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Abstract. We present a general semi-classical treatment of the depolarization of spherically symmetric states (i.e. s-states)
which necessarily accounts for the exchange interaction via exchange perturbation theory. Calculations of the destruction rate
of orientation of general s-states, characterized by their effective principal quantum number n∗, due to isotropic collisions with
neutral hydrogen have been carried out. It is found that the behaviour of the depolarization rates with n∗ obeys a power law.
We express the depolarization and polarization transfer rates of complex atoms in terms of the depolarization rates of simple
atoms. These results are used to infer the all non-zero depolarization and polarization transfer rates of the lower levels of
the multiplets 42 and 145 of neutral Ti . Further, we explain how our results can be used to easily calculate the hyperfine
depolarization and polarization transfer rates. In order to validate our general theory, we have computed the destruction rate of
orientation of the ground levels of the alkali metals Li , Na , K , Rb  and Cs  using the quantum chemistry potentials of Geum
et al. (2001, J. Ch. Phys., 115, 5984), employing our semi-classical description of the collision dynamics. For Na  ground state,
the percentage error on our destruction rate of the orientation with respect to the fully quantal rate of Kerkeni et al. (2000b,
A&A, 364, 937; note Erratum) is less than 1% at T = 5000 K.
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1. Introduction

Over the last few years, we have developed a general semi-
classical theory of depolarization of spectral lines by collisions
of levels of emitting/absorbing atoms/ions with neutral hydro-
gen (Derouich et al. 2003a,b, 2004a,b, 2005, hereafter Papers I,
II, III, IV and V respectively). Our semi-classical theory is not
specific to a given atom/ion and it is possible to apply the the-
ory even to heavy atoms (Ti, Fe, ...), which are very difficult
or even impossible to treat with quantum chemistry methods,
particularly in cases of excited states. Our method permits the
calculation of the depolarization and polarization transfer rates
for p (l = 1), d (l = 2) and f (l = 3) levels of simple and com-
plex atoms/ions. In our approach, spin is neglected since de-
polarization arising from collision induced transitions between
Zeeman sublevels MJ → MJ′ is predominantly caused by col-
lision induced transitions between Zeeman states with different
projections of orbital angular momentum (ml).

In this paper we provide a general semi-classical treatment
which accounts for spin to calculate s-states (l = 0) depolar-
izing rates. We use exchange perturbation theory, particularly
that of Murrell & Shaw (1967) and Musher & Amos (1967), of-
ten referred to as MSMA theory, to evaluate the hydrogen-atom
interaction potential. The interaction potential can be split into

direct terms, corresponding to standard Rayleigh-Schrödinger
perturbation theory, and exchange terms resulting from the con-
sideration of electron exchange between the hydrogen atom
and the perturbed atom/ion. Following Anstee (1992), we retain
the important terms up to second order, and apply the Unsöld
approximation (Unsöld 1927) where is assumed that the en-
ergy denominator in the second order terms of the perturbation
can be replaced by a suitable average energy Ep. As suggested
by Anstee (1992), we adopt different values of Ep for the direct
and exchange terms. We refer to the potentials calculated in this
manner as Murrell-Shaw-Musher-Amos-Unsöld or MSMAU
potentials. For our case of interest, a ground state hydrogen
atom interacting with an atom in an s-state, this leads to sin-
glet and triplet molecular states with interaction energies V

1Σ

and V
3Σ. These potentials enter standard semi-classical coupled

differential equations describing the time evolution of the col-
lision; the integration of these equations over an entire colli-
sion providing the scattering matrix pertaining to the s (l = 0)
state, which may be used to calculate the depolarization rates
of interest.

Our calculations show that the depolarization rates have a
power law behaviour with effective principal quantum num-
ber n∗. We have also calculated the depolarization rates
of s-states of alkali-atoms using accurate potential energy
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curves from Geum et al. (2001)1 computed by ab initio quan-
tum chemistry methods. We compare the rates from the gen-
eral treatement employing perturbation theory potentials with
those obtained using the ab initio quantum chemistry poten-
tials. We also compare our results for the Na  case with the
results of Kerkeni et al. (2000b) where quantum chemistry po-
tentials and a fully quantal description of the dynamics have
been employed. Very satisfactory agreement is obtained.

This paper is a continuation of a series concerned with
theoretical calculations of the collisional depolarization and
polarization transfer rates. With the addition of this work
depolarization rates may now be obtained with relative ease
for s (l = 0), p (l = 1), d (l = 2) and f (l = 3) levels, making
it possible to rapidly obtain the large number of depolarization
rates for levels associated to lines of interest necessary for in-
terpretation of the second solar spectrum.

2. Formulation of the problem

Our model for the system follows that described in preceding
papers (see Paper I), now with the inclusion of spin. For s-
states, the orbital angular momentum of the valence electron of
the perturbed atom is l = 0. If spin is neglected and the calcu-
lations performed in the |nlml〉 basis, transforming to the basis
including spin |nJMJ〉 noting J = s (s = 1/2), and MJ = Ms,
we have (Paper I, Eq. (20)):

〈n1 s =
1
2

Ms|S |n1 s =
1
2

M′s〉 = 2 × δMs,M′s (1)

×〈n1 l = 0 ml = 0|S |n1 l = 0 ml = 0〉,
where δ is the Kronecker symbol. In the case of spherically
symmetric levels J = 1/2, due to the fact that there is only a
single ml = 0 level the only mechanism for collisional depolar-
ization is via the spin exchange transition MJ = ±1/2→ M′J =∓1/2, and thus the neglect of the spin leads to null off-diagonal
elements of the scattering matrix resulting in a zero destruction
rate of the orientation of spherically symmetric J = 1/2 levels.
The spin flip transition may lead to destruction of orientation,
but since a J = 1/2 level is linearly unpolarised by definition
not to destruction of alignment. Though the destruction rate of
orientation is related to the circular atomic polarization, and
thus not obviously relevant to the astrophysical interpretation
of linearly polarization (see Paper I), it is necessary to calcu-
late because:

