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Abstract. The semi-classical theory of collisional depolarization of spectral lines that we have applied to neutral atoms in
previous papers is extended to spectral lines of singly ionised atoms. In order to validate our general theory, we compare our
results to quantum chemistry calculations obtained for the particular cases of the 3d 2D and 4p 2P states of the CaII ion. As a
demonstration of the universality of our theory and the easiness of its application, we calculate depolarization and polarization
transfer rates for the 5p 2P state of the SrII ion. Analytical expressions of all rates as a function of local temperature are given.
Our results for the CaII ion are compared to recent quantum chemistry calculations. A discussion of our results is presented.
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1. Introduction

Observations of the linearly polarized radiation at the limb
of the Sun (known as the “second solar spectrum”), which is
formed by coherent scattering processes, show rich structures
(Stenflo & Keller 1997; Stenflo et al. 2000; Trujillo Bueno
et al. 2001; Bommier & Molodij 2002). The linear polariza-
tion observations reported in the atlas recently published by
Gandorfer (2000, 2002) show significant polarization peaks in
many spectral lines of ions, e.g. NdII 5249 Å, EuII 4129 Å,
CeII 4062 Å, CeII 4083 Å, Ba II D2 4554 Å, ZrII 5350 Å,
etc. Several surveys of the scattering polarization throughout
the solar spectrum (Stenflo et al. 1980, 1983a,b; see also the
Q/I observations of Stenflo et al. 2000 and the full Stokes-
vector observations of Dittmann et al. 2001) have shown that
ionised lines such as SrII 4078 Å and the IR triplet of CaII are
two of the more strongly polarized. The interpretation of these
observations requires the solution of the coupling between the
polarized radiative transfer equations (RTE) and the statistical
equilibrium equations (SEE) taking into account the contribu-
tions of isotropic depolarizing collisions with neutral hydro-
gen. Depolarization and polarization transfer rates are currently
available for ionised calcium levels, which have been obtained
through sophisticated quantum chemistry methods which are
accurate but cumbersome. Indeed, it is very difficult and some-
times not accurate to treat collision processes, involving heavy
ionised atoms like Ti II, Ce II, Fe II, Cr II, Ba II..., by standard
quantum chemistry methods. It would be useful to develop

alternative methods capable of giving results for many levels
of ionised atoms rapidly and with reasonable accuracy.

The aim of this paper is to extend the semi-classical the-
ory of collisional depolarization of spectral lines of neutral
atoms by atomic hydrogen given in previous papers of this
series (Derouich et al. 2003a,b; Derouich et al. 2004; here-
after Papers I, II and III respectively) to spectral lines of ions.
This paper outlines the necessary adjustments to the theory pre-
sented in Papers I, II and III for extension to spectral lines of
ions.

A great advantange of our theory is that it is not specific
for a given perturbed ion, and may be easily applied to any
singly ionised species. In order to validate this theory, we have
compared our results to quantum chemistry calculations when
possible. For this purpose, our results are presented and com-
pared with those obtained in the case of CaII levels by the
quantum chemistry method (Kerkeni et al. 2003). We also com-
pare the results to the depolarization rates computed with the
Van der Waals potential. Indeed, we have applied our method
to calculate depolarization and polarization transfer rates for
the upper state 5p 2P of the SrII 4078 Å line.

The main feature of the technique is the use of perturba-
tion theory in calculating the interatomic potentials. A key pa-
rameter in this theory is Ep which approximates the energy
denominator in the second-order interaction terms by an av-
erage value (Paper I and ABO papers: Anstee 1992; Anstee &
O’Mara 1991, 1995; Barklem 1998; Barklem & O’Mara 1997;
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Barklem et al. 1998). A discussion of the effect of Ep variation
on depolarization rates is presented. Finally, we show that the
present semi-classical method gives results in agreement with
accurate but time consuming quantum chemistry calculations
to better than 15% for the CaII ion (T = 5000 K). Using our
method it should now be possible to rapidly obtain the data
needed to interpret quantitatively the Stokes parameters of the
observed lines.

