elara 2.8101 –1.3565 247.68 265.38
Lysithea 2.7418 –1.2314 238.35 292.35
Leda 2.4847 –1.1913 278.34 302.18
Themisto 0.5276 –0.6675 2574.42 539.37
Carpo (*) 0.0000 –3.1797 113.22 113.22

Ananke family
Ananke 2.4820 3.2626 461.23 110.34
Iocaste 2.4663 3.2370 467.08 111.21
Praxidike 2.4842 3.2390 476.93 111.14
Harpalyke 2.4491 3.2243 464.41 111.65
Thyone 2.4492 3.2471 451.15 110.86
Hermippe 2.6216 3.2489 573.93 110.80
Euanthe 2.4942 3.2228 494.10 111.70
2003J16 (*) 2.3888 3.1808 454.57 113.18
Mneme (*) 2.4306 3.2058 464.38 112.29
Thelxinoe (*) 2.7534 3.2594 711.39 110.44

Carme family
Carme 4.4477 4.0788 975.66 88.26
Kalyke 4.4523 4.1014 1025.80 87.77
Erinome 4.4727 4.0770 909.88 88.29
Isonoe 4.4030 4.0240 949.81 89.46
Taygete 4.4452 4.0659 949.17 88.54
Chaldene 4.4031 4.0172 932.91 89.61
Pasithee 4.4539 4.0346 858.54 89.22
Kale 4.4491 4.0643 935.57 88.57
Aitne 4.4755 4.0787 907.28 88.26
Eukelade (*) 4.4818 4.0818 900.07 88.19
2003J05 (*) 4.4499 4.0880 994.81 88.06
Arche (*) 4.4212 4.0560 985.65 88.75
Kallichore (*) 4.4168 4.0417 959.69 89.07
2003J19 (*) 4.4829 4.1144 977.01 87.49
2003J9 (*) 4.4861 4.0947 919.68 87.91
Herse (*) 4.3052 3.9376 979.33 91.42

Pasiphae family
Pasiphae 4.4349 4.4361 306 318.75 81.15
Megaclite 4.7022 4.5514 2386.17 79.09
2003J04 (*) 3.9728 4.3322 1001.74 83.09
Cyllene (*) 4.5649 4.5259 9239.19 79.54

Other satellites
Autonoe 3.8960 4.2355 1060.29 84.99
Callirhoe 3.0037 4.0498 344.13 88.89
Helike (*) 2.8745 3.1565 1276.42 114.05
Aoede (*) 5.2110 4.6872 687.29 76.80
2003J23 (*) 2.7794 3.8778 327.74 92.83
Eurydome 3.2230 3.8562 568.51 93.35
Hegemone (*) 4.2174 4.2186 305 742.95 85.33
Euporie 0.0000 2.5800 139.53 139.53
Sponde 3.6617 4.1331 763.70 87.10
Orthosie 2.5253 3.3484 437.35 107.51
Sinope 4.0673 4.0685 306 390.30 88.48
2003J02 (*) 5.5669 5.5668 3 729 657.55 64.66
2003J03 (*) 1.9824 2.9323 379.01 122.77
2003J10 (*) 5.2918 4.4821 444.63 80.31
Kore (*) 3.2990 4.2687 371.24 84.33
2003J15 (*) 1.9092 3.4159 238.93 105.39
2003J18 (*) 0.6013 2.6896 172.39 133.85

Notes. For each satellite is shown the frequency of the argument of pericenter νG, the frequency of the longitude of the node νH, the period of the
longitude of pericenter T� and the period of the longitude of the node TΩ obtained from a frequency analysis of the motion of the satellites over
one million years (see text for details). The (*) stands for satellites not previously studied by Nesvorný et al. (2003).
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