1. as we will demonstrate in detail in Sect. 7, the depolariza-
tion and population transfer rates for some states of com-
plex atoms may be expressed in terms of the destruction of
orientation rates for simple atoms;

2. the hyperfine components into which a J = 1/2 level splits
in the coupling process with the nuclear spin (if it exists),
may show linear polarization: the depolarization rates of
hyperfine levels have to be calculated in order to interpret
this linear polarization. Under typical conditions of forma-
tion of lines of the second solar spectrum, the frequency

1 Tables of the ab initio potential curves of LiH, NaH, KH, RbH,
and CsH Geum et al. (2001) are available in electronic format from
the EPAPS homepage, cited as EPAPS in the references.

separations between the hyperfine levels of the J = 1/2
level are very small compared to the inverse duration of
a collision and the hyperfine splitting can be ignored in
the treatment of the collision. Therefore, the off-diagonal
scattering matrix elements of the hyperfine components
are proportional to the off-diagonal scattering matrix be-
tween sublevels of the spherically symmetric J = 1/2 level
(Paper I, Eq. (19)) and, in the irreducible tensorial oper-
ator basis, the depolarization rates of the hyperfine levels
are proportional to the destruction rate of the orientation of
the spherically symmetric J = 1/2 state (Nienhuis 1976;
Omont 1977)

For the purpose of calculations of the depolarization rates men-
tioned in the points 1. and 2., we must remove the neglect of
spin in the calculation of the interaction potential and in the
dynamics of the collision.

3. Perturbation theory potentials including
exchange

In our previous works, the adiabatic potential curves were com-
puted using conventional Rayleigh-Schödinger (RS) perturba-
tion theory to second order, employing the Unsöld approxi-
mation (RSU) to remove the summation over all states in the
second order term. The electron spins, and therefore the re-
quirement that the electronic wavefunction of the system be
antisymmetric with respect to exchange of the electrons, were
neglected and thus the so-called exchange interactions were not
considered.

To extend our theory to include the effects of spin
we must use an exchange, sometimes called “symmetry-
adapted”, perturbation theory. Many different formalisms exist
for perturbation theory involving exchange interactions, some
overviews are given by, for example, Chipman et al. (1973)
or Hirschfelder (1967a,b). In this work, we will refer to the
exchange perturbation theory of Murrell & Shaw (1967) and
Musher & Amos (1967), hereafter MSMA theory. Different ex-
change perturbation theories generally differ in the details of
the expressions for the second and higher order energies. It is
worth noting that as we will describe below, we keep only the
dominant terms at long range of the second order energy, and
in fact these same terms would appear in second order also in
other formalisms.

We apply the MSMA theory to consider the interac-
tion of an atom (A) with hydrogen atom (H), following the
model of Paper I with one electron associated to each atom.
Their valence electrons are labelled by 1 and 2 respectively
(Fig. 1). The system Hamiltonian is the sum of the atomic
Hamiltonians and an interaction V , H = HA + HH + V =
H0 + V . HA and HH have electronic wavefunctions which
satisfy HA|J1MJ1,i〉 = Ei |J1MJ1,i〉 and HH|J2MJ2, j〉 = E j

|J2MJ2, j〉. Hereafter we denote by J1 the total angular mo-
mentum of the perturbed atom and by J2 that of the neu-
tral hydrogen atom. The product functions |J1MJ1,iJ2MJ2, j〉
satisfy H0|J1MJ1,iJ2MJ2, j〉 = (Ei + E j)|J1MJ1,iJ2MJ2, j〉.
|J2MJ2, jJ1MJ1,i〉 is the product function where electron labels
have been exchanged. To simplify the notation in the following,
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Fig. 1. The perturbed atom core is located at A, and the hydrogen per-
turbing core (a proton) at P. Their valence electrons are denoted by 1
and 2 respectively. It is possible to produce the exchange term if the
valence electrons are substituted.

we define |ai〉 = |J1MJ1,i〉, |b j〉 = |J2MJ2, j〉 and Ei j = Ei+E j. For
the unperturbed system in the state |a0b0〉, the first order correc-
tion to the energy due to the perturbation V is, e.g. Murrell &
Shaw Eq. (37),

E(1) =
〈a0b0|V |a0b0〉 ± 〈a0b0|V |b0a0〉

1 ± S 00
, (2)

where S 00 = 〈a0b0|b0a0〉 = 〈a0|b0〉2 is the wavefunction over-
lap. Note this is the Heitler-London energy. The second order
term is more complicated, and may be derived in full from
Eq. (48) of Murrell & Shaw. However, the dominant term for
the large to intermediate separations of interest here where
overlap is small (that is, terms of order of the first order cor-
rection have been omitted) is

E(2) ≈ 1
1 ± S 00

(3)

×
∑

i j

′ 〈a0b0|V |aib j〉〈aib j|V |a0b0〉 ± 〈a0b0|V |aib j〉〈aib j|V |b0a0〉
E00 − Ei j

where the prime indicates the exclusion of the state |a0b0〉
from the summation. The singlet and triplet potentials, V

1Σ

and V
3Σ respectively, to second order are given by E(1) + E(2)

where the upper signs (+) correspond to the singlet case and
lower signs (−) the triplet case.