2. Statement of the problem

Under typical conditions of formation of observed lines in the
solar atmosphere, the atomic system (atom, ion or molecule)
suffers isotropic collisions with hydrogen atoms of the medium
before it radiates. The states of the bath of hydrogen atoms are
unperturbed. In the tensorial formulation (Fano & Racah 1959;
Messiah 1961; Fano 1963), the internal states of the perturbed
particles (here these particles are singly ionised atoms) are de-
scribed by the spherical tensor components nlJρk

q of the density
matrix. Owing to the isotropy of the depolarizing collisions, the
depolarization rates, polarization and population transfer rates
are q-independent. The term corresponding to the depolarizing
collisions in the master equation is given byd nlJρk

0

dt


coll

= −Dk(nlJ, T ) nlJρk
0

− nlJρk
0

∑
J′�J

ζ(nlJ → nlJ′, T ) (1)

+
∑
J′�J

Dk(nlJ′ → nlJ, T ) nlJ′ρk
0

+ quenching term.

Dk(nlJ, T ) is the collisional depolarization rate of the ionic
level (nlJ) at the local temperature T , where 0 ≤ k ≤ 2J.
D0(nlJ, T ) is the destruction rate of population which is zero
since elastic collisions (J = J′) do not alter the population of
the level (nlJ). D1(nlJ, T ) is the destruction rate of orientation
(related to circular polarization) and D2(nlJ, T ) is the destruc-
tion rate of alignment of the level (nlJ) which is of interest in
our astrophysics framework because it is related to the observed
linear polarization.

ζ(nlJ → nlJ′, T ) is the fine structure transfer rate between
the levels (nlJ) → (nlJ′) and Dk(nlJ → nlJ′, T ) is the polar-
ization transfer rate between the levels |nlJ〉 → |nlJ′〉, where
0 ≤ k ≤ kmax, kmax = 2J if J < J′ ( or if J > J′ then
kmax = 2J′). In particular, Dk(nlJ → nlJ′, T ) corresponds to
collisional transfer of population (k = 0), orientation (k = 1)
and alignment (k = 2).

Higher order terms of Dk(nlJ, T ) and Dk(nlJ → nlJ′, T )
with k > 2 can play a role in the SEE and have to be calcu-
lated. Note that, for the analysis of the linear polarization spec-
trum, only depolarization and polarization transfer rates with
even k are need. Odd k-terms can be eliminated from the SEE.

Dk(nlJ, T ) and Dk(nlJ → nlJ′, T ) can be written as
a linear combination of the collisional transition rates be-
tween the fine stucture sublevels ζ(nlJMJ → nlJ′M′J , T )
(Papers I, II and III, Sahal-Bréchot 1977); for depolar-
ization rates Dk(nlJ, T ) and transfer rate of population

Fig. 1. The perturbed ion core (with charge Z = 2) is located at A and
the hydrogen perturbing core (a proton) at P. Their valence electrons
are denoted by 1 and 2 respectively.

D0(nlJ → nlJ′, T ), the coefficients of this linear combination
are positive while the signs of the coefficients of the linear
combination for transfer rates of rank k ≥ 1 may be either
positive or negative. This explains why transfer rates of rank
k ≥ 1 are significantly smaller (Paper III). In our semi-classical
theory, the collisional transition rate between the sublevels
|nlJMJ〉 → |nlJM′J〉 is given by (Papers I and II):

ζ(nlJMJ → nlJM′J, T ) = nH

∫ ∞

0

∫ ∞

0
2πb db v f (v) dv

×|〈nlJMJ |I − S (b, v)|nlJM′J〉|2, (2)

where f (v) is the Maxwell distribution of velocities for the lo-
cal temperature T and nH is the local hydrogen atom number
density. I is the unit matrix and T = I − S is the so-called
transition matrix depending on the impact-parameter b and rel-
ative velocity u. The collisional depolarization rates and the
collisional transfer rates, which are linear combinations of the
ζ(nlJMJ → nlJM′J , T ) given by Eq. (2), can be expressed
in terms of the T -matrix elements. The transition matrix T is
functionally dependent on the interaction energy matrix of hy-
drogen in its ground state with the perturbed ion. Indeed, the
transition matrix elements in the dyadic basis are obtained by
solving the time-dependent Schrödinger equation (Paper I)

(HA + HP + Veff(R))
∣∣∣ψ(t)〉 = i

d
∣∣∣ψ(t)〉
dt
· (3)

Veff is the ion-hydrogen interaction used in this work and |ψ(t)〉
is the wave function of the system (ion+hydrogen). HA + HP

is the Hamiltonian of the system at the interatomic distance
R = ∞ (Fig. 1).

3. Ion-hydrogen interaction potentials

The interaction potential for a singly ionised atom interacting
with a hydrogen atom is treated in much the same way as for
the neutral atom interaction with hydrogen (Papers I, II and III;
ABO papers). In the coordinate system of Fig. 1, V is given, in
atomic units, by (Barklem & O’Mara 1998):

V =
2
R
+

1
r12
− 1

r2
− 2

p1
=

1
R
+

1
r12
− 1

r2
− 1

p1
+ Vind (4)

and atomic units are used hereafter. Vind = 1/R−1/p1 is the part
representing an inductive interaction between the excess charge
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on the ionised atom and hydrogen atom. Quenching is ne-
glected and thus we consider only the subspace nl (2l+1 states)
and we denote the product state of the two separated atoms at
R = ∞ by |Ml〉. By application of time-independent perturba-
tion theory to the second order, the interaction potential matrix
elements are given by:

〈Ml|Veff |Ml〉 = 〈Ml|V |Ml〉
+

∑
M′l�Ml

〈Ml|Vind|M′l 〉〈M′l |Vind|Ml〉
EMl − EM′l

+
∑

M′l�Ml

〈Ml|V − Vind|M′l 〉〈M′l |V − Vind|Ml〉
EMl − EM′l

(5)

EMl are the unperturbed energy eigenvalues of the isolated
atoms. The expression for the second-order interaction can
be greatly simplified if we replace the energy denominator
EMl − EM′l , of each sum, by a fixed average energy Ep and
assume that for important separations Ep(R) = Ep(∞). This
is the Unsöld approximation (Unsöld 1927; Unsöld 1955).
Ep = −4/9 atomic units is the appropriate Unsöld energy
value of the part of interaction, Vind, between excess charge
on the ionized atom and hydrogen because this part is exactly
the same as the H-H+ interaction. Indeed, Unsöld (1927) and
Dalgarno & Lewis (Dalgarno & Lewis 1956, Eq. (16)) showed
that Ep = −4/9 for the long-range H-H+ interaction. For the
part of the interaction describing the interaction between the
ion without the excess charge and hydrogen atom, the Unsöld
value of −4/9 cannot be expected to be a good approximation
(Barklem & O’Mara 1998). The reason that a value of −4/9
works well for neutrals is the fact that the separations of energy
levels of the perturbed neutral atom are small compared to the
separations between the ground level and the excited levels of
the hydrogen atom, and thus the denominators are dominated
by contributions from the H energy levels. For ions this is not
the case. As a result of the increased core charge, the energy
level spacings are generally much larger than for neutrals. It
necessary therefore to determine Ep directly for each state of
the ion. The appropriate value of Ep can be found via:

Ep = −
2〈p2

2〉
C6

, (6)

where C6 is the Van der Waals constant averaged over all m
substates. The C6 coefficient is given by the standard expres-
sion (see for example, Goodisman 1973):

C6 =

3
2

∑
k′�k

∑
l′�l

f H
kk′ f

A
ll′(

EH
k′ + EA

l′ − EH
k − EA

l

) (
EH

k′ − EH
k

) (
EA

l′ − EA
l

) (7)

f A
ll′ and f H

kk′ are the dipole oscillator strengths of all transi-
tions to the state of interest l for the perturbed ion and the
ground state k for the neutral hydrogen atom. EH and EA are
the energy eigenvalues of the hydrogen and ionised atom re-
spectively. More details about the calculation of C6 are given

in Barklem & O’Mara (1998) and references therein. The quan-
tity 〈p2

2〉 is the mean square distance between the valence elec-
tron and the perturbed ion core located at A (Fig. 1),

〈p2
2〉 =

∫ +∞

0
P2

n∗l(p2) p2
2 dp2, (8)

Pn∗l are the the radial wavefunctions (note Pn∗l(p2) = Rn∗l ×
(p2)p2) of the valence electron of the perturbed atom (Anstee
1992; Seaton 1958). n∗ is the effective principal quantum num-
ber corresponding to the state |nl〉 of the valence electron
(Papers I, II and III).