In both the first and second order expressions the first term
is referred to as the direct term and the second the exchange
term. As in previous work, we wish to simplify the second or-
der calculation using the Unsöld approximation to remove the
summation over all states. This is done by assuming an aver-
age energy denominator Ep(R), which allows completeness of
the basis set to be used to remove the sum. Anstee (1992) has
suggested the use of different values of Ep for the direct and
exchange terms, since different states contribute more strongly
in each case. That is,

E(2) ≈ 1
Ep(dir)

〈a0b0|V2|a0b0〉
1 ± S 00

± 1
Ep(exch)

〈a0b0|V2|b0a0〉
1 ± S 00

· (4)

For our case of interest where one atom is a ground state hy-
drogen atom, and the other a generic neutral metal atom as

described in Paper I, as in previous work we follow Unsöld
(1955) and adopt Ep(dir) = −4/9 atomic units at all separa-
tions. It is less clear how one may choose a reasonable value
for Ep(exch). Comparison of the matrix elements in Eq. (3),
at least for low lying states, indicates that the states contribut-
ing strongly to the sum in the exchange term will generally be
those with more extended wavefunctions and thus higher ener-
gies than those contributing to the direct term. Thus, we expect
Ep(exch) < Ep(dir) = −4/9. In fact, the major contribution to
the exchange integral sum is likely to come from continuum
states, as may well be expected (see Musher & Amos 1967).
We will return to the choice of Ep(exch) below.

The model system and interaction V is as defined in Paper I.
The direct matrix elements have been computed as described in
Anstee & O’Mara (1991), namely integrations are performed
analytically except for a final numerical integration over the
radial wavefunction of the perturbed atom. The exchange ma-
trix elements were computed following Anstee (1992) which
should be consulted for details. The technique is similar to that
for direct matrix elements; however, due to the exchange of
electron labels, two integrals must be performed numerically
and terms containing 1/r12 are only tractable analytically if
expressed as expansions in terms of Legendre polynomials as
well as containing nested integrals leading to some numerical
difficulties. The calculations were performed using code writ-
ten by Stuart Anstee, detailed in Anstee (1992), where we have
made improvements to the numerical properties.

It still remains to set Ep(exch). To try and obtain some
guidance, we have investigated the Ep(exch) values required
to achieve reasonable agreement with the quantum chemistry
potentials of Geum et al. (2001) for the LiH, NaH, KH, RbH
and CsH ground states. Such systems are very similar to our
model, namely, a single valence electron outside a more tightly
bound, spherically symmetric core, and thus Ep(exch) inferred
from these systems will be appropriate for our model, at least at
intermediate to long range where the core has little influence.
In making any comparisons, one must keep in mind that the
singlet states of the quantum chemistry potentials have avoided
ionic crossings in the region R ∼ 6−10a0 and thus are strongly
ionic in character at around R ≤ 12a0. The ionic configuration
is not included in our calculations; we are interested in longer
range interactions. It should be noted anyway that at short range
perturbation theory may breakdown in general, or other orders
may become important. We note that the coupling between
different spin states in the dynamic equations (see Sect. 4,
Eq. (7)), which leads to off-diagonal scattering matrix elements
and thus depolarization, depends on the splitting V

3Σ − V
1Σ,

which in the limit of small overlap is determined by the ex-
change terms. We computed MSMAU potentials for each case
and optimised Ep(exch) so that the exchange splitting V

3Σ−V
1Σ

best matched that of the quantum chemistry potential in the re-
gion R ∼ 15−25a0. In some cases the comparisons were re-
stricted to separations less than 25 a0 as it was clear that the
numerical precision of the quantum chemistry potentials was
insufficient to avoid roundoff error. For the cases of the LiH,
NaH, KH, RbH and CsH ground states we found Ep(exch) ∼
−7.6,−5.4,−3.8,−2.2,−1.2 best reproduced the splitting of the
triplet and singlet electronic states in this region. As might
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be expected, |Ep(exch)| correlates with binding energy of the
perturbed atom state, having respectively effective principal
quantum numbers n∗ = 1.588, 1.627, 1.770, 1.804, 1.869, re-
calling n∗ = [2E∞]−1/2, E∞ being the binding energy of the
state in atomic units. Such a correlation is expected since
as n∗ increases the electronic wavefunction becomes more ex-
tended, and thus an expansion in states centred on the hydrogen
atom nucleus, would have larger contributions from continuum
states with larger wavelengths and thus lower energies. As dis-
cussed above, on physical grounds at the separations of inter-
est Ep(exch) should not exceed Ep(dir). It is possible to make
a good fit to the above inferred values for Ep(exch) and ac-
count for this constraint by assuming an exponential depen-
dence of Ep(exch) on n∗, specifically

Ep(exch) = −0.4444 − exp (−7.017n∗ + 13.157). (5)

The usefulness of this estimate will naturally be determined by
the sensitivity of the depolarization rate to this parameter over
a reasonable range, which will be investigated below (Sect. 6,
Fig. 3). A comparison of our potentials with the quantum chem-
istry potentials is shown in Fig. 2 for the case of NaH.