Using the Unsöld approximation the expression for Veff

becomes

〈Ml|Veff |Ml〉 =
〈
Ml

∣∣∣V ∣∣∣Ml

〉
− 1

Ep

(〈
Ml

∣∣∣V ∣∣∣Ml

〉)2

+
1

Ep

〈
Ml

∣∣∣V2
∣∣∣Ml

〉

+
1

Ep

(〈
Ml

∣∣∣Vind

∣∣∣Ml

〉)2 − 1
Ep

〈
Ml

∣∣∣V2
ind

∣∣∣Ml

〉

−9
4

[〈
Ml

∣∣∣V2
ind

∣∣∣Ml

〉
−

(〈
Ml

∣∣∣Vind

∣∣∣Ml

〉)2
]

(9)

Veff of Eq. (9) is the so-called Rayleigh-Schrödinger-Unsöld
(RSU) potential. For computing Veff it is essential to determine
Ep in an independent calculation, as seen in Barklem & O’Mara
(1998, 2000). Thus for ionized atoms it is not possible to tab-
ulate cross-sections as for neutral atoms (Papers I, II and III).
Any calculations for depolarization and transfer of polarization
involving ions must proceed line by line.

4. Determination of depolarization
and polarization transfer rates

Considering a collision between a perturbed ion A and hy-
drogen atom H (Fig. 1). Calculation of the depolarization and
transfer rates follows essentially the steps listed below:

1. calculation of the required atomic wavefunctions of the sys-
tem A+H;

2. determination of Ep directly for each state of the ion using
Eq. (6);

3. numerical evaluation of the RSU interaction energy of the
system A+H given by Eq. (9);

4. use of these interaction potentials in the Schrödinger equa-
tion describing the evolution of A+H collisional system in
order to obtain the probabilities of depolarization and polar-
ization transfer for a given impact parameter and a relative
velocity (more details in Paper I; see also Papers II and III);

5. calculation of depolarization and polarization transfer
cross-sections for each relative velocity by integration over
impact parameters;

6. integration of cross-sections over the Maxwell distribution
of velocities to obtain the semi-classical depolarization and
polarization transfer rates for a range of local temperatures
of the medium.
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Fig. 2. Partial Grotrian diagram of CaII showing the levels and the
spectral wavelengths in Å of interest in this study. Note that the level
spacings in not to scale.

5. Depolarization and polarization transfer rates
for Ca+-H system

An important point to emphasise is that this semi-classical
method for the calculation of depolarization and polarization
transfer rates is not specific for a given perturbed atom or ion.
This method can be applied for any perturbed ion, but we must
calculate the Ep value for each case (Sect. 3). Let us consider
the case of the Ca+-H system in view of its importance in astro-
physics and because it is possible to compare with recent cal-
culations employing the quantum chemistry approach (Kerkeni
2003). The case of the IR triplet lines of CaII has been in-
vestigated by Manso Sainz & Trujillo Bueno 2001, 2003 and
by Trujillo Bueno & Manso Sainz 2001, adopting multilevel
model of ionized calcium. The term levels associated to the
IR triplet lines of CaII (8498 Å, 8542 Å, and 8662 Å) are
4p 2P1/2, 4p 2P3/2, 3d 2D3/2 and 3d 2D5/2 (Fig. 2). The H and
K lines occur at 3969 Å and 3933 Å respectively (Fig. 2); their
upper states are also the upper states of the IR triplet. Table 1
lists, for the states of interest in this work, 〈p2

2〉, C6 and the cor-
responding Ep calculated via Eq. (6) (see Barklem & O’Mara
1998).

5.1. Depolarization rates

The depolarization transition probability is given by (Paper I;
Sahal-Bréchot 1977):

〈Pk(nlJ, b, v)〉av =
1

2J + 1

∑
µ,µ′
|〈n l J µ|T |n l J µ′〉|2

−
∑

µ,µ′,ν,ν′
〈n l J µ|T |n l J µ′〉〈n l J ν|T |n l J ν′〉∗

×
∑
χ

(−1)2J+k+µ−µ′
(

J J k
−ν′ µ′ χ

) (
J J k
ν − µ − χ

)
. (10)

Table 1. Average energy Ep for the interaction of CaII 3d and 4p states
with hydrogen in its ground state together with 〈p2

2〉 and C6 values.

State 〈p2
2〉 (au) C6 (au) Ep (au)

3d 7.54 12.2 –1.236

4p 22.25 81.8 –0.544
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Fig. 3. Destruction rate of orientation per unit H-atom density for
the CaII ion, D1(4 1 1/2, T )/nH, as a function of temperature T .
D1(4 1 1/2, T )/nH is given in rad m3 s−1.

Owing to the selection rules for the 3 j-coefficients, the summa-
tion over χ is reduced to a single term, since χ = −(µ′ − ν′) =
−(µ − ν). Integration over the impact-parameter b and the ve-
locity distribution for a temperature T of the medium can be
performed to obtain the depolarization rate which is given by:

Dk(n l J, T ) 
 nH

∫ ∞

0
v f (v)dv

πb2
0 + 2π

∫ ∞

b0

〈
Pk(n l J, b, v)

〉
av

b db

 (11)

where b0 is the cutoff impact-parameter and we use b0 = 3a0

as in Anstee & O’Mara (1991). The excited state 4p 2P1/2 cor-
responds to total angular momentum J = 1/2, the only non-
zero depolarization rate is D1(4 1 1/2, T ). Figure 3 shows
D1(4 1 1/2, T ) as a function of the local temperature T .
The non-zero depolarization rates for the 4p 2P3/2 state are
D1(4 1 3/2, T ), D2(4 1 3/2, T ) and D3(4 1 3/2, T ), and
these rates are displayed in Fig. 4. The non-zero depolariza-
tion rates associated to the 3d 2D3/2 and 3d 2D5/2 states are
D1(3 2 3/2, T ), D2(3 2 3/2, T ), D3(3 2 3/2, T ) for 3d 2D3/2

and D1(3 2 5/2, T ), D2(3 2 5/2, T ), D3(3 2 5/2, T ),
D4(3 2 5/2, T ) and D5(3 2 5/2, T ) for 3d 2D5/2 (see Figs. 5
and 6).

All of the rates for the 4p 2P1/2, 4p 2P3/2, 3d 2D3/2 and 3d
2D5/2 states of CaII are found to increase with temperature in
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Fig. 4. Depolarization rates per unit H-atom density for the CaII ion,
Dk(4 1 3/2, T )/nH (k = 1, 2, and 3), as a function of temperature T .
Dk(4 1 3/2, T )/nH are given in rad m3 s−1.
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Fig. 5. Depolarization rates per unit H-atom density for the CaII ion,
Dk(3 2 3/2, T )/nH (k = 1, 2, and 3), as a function of temperature T .
Dk(3 2 3/2, T )/nH are given in rad m3 s−1.

the range 100 ≤ T ≤ 10 000 K. As for neutral atoms, a func-
tional form D(T ) = BT (1−λ)/2 can usually be accurately fitted
to these depolarization rates, where λ is the so-called velocity
exponent (Papers I, II and III). We find the following analyt-
ical expressions for the depolarization rates for 100 ≤ T ≤
10 000 K (except for D3(3 2 5/2, T ) and D5(3 2 5/2, T )
which are given for 2500 ≤ T ≤ 10 000 K):

– CaII(4p 2P1/2)-H(1s):

D1(4 1 1/2, T ) = 2.4767× 10−15 (12)

×nH

( T
5000

)0.433 (
rad m3 s−1

)

0

5 10- 1 6

1 10- 1 5
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  5
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, T
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5/2
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D5(2 5/2)

D1(2 5/2)

D3(2 5/2)

D4(2 5/2)

Fig. 6. Depolarization rates per unit H-atom density for the CaII ion,
Dk(3 2 5/2, T )/nH (k = 1, 2, 3, 4, and 5), as a function of tempera-
ture T . Dk(3 2 5/2, T )/nH are given in rad m3 s−1.