4. Dynamics of the collision

Let us consider collisions between an atom (A) with a ground
configuration ns (2S1/2) and a hydrogen atom (H) in its
ground state 1s (2S1/2). The molecular states correlated to the
A(2S)+H(2S) asymptote are the attractive 1Σ state and the re-
pulsive 3Σ state. We assume that for the regions of interest the
wavefunction overlap is negligible, and so the perturbed elec-
tronic wavefunction of the system may be expanded over the
product states of the configuration:

∣∣∣ψ(t)〉 = a1(t)
∣∣∣J1

1
2
〉∣∣∣J2

1
2
〉e−i E0

1 t

+a1(t)
∣∣∣J1
−1
2
〉∣∣∣J2
−1
2
〉e−i E0

2 t

+a3(t)
∣∣∣J1

1
2
〉∣∣∣J2
−1
2
〉e−i E0

3 t

+a4(t)
∣∣∣J1
−1
2
〉
∣∣∣J2

1
2
〉e−i E0

4 t (6)

where
∣∣∣J1MJ1〉

∣∣∣J2MJ2〉 are the eigenfunctions of the unper-
turbed system corresponding to the eigenvalues E0

i . The cou-
pled differential equations, derived from the time-dependent
Schrödinger equation, are in the fixed laboratory frame (Roueff
1974):

i
∂a1(t)
∂t

= a1(t)V
3Σ

i
∂a2(t)
∂t

= a2(t)V
3Σ

i
∂a3(t)
∂t

=
1
2

(
V

3Σ + V
1Σ
)

a3(t) +
1
2

(
V

3Σ − V
1Σ
)

a4(t)

i
∂a4(t)
∂t

=
1
2

(
V

3Σ − V
1Σ
)

a3(t) +
1
2

(
V

3Σ + V
1Σ
)

a4(t) (7)

where V
1Σ and V

3Σ are respectively the energy of the singlet and
triplet molecular states with zero angular momentum along the
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Fig. 2. Comparison of adiabatic potential curves for the ground state
of NaH. The MSMAU potentials computed in this work are plotted
as full lines, the quantum chemistry potentials of Geum et al. (2001)
as crosses. Note that for the MSMAU potentials Ep(exch) has been
chosen to match the splitting of the Geum et al. potentials at 15−20 a0.
The upper plot shows the potentials V

3Σ (upper curves) and V
1Σ (lower

curves); the lower plot shows the same potentials scaled by R6 to better
display the behaviour at larger separations.

interatomic axis, as usual computed in the molecular (rotating)
frame. The integration of these equations over an entire coll-
sion (t = −∞ → t = +∞) provides the 16 scattering matrix
elements 〈J1MJ1 |〈J2MJ2 |S sc|J2M′J2

〉|J1M′J1
〉.

Note, as mentioned earlier, for s-states the depolarization
arises only from the transitions between states of different
projections of spin. Due to the spherical symmetry the equa-
tions are not dependent on the angle between the laboratory
and rotating frames. However, the semi-classical coupled lin-
ear differential equations for non-spherically symmetric p, d
and f states depend on this angle and the depolarizing effect
is caused by transitions between Zeeman sublevels with differ-
ent ml (e.g., see Paper I).

5. Semi-classical definition of the depolarization
probability

Since the collisions are isotropic, in order to calculate the
depolarization probability we must average over all possible
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orientations of the collision plane (b, u). The only non-zero de-
polarization probability is that of rank k = 1 when expressed
in the irreducible tensorial operator basis formed by the eigen-
vectors n1 J1T k

0 ⊗n2 J2 T 0
0 where

n1 J1 T k
0 = (2k + 1) ×

∑

MJ1 M′J1

(−1)J1−MJ1

×
(

J1 k J1

−MJ1 0 M′J1

)
|n1J1MJ〉〈n1J1M′J |, (8)

and

n2 J2 T 0
0 =

1√
2

|n2J2
1
2
〉〈n2J2

1
2
| + |n2J2

−1
2
〉〈n2J2

−1
2
|
· (9)

In the irreducible tensorial operator basis, using properties of
the rotation matrices (Messiah 1961) and after some angular
algebra transformations, we find that the angular average of the
depolarization probability is given by:

〈Pk(n1J1, b, v)〉av =
1

(2J1 + 1)

∑

γ2,γ
′
2

1
(2J2 + 1)

×
∑

µ1,µ
′
1

|〈J1µ1|〈J2γ2|T (b, u)|J2γ
′
2〉|J1µ

′
1〉|2

−
∑

γ2,γ
′
2,β2,β

′
2

∑

µ1,µ
′
1,ν1,ν

′
1

〈J1µ1|〈J2γ2|T (b, u)|J2γ
′
2〉|J1µ

′
1〉

×〈J1ν1|〈J2β2|T (b, u)|J2β
′
2〉|J1ν

′
1〉∗

×
∑

α1

(−1)2J1+k+µ1−µ′1
(

J1 J1 k
−ν′1µ′1α1

) (
J1 J1 k
ν1−µ1−α1

)

×
∑

α2

(−1)2J2+k2+β2−β′2
(

J2 J2 k2

−γ′2β′2α2

) (
J2 J2 k2

γ2−β2−α2

)
. (10)

Taking k2 = 0 since the collisional depolarization con-
cerns only the states of the perturbed atom |n1J1µ1〉, Eq. (10)
becomes:

〈Pk(n1J1, b, v)〉av =
1

(2J1 + 1)

∑

µ1,µ
′
1

1
(2J2 + 1)

∑

γ2,γ
′
2

×|〈J1µ1|〈J2γ2|T (b, u)|J2γ
′
2〉|J1µ

′
1〉|2

−
∑

µ1,µ
′
1,ν1,ν

′
1

∑

γ2,γ
′
2

1
2J2 + 1

〈J1µ1|〈J2γ2|T (b, u)|J2γ
′
2〉|J1µ

′
1〉

×〈J1ν1|〈J2β2|T (b, u)|J2β
′
2〉|J1ν

′
1〉∗

×
∑

α1

(−1)2J1+k+µ1−µ′1
(

J1 J1 k
−ν′1µ′1α1

) (
J1 J1 k
ν1−µ1−α1

)
. (11)