– CaII(4p 2P3/2)-H(1s):

D1(4 1 3/2, T ) = 2.7993 × 10−15

×nH

( T
5000

)0.418 (
rad m3 s−1

)
D2(4 1 3/2, T ) = 5.2034 × 10−15 (13)

×nH

( T
5000

)0.405 (
rad m3 s−1

)
D3(4 1 3/2, T ) = 4.8807 × 10−15

×nH

( T
5000

)0.411 (
rad m3 s−1

)

– CaII(3d 2D3/2)-H(1s):

D1(3 2 3/2, T ) = 1.9904 × 10−15

×nH

( T
5000

)0.373 (
rad m3 s−1

)
D2(3 2 3/2, T ) = 1.9943 × 10−15 (14)

×nH

( T
5000

)0.398 (
rad m3 s−1

)
D3(3 2 3/2, T ) = 1.0772 × 10−15

×nH

( T
5000

)0.501 (
rad m3 s−1

)
,

– CaII(3d 2D5/2)-H(1s):

D1(3 2 5/2, T ) = 2.0535 × 10−15

×nH

( T
5000

)0.365 (
rad m3 s−1

)
D2(3 2 5/2, T ) = 2.1120 × 10−15

×nH

( T
5000

)0.384 (
rad m3 s−1

)
D3(3 2 5/2, T ) = 2.3170 × 10−15 (15)

×nH

( T
5000

)0.384 (
rad m3 s−1

)



712 M. Derouich et al.: Collisional depolarization and transfer rates. IV.

D4(3 2 5/2, T ) = 2.0127 × 10−15

×nH

( T
5000

)0.407 (
rad m3 s−1

)
D5(3 2 5/2, T ) = 1.2187 × 10−15

×nH

( T
5000

)0.486 (
rad m3 s−1

)
.

5.2. Polarization transfer rates

The collisional transfer transition probability is given by
(Paper II; Sahal-Bréchot 1977):

〈Pk(nlJ → nlJ′, b, v)〉av =∑
µ,µ′ ,ν,ν′

〈nl J µ|T |nl J′ µ′〉 〈nl J ν|T |nl J′ ν′〉∗

×
∑
χ

(−1)J−J′+µ−µ′
(
J J k
ν−µχ

) (
J′ J′ k
ν′−µ′χ

)
. (16)

As in Eq. (11), the polarization transfer rates Dk(nlJ →
nlJ′, T ) follow from integration over the impact parameters
and the velocities with a Maxwellian distribution.

Inelastic collisions with neutral hydrogen which leave the
radiating atom in a final state n′l′ different from the initial
one nl are neglected. Only the polarization transfer rates in-
side the subspace nl are taken into account. Our transfer rates
between the levels 4p 2P1/2 → 4p 2P3/2, 3d 2D3/2 → 3d 2D5/2

(Dk(4 1 1/2 → 4 1 3/2, T ) and Dk1(4 1 1/2 → 4 1 3/2, T ))
are presented in Figs. 7 and 8 respectively. D3(3 2 3/2 →
3 2 5/2, T ) did not obey a power law of the form B T (1−λ)/2.
However, we can provide the analytical expressions for the
other non-zero transfer rates:

D0(4 1 1/2→ 4 1 3/2, T ) = 4.0307 × 10−15

×nH

( T
5000

)0.407 (
rad m3 s−1

)
D1(4 1 1/2→ 4 1 3/2, T ) = −1.1464 × 10−15

×nH

( T
5000

)0.314 (
rad m3 s−1

)
D0(3 2 3/2→ 3 2 5/2, T ) = 1.8061 × 10−15 (17)

×nH

( T
5000

)0.392 (
rad m3 s−1

)
D1(3 2 3/2→ 3 2 5/2, T ) = 1.6177 × 10−16

×nH

( T
5000

)1.401 (
rad m3 s−1

)
D2(3 2 3/2→ 3 2 5/2, T ) = 8.6286 × 10−16

×nH

( T
5000

)0.490 (
rad m3 s−1

)
.

6. Comparisons

It is important to notice that the depolarization rates
Dk(n l J, T ) as defined in this work (Eq. (11)) and the relax-
ation rates gk(J) as defined by Kerkeni et al. (2003) (Eq. (2),
Sect. 3.2) are not equivalent. Kerkeni et al. (2003) defines the
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depolarization cross-section (or relaxation rate gk(J)) as the
sum of two terms: the term responsible exclusively for the de-
polarization of the level (nlJ) and the term corresponding to the
fine structure transfer between the levels (nlJ)→ (nlJ′). In our
definition, Dk(n l J, T ) is only the depolarization of the level
(nlJ), the fine structure transfer is not included. We calculate
separately the rates ζ(nlJ → nlJ′, T ) associated to fine struc-
ture transfer which are k-independent and proportional to the
population transfer rates D0(n l J → n l J′, T ) (Eq. (4) of
Paper II).

For example, in accordance with our definition
D0(n l J, T ) ≡ 0 but the relaxation rates g0(J) from
Kerkeni et al. (2003) are not necessarily zero. In order to
compare to the Kerkeni et al. (2003) results it is essential to
substract the part of gk(J) associated to fine structure transfer
(g(J → J′) in Kerkeni et al. 2003). This it is nothing more
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Fig. 9. Depolarization rates for k = 2 as a function of temperature.
Full lines: our results; dotted lines: quantum chemistry calculations
(Kerkeni 2003); dot-dashed lines Van der Waals approximation.

than a difference in definitions. Nevertheless, this difference
should be taken into account when writing the SEE. We now
compare our alignment depolarization rates with the quantum
chemistry depolarization rates (Kerkeni et al. 2003) and the
alignment depolarization rates obtained by replacing the RSU
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Fig. 10. Depolarization cross section enhancement due to a Gaussian
local perturbation of the potential. Cross sections are calculated for
the relative velocities: 3 km s−1, 10 km s−1 and 17 km s−1.

potential with improved Van der Waals potential, V = −C6

R6
,

where C6 is taken from Table 1. Note that the latter rates differ
from the usual Van der Waals formula for the rates, because
though we employ the van der Waals potential, the collision
dynamics are treated using our theory, and the C6 value is
accurately determined (whereas typically the approximation
C6 = αH〈p2

2〉 is employed where αH is the polarisability of
hydrogen). In Fig. 9 we show our alignment depolarization
rates with quantum chemistry depolarization rates (Kerkeni
et al. 2003) and the improved Van der Waals rates. We display
only the k = 2 case which is related to the linear depolarization
(alignment). Reference to Fig. 9 shows that the Van der Waals
potential significantly underestimates the depolarization cross
section. Our results show rather good agreement with quantum
chemistry calculations. In concrete terms, the percentage
errors at T = 5000 K with respect to quantum chemistry
depolarization rates are 4.1% for D2(4 1 3/2, T )/nH; 4.6%
for D2(3 2 3/2, T )/nH and 7.3% for D2(3 2 5/2, T )/nH.
The errors for the other depolarization and transfer rates are
similar to the errors for the destruction rates of alignment (in
general, less than 15%). This similarity is expected since all
rates orginate from the same collisional processes.

7. Discussion

7.1. Dependence of depolarization cross-sections
on interatomic separations

To assess the sensitivity of the calculations to the accuracy of
the potentials at various separations we make calculations with
potentials where we have introduced local perturbations. The
interaction potential (1s, 4pσ) is multiplied by a Gaussian mag-
nification factor of the form (Anstee & O’Mara 1991):

G(R) = 1 + exp
(
−(R − R0)2

)
. (18)

R0 is the position where the variation of Veff reaches its
maximum value (the interaction potential (1s, 4pσ) doubles).
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Fig. 11. Dependence on Ep of the destruction rate of alignment
D2(4 1 3/2, 5000 K)/nH.

Figure 10 shows the depolarization cross-section calculated
with varying R0. It is clear that the values of R0 inducing de-
polarization cross-section enhancement confirm the fundamen-
tal result found already for neutral atoms: the interactions of
importance for the depolarization cross-section (or depolariza-
tion rate) calculations are the intermediate-range interactions
(Papers I, II and III). The principal differences between the
RSU potentials and those from quantum chemistry occur at
small interatomic separations. It is for this reason that we ob-
tain rather good agreement with quantum chemistry calcula-
tions. The Van der Waals interaction potentials are inaccurate
at the intermediate region, and this explains why these poten-
tials underestimate the depolarization cross sections.