Note, T (b, u) = I−S sc(b, u) (I is the unit matrix) is the so-called
transition matrix computed in the atomic frame (equivalent to
the laboratory frame of earlier) in which the perturbed atom is
stationary at the origin, and the quantization axis (z) is taken
to be perpendicular to the collision plane (b, u). Equation (11)
above generalizes those of Gordeyev et al. (1969) and Masnou-
Seeuws & Roueff (1972) for a perturber with J2 = 0 (He I).
Note, when there is no fine structure transfer, which is the case
for the ns (2S1/2) state treated here, this definition of the depo-
larization probability is equivalent to that defined by Kerkeni
et al. (2000a) Eq. (12). However, if there is fine structure trans-
fer from atomic state J′1 to state J1 (e.g. 4p 2P3/2 → 4p 2P1/2)
our definition and the definition adopted by Kerkeni et al. are
not the same because, unlike Kerkeni et al. (2002) Eq. (2), the
term corresponding to the fine structure transfer between the
levels is not included in Eq. (11).

The semi-classical depolarization rate Dk(n1J1, T ) follows
from integration over impact parameters and velocities with a
Maxwellian distribution f (v, T ) for a local temperature T :

Dk(n1J1, T ) � nH

∫ ∞

0
v f (v, T )dv

πb2
0

+2π
∫ ∞

b0

〈Pk(n1J1, b, v)〉av b db

 (12)

where nH is the neutral hydrogen density in m3 and b0 is the
cutoff impact-parameter; we adopt b0 = 3a0 as in previous
work. One can verify easily via the definition of the depolar-
ization probability given in Eq. (11) that destruction rates of
population D0(n1 J1, T ) are zero. It is of interest to remark
that Dk(n1J1, T ) is given by:

Dk(n1J1, T ) = ζ0(n1J1) − ζk(n1J1) (13)

ζk(n1J1) is the spherical tensor component of the elastic rates
due to isotropic collisions with hydrogen which is given by:

ζk(n1J1, T ) � nH

∫ ∞

0
v f (v, T )dv

πb2
0

+2π
∫ ∞

b0

〈Qk(n1J1, b, v)〉av b db

 (14)
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where,

〈Qk(n1J1, b, v)〉 =
∑

µ1,µ
′
1,ν1,ν

′
1

∑

γ2,γ
′
2

1
2J2 + 1

×〈J1µ1|〈J2γ2|T (b, u)|J2γ
′
2〉|J1µ

′
1〉

×〈J1ν1|〈J2β2|T (b, u)|J2β
′
2〉|J1ν

′
1〉∗

×
∑

α1

(−1)2J1+k+µ1−µ′1
(

J1 J1 k
−ν′1µ′1α1

) (
J1 J1 k
ν1−µ1−α1

)
. (15)

In addition ζk(n1J1, T ) can be written as linear combination of
the collisional transition rates in the dyadic basis |J1µ1〉 〈J1µ

′
1|:

ζk(n1J1) = (2k + 1)
∑

µ1,µ
′
1

ζ(n1 J1µ1 → n1 J1µ
′
1, T )

×(−1)µ1−µ′1
(

J1 J1 k
µ1 −µ1 0

) (
J1 J1 k
µ′1 −µ′1 0

)
. (16)

In particular,

ζ0(n1 J1, T ) =
1

(2J1 + 1)

∑

µ1,µ
′
1

ζ(n1 J1µ1 → n1 J1µ
′
1, T )

=
1

(2J1 + 1)

∑

µ1,µ
′
1

1
(2J2 + 1)

×
∑

γ2,γ
′
2

ζ(n1 J1µ1 J2γ2 → n1 J1µ
′
1 J2γ

′
2, T ) (17)

is the elastic collisional rate for the level |n1 J〉. Only the
destruction rate of orientation D1(n 1

2 , T ) = ζ0(n1 J1, T ) −
ζ1(n1 J1, T ) is non-zero and can be written as a linear
combination of the collisional transition rates between sub-
levels ζ(n1

1
2µ1 → n1

1
2µ
′
1, T ):

D1

(
n1

1
2
, b, v

)
= ζ0

(
n1

1
2

)
− 3 ×

∑

µ1,µ
′
1

(−1)µ1−µ′1

×
(

1
2

1
2 1

µ1 −µ1 0

) (
1
2

1
2 1

µ′1 −µ′1 0

)

×ζ
(
n1

1
2
µ1 → n1

1
2
µ′1

)

= ζ

(
n1

1
2

1
2
→ n1

1
2
−1
2

)

+ζ

(
n1

1
2
−1
2
→ n1

1
2

1
2

)

= 2 × ζ
(
n1

1
2

1
2
→ n1

1
2
−1
2

)
· (18)

6. Results

6.1. Results for spherically symmetric states

In the MSMAU potential calculations Ep(exch) is adjusted em-
pirically to best match the splitting of the Geum et al. potentials
(see Sect. 3). As a check on the sensivity of the depolarization
rates to the precision of the choice of Ep(exch), we have cal-
culated the destruction rate of orientation D1(n1 1/2, 5000 K)
varying Ep(exch) in Eq. (4); rates are calculated for the best

Table 1. Destruction of orientation rates for T = 5000 K and the veloc-
ity exponent as function of effective principal quantum number. Rates
are given in 10−15 rad m3 s−1.

n∗ D1(n1
1
2 , 5000 K) λ1(n1

1
2 )

1.5 3.44 0.177
1.6 4.06 0.177
1.7 4.84 0.180
1.8 5.78 0.174
1.9 6.85 0.156
2 8.156 0.168
2.1 9.37 0.160
2.2 10.67 0.155
2.3 11.90 0.157
2.4 13.27 0.165
2.5 15.39 0.175
2.6 16.75 0.161
2.7 18.59 0.166
2.8 20.60 0.158
2.9 22.70 0.163
3 25.15 0.171

estimate of Ep(exch) given by Eq. (5) and for cases where
we multiply or divide Ep(exch) by a factor of two. Figure 3
gives D1(n1 1/2, 5000 K) as function of n∗ (1.3 ≤ n∗ ≤ 3.)
for each value of Ep(exch). We remark that the rates show
only weak variation with Ep(exch). For example for n∗ = 1.6,
D1(n1 1/2, 5000 K) = 4.06 × 10−15 rad m3 s−1 for our best
estimate of Ep(exch) and 3.96× 10−15 rad m3 s−1 if Ep(exch) is
a factor of two larger: the difference is only ∼2.5%. The sen-
sitivity to the precision of Ep(exch) increases with n∗ (since
|Ep(exch)| is smaller and the splitting is inversely proportional
to |Ep(exch)|) but even for n∗ = 3 the difference is only 8%.
Anyway, for ground states of alkali atoms 1.588 ≤ n∗ ≤ 1.804
and in general for s-states, the range of interest for interpreta-
tion of the second solar spectrum is 1.5 ≤ n∗ ≤ 2. For instance,
n∗ = 1.504 and 1.636 for the lower levels of the multiplets 42
and 145 of Ti which treated in the present paper (next section).

As already seen in Papers I, II, III, IV, V, we found again
that all the rates vary with temperature obeying a power law of
the form D1(n1 1/2, T = 5000 K)( T

5000 )(1−λ1(n1
1
2 ))/2. Table 1

gives D1(n1 1/2, T = 5000 K) and the so-called velocity ex-
ponent λ1(n1 1/2) as a function of effective principal quan-
tum number n∗. The velocity exponent λ1(n1 1/2) exhibits
only a weak variation with n∗ and on average is 0.168 (i.e.
(1 − λ1(n1

1
2 ))/2 = 0.416). However, D1(n1 1/2, T = 5000 K)

has a striking power law behaviour with n∗ (see Fig. 4), which
is fit by:

D1(n1 1/2, T = 5000 K) = 1.0045 × 10−15nH × n∗
2.979
. (19)

In the other hand we have similarly calculated the spherical
tensor component of the elastic collisional rates ζ0(n1 1/2, T )
and ζ1(n1 1/2, T ),

ζ0(n1 1/2, T = 5000 K) =
[
31.214 − 53.630 × n∗

+25.177× n∗
2] × 10−15 nH (20)
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and,

ζ1(n1 1/2, T = 5000 K) =
[
27.234 − 48.575 × n∗

+21.88 × n∗
2] × 10−15 nH. (21)

As for the depolarization rate D1(n1 1/2, T ), we find
that ζ0(n1 1/2, T ) and ζ1(n1 1/2, T ) can be written as a func-
tion of the local temperature T where (1− λ)/2 � 0.416. These
relationships will be used to calculate depolarization rates of
complex atoms (Sect. 7) and may also be used to calculate hy-
perfine depolarization rates (Sect. 8).

6.2. Results for alkali atoms in the ground state

The effective principal quantum numbers of the Li , Na , K ,
Rb  and Cs  ground states are n∗ � 1.588, 1.627, 1.770, 1.804,
and 1.869 respectively. The destruction rates of orientation for
the ground states of alkali atoms can be either determined di-
rectly from the code associated to our theory or inferred from
Eq. (19). We have used our code to compute directly the rates
for 100 ≤ T ≤ 10 000 K and we find the following analytical
expressions in rad s−1:

– Li (2s 2S1/2)–H (1s 2S1/2):

D1(2 1 1/2, T ) = 3.99 × 10−15 × nH

( T
5000

)0.410

– Na (3s 2S1/2)–H (1s 2S1/2):

D1(3 1 1/2, T ) = 4.28 × 10−15 × nH

( T
5000

)0.408

– K (4s 2S1/2)–H (1s 2S1/2):

D1(4 1 1/2, T ) = 5.46 × 10−15 × nH

( T
5000

)0.416

– Rb (5s 2S1/2)–H (1s 2S1/2):

D1(5 1 1/2, T ) = 5.82 × 10−15 × nH

( T
5000

)0.414

– Cs (6s 2S1/2)–H (1s 2S1/2):

D1(6 1 1/2, T ) = 6.40 × 10−15 × nH

( T
5000

)0.419

·

Calculations were performed using the accurate potential en-
ergy curves V

1Σ and V
3Σ of Geum et al. (2001) for the LiH,

NaH, KH, RbH and CsH ground states. These potentials were
obtained by ab initio quantum chemistry methods. We em-
ployed our semi-classical description of the collision dynam-
ics. Destruction of orientation rates for the ground states of
alkali-atoms for a typical temperature T = 5000 K are shown
in Fig. 4 together with our general results given as function
of n∗. In Fig. 4 we also show the rate of destruction of ori-
entation for the ground state of Na  at T = 5000 K obtained
from a fully quantal approach (Kerkeni et al. 2000b). In Fig. 5,
we show the curves for the Li , Na , K , Rb  and Cs  ground
states for our depolarization rates and the rates using the ab ini-
tio potentials of Geum et al. (2001), as a function of the local
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Fig. 4. Plot of depolarization rates of s-states, per unit H-atom den-
sity, for local temperature T = 5000 K with effective principal quan-
tum number n∗. Full lines: the power law relation of Eq. (19); cir-
cles: results for alkali-atoms using Geum et al. (2001) potentials;
crosses: our general results; squares: full quantal calculation for Na 
(Kerkeni et al. 2000b). Note that it is very difficult to discern differ-
ences between the results for the Na  (n∗ = 1.627). The rates are given
in 10−15 rad m3 s−1.
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Fig. 5. Destruction of orientation rates for ground levels of Li, K, Rb,
and Cs atoms per unit H-atom density, D1(n1 1/2, T )/nH, as a func-
tion of temperature T . Full lines: our results; dotted lines: our calcu-
lations using potentials from Geum et al. (2001). The rates are given
in 10−15 rad m3 s−1.