7.2. Dependence of depolarization rates on Ep

The depolarization and transfer rates for the 4p and 3d states
are calculated for Ep = −0.544 and −1.236 respectively. As
a check on the sensivity of our results to the precision of the
calculations of Ep, we have calculated the destruction rate of
alignment D2(4 1 3/2, 5000 K) by varying Ep in Eq. (9). Note
that when Ep decreases, the interaction potential decreases and
so D2(4 1 3/2, 5000 K) also decreases (Fig. 11). The depolar-
ization rate shows only an extremly weak variation with Ep. An
|Ep| variation of 25%, with respect to the value Ep = −0.544,
corresponds to a change of less than 5% in the calculated de-
polarization rates. It should not concluded that this is a general
property of the depolarization rates for all states of all ionised
atoms. Reference to Fig. 11 shows a rather strong dependence
of the depolarization rates on Ep for |Ep| ≤ 0.25. We expect,
however, that the value of |Ep| is usually greater than 0.25 and
the depolarization rates will not be greatly affected by possible
error in the value of Ep (see Barklem & O’Mara 1998, 2000).

8. Application to the Sr II 4078 Å line
The Sr II 4078 Å line was examined by Bianda et al. (1998),
who wrote “...The rather large uncertainty in the depolariz-
ing collision rate introduces a corresponding uncertainty in
the field-strength scale...”. These authors have used the tradi-
tional Van der Waals approach to calculate collisional rates.
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Fig. 12. Destruction rate of orientation per unit H-atom density for the
SrII ion, D1(5 1 1/2, T )/nH, as a function of the temperature of the
medium, T . D1(5 1 1/2, T )/nH is given in rad m3 s−1.

The 4078 Å line is the resonance line of SrII: 5s 2S→ 5p 2P.
We have computed the depolarization and polarization transfer
rates of the levels 5p 2P1/2 and 5p 2P3/2 of SrII ion. The value
of Ep = −0.564 for the level 5p 2P of SrII was adopted from
Barklem & O’Mara (2000). We applied our method to obtain-
ing the rates which are shown in Figs. 12 and 13. They were
found to again obey a power law AT (1−λ)/2 and are given for
100 ≤ T ≤ 10 000 K by:

– SrII(5p 2P1/2)-H(1s):

D1(5 1 1/2, T ) = 2.7196 × 10−15

×nH

( T
5000

)0.428 (
rad m3 s−1

)
(19)

– SrII(5p 2P3/2)-H(1s):

D1(5 1 3/2, T ) = 3.1560 × 10−15

×nH

( T
5000

)0.418 (
rad m3 s−1

)
D2(5 1 3/2, T ) = 5.9776 × 10−15 (20)

×nH

( T
5000

)0.406 (
rad m3 s−1

)
D3(5 1 3/2, T ) = 5.5413 × 10−15

×nH

( T
5000

)0.410 (
rad m3 s−1

)
.

Between the term levels 5p 2P1/2 and 5p 2P3/2 there are only
two non-zero polarization transfer rates which are given in
Fig. 14. The analytical expressions for these rates for 100 ≤
T ≤ 10 000 K are:

D0(5 1 1/2→ 5 1 3/2, T ) = 4.6184 × 10−15 (21)

×nH

( T
5000

)0.409 (
rad m3 s−1

)

D1(5 1 1/2→ 5 1 3/2, T ) = −1.5309 × 10−15

×nH

( T
5000

)0.338 (
rad m3 s−1

)
.
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9. Conclusion
We have adapted our semi-classical method of calculation of
collisional depolarization of spectral lines of neutral atoms by
atomic hydrogen to allow it to be used for singly ionised atoms.
Comparison with recent quantum chemistry calculations for
CaII at T = 5000 K indicates an error less of than 8%. This is
an encouraging result which supports the validity of our semi-
classical approach. Using this method we should be able to
calculate depolarization rates of the levels involved in tran-
sitions of heavy ionised atoms like SrII, Ti II, Ce II, Fe II,
Cr II, BaII... Calculations must proceed line by line because
a suitable Ep value needs to be determined for each relevant
state of the given ion. We have applied our general method to
calculate depolarization and polarization transfer rates for the
SrII 5p 2P state. These calculations should allow a more

accurate theoretical interpretation of the observed linear polar-
ization of the SrII 4078 Å line.
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