temperature T . Besides, the curves for the Na  ground state
are shown in Fig. 6, along with the full quantum depolarization
rates (Kerkeni et al. 2000b). We note that, our general results,
using MSMAU potentials and the semi-classical description of
the dynamics, are in very good agreement with the rates ob-
tained from the ab initio potentials of Geum et al. (2001) and
the full quantum chemistry results of Kerkeni et al. (2000b). In
particular for Na  atom ground level, at T = 5000 K, the per-
centage error with respect to quantum chemistry depolarization
rate of Kerkeni et al. (2000b) is less than 1%.

We conclude from Fig. 5 that the MSMAU potentials, ob-
tained from general treatement employing perturbation theory
and the Unsöld approximation, are in sufficient agreement with
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Fig. 6. Depolarization rates per unit H-atom density, D1(3 1/2, T )/nH

for the Na  ground state as a function of temperature. Full lines: our
general results; dotted lines: fully quantal calculations (Kerkeni et al.
2000b). The rates are given in 10−15 rad m3 s−1.

the sophisticated Geum et al. (2001) potentials to provide ac-
curate depolarization rates. In addition, the destruction of ori-
entation rate for ground state of Na  obtained in this work is
very close to the one given in Kerkeni et al. (2000b) obtained
from fully quantum calculations. Thus, the close-coupling ap-
proach with full quantum dynamics is not necessary for rea-
sonable precise depolarization rates calculations, and the col-
lision may be adequately modelled with the classical straight
path approximation. We notice that the differences between
our rates using the MSMAU potentials and those from quan-
tum chemistry potentials increase when the temperatures of the
medium increase. In fact, when the temperatures increase, the
interatomic separations playing the major role in the depolar-
ization phenomenon decreases. When the interatomic separa-
tions decrease the differences between the MSMAU potentials
and quantum chemistry potentials increase.

7. Depolarization and polarization transfer rates
of complex atoms

7.1. Theory

Papers I, II, III, IV have been concerned with simple atoms/ions
for which the electronic configurations have only one valence
electron in non-spherically symmetric state (l � 0) above
a filled-subshell (for example: singly ionised calcium in the
state 1s2 2s2 2p6 4p 2P3/2) or contain, in addition to the valence
electron, an electron in a s-state (for example: neutral calcium
in the state 1s2 2s2 2p6 4s 4p 1P1).

We now consider the problem of the calculation of depo-
larization polarization transfer rates for complex atoms (Fe I,
Ti I, ...). The electronic configuration of the complex atom/ion
has one valence electron above an incomplete (open) sub-
shell which has a non-zero angular momentum. We assume
that only the valence electron can undergo collisions with hy-
drogen atoms (the frozen core approximation). For more de-
tails of our approach concerning with complex atoms we refer
to Paper V and references therein. As regards the solar lines

commonly observed in the photosphere originating from com-
plex atoms, the relevant states are usually well described within
the approximation of L−S coupling (see, e.g., Sobelman 1992;
Landi Degl’Innocenti 1982). Having the scattering matrix be-
tween the Zeeman sublevels of complex atoms 〈JMJ |S sc|J′M′J〉
(see Eq. (7) of Paper V), we have to perform an average of the
transitions probabilities over all possible orientations since col-
lisions are isotropic. All rates are obtained after integration over
impact parameters and velocities as described in our previous
papers. This is a direct way following that the calculations of
rates involving complex atoms must proceed line by line using
our numerical code.

We propose an indirect and more practical way that con-
sists in the interpolation of the values of rates given for simple
atoms. As in Paper V, we denote by Lc the total orbital an-
gular momentum of the core of the atom and by Sc its total
spin. Because the orbital angular momentum of the valence
electron in a spherically symmetric state is l = 0, the total
orbital momentum of the atom is L = Lc + l = Lc. The total
spin is S = Sc + s and J = L + S = Lc + S is the total angular
momentum. We now consider the expansion of the matrix of
the depolarization and polarization transfer associated with the
sublevels |n1LJ〉 over the irreducible tensorial operator basis
LcS JT k

q . The depolarization rate matrix for the state |n1S 〉 can

be expanded in terms of the tensors S T k1
q1

and similarly for the
state |n1Lc〉 one can expand the depolarization rate matrix in the
tensor basis Lc T k2

q2
. That is, the total spin and orbital angular mo-

mentum of the core of the complex atom are considered inde-
pendently. The physical contents of the combined basis LcS JT k

q

are completely determined by the product Lc T k2
q2
⊗ S T k1

q1
and one

can easily show that:

LcS JT k
q = (2J + 1)

∑

k1,q1,k2,q2

√
(2k1 + 1)(2k2 + 1)

×√
(2k + 1)(−1)k1−k2+q

(
k1 k2 k
q1 q2 −q

)

×


Lc S J
Lc S J
k2 k1 k


Lc Lc T k1

q1

S S ′T k2
q2
, (22)

where the term in brackets { } (3 lines × 3 columns) denotes
a Wigner 9 j-coefficient (Messiah 1961). By expansion of the
depolarization matrix (J = J′) and polarization transfer matrix
(J � J′) over the tensorial basis and by taking into account the
summation rule,

(2k + 1)
∑

q1,q2

(
k1 k2 k
q1 q2 −q

)2

= 1, (23)

one can show that:

ζk(n1LJ → n1LJ′, T )(J = J′ and J � J′) =

(2J + 1)(2J′ + 1)
∑

k1

(2k1 + 1)ζk1 (n1S , T )

×
∑

k2

(2k2 + 1)



Lc S J
Lc S J
k2 k1 k





Lc S J′
Lc S J′
k2 k1 k


. (24)
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Formally, Eq. (24) is the same as Eq. (4.6) of Nienhuis (1976)
or Eq. (4.48) of Omont (1977). ζk1 (n1S , T ) are the spheri-
cal tensor components of the elastic collisional rates acting
in the part of the complex atom associated to its spin. Thus,
Dk1 (n1S , T ) = ζ0(n1S , T ) − ζk1 (n1S , T ) is the depolarizing rate
of the level |n1S 〉. Note that there are no collisional depolar-
izing rates associated to the core of the complex atom which
is ignored during the collision; the order k2 inside the core is
not destroyed by the isotropic collisions. The phenomenon of
the collisional depolarization of the combined system (i.e. the
complex atom) is reduced to the depolarization of the spin, the
depolarization rate of the level |n1LJ〉 of the complex atom is
given by:

Dk(n1LJ, T ) = ζ0(n1LJ, T ) − ζk(n1LJ, T ). (25)

If k = 0, as usual, the destruction rate of population is zero
which states that the elastic collisions (i.e. J = J′) do not al-
ter the total population of the level (n1LJ). In the same way
we write the expression for the depolarization rate ζk1 (n1S , T )
as a linear combination of the depolarization rates ζk3 (n1s, T ),
where |n1s〉 is the state of the valence electron of the perturbed
atom/ion,

ζk1 (n1S , T ) = (2S + 1)2
∑

k3

ζk3 (n1s, T )
∑

k4

(2k4 + 1)

×


s S c S
s S c S

k3 k4 k1



2

· (26)

From Eqs. (24) and (26), we find that:

ζk(nLJ → nLJ′, T ) =
1∑

k3=0

ζk3 (n1s, T )Ak(L J → L J′; k3)

= ζ0(n1s, T )Ak(L J → L J′; 0)

+ζ1(n1s, T )Ak(L J → L J′; 1) (27)

where,

Ak(L J → L J′; k3) = (2k3 + 1)(2J + 1)(2J′ + 1)(2S + 1)2

×(2k4 + 1)
∑

k1,k2,k4

(2k1 + 1)(2k2 + 1)

×


s S c S
s S c S

k3 k4 k1



2 

Lc S J
Lc S J
k2 k1 k



×


Lc S J′
Lc S J′
k2 k1 k


(28)

Ak(L J → L J; k3) is the depolarization coefficient of the state
|n1LJ〉 of the complex atom. The depolarizing rate of the level
|n1LJ〉 at a temperature T of the medium is:

Dk(n1LJ, T ) = ζ0(n1LJ, T ) − ζk(n1LJ, T ). (29)

Because, in our approach, the collision do not affect the state
of internal electrons and so that Lc and Sc are conserved, it is
easy to show that:

ζ0(n1LJ, T ) = ζ0(n1s, T ). (30)

Thus, taking into account Eq. (27),

Dk(n1LJ, T ) = ζ0(n1s, T ) ×
[
1 −Ak(L J → L J; 0)

]

−ζ1(n1s, T ) × Ak(L J → L J; 1) (31)

where ζ0(n1s, T ) and ζ1(n1s, T ) are given by Eqs. (20) and (21)
if one takes n∗ = [2E∞]−1/2, E∞ is the binding energy of the
valence electron of the complex atom in atomic units. Note, if
it assumed, as we have done, that the internal core electrons
are not perturbed by the collisions, the interaction potential ap-
propriate for calculation of the depolarizing collisions of the
state |n1LJ〉 is the same as that for the depolarizing collisions
of state |n1s〉. The same results have been obtained in Paper V
when we expressed the scattering matrix elements of com-
plex atoms colliding with hydrogen atoms as a linear combi-
nation of those of simple atoms colliding with hydrogen atoms
(Paper V, Eq. (7)). Concerning the problem of how important
is the dpolarization rate Dk(n1LJ, T ) of complex atoms com-
pared to Dk3 (n1s, T ), there is no common answer for whatever
case and one have to calculate the depolarization coefficient
Ak(L J → L J′; k3) for each level. Obviously, one can easily
compute Ak(L J → L J′; k3) by programming Eq. (28). We
notice that the total depolarizing effect of collisions for a state
of a complex atom is expanded into a series of non-zero depo-
larization rates associated with ranks 0 < k < 2J while there
is only one non-zero depolarizing rate, namely destruction of
orientation k3 = 1, for the s-state in the simple atom. This point
may be worthy of further study.

We point out two interesting particular cases of Eq. (28):

– Spin unpolarized core, i.e. k2 = 0 and k4 = 0: Eq. (28) is
then reduced to

Ak(L J → L J′; k3) = δk3,k (2J + 1)(2J′ + 1)

× (2S + 1)2

(2S c + 1)(2Lc + 1)

{
S sS c

s S k3

}2 {
S JLc

S J k3

} {
S J′Lc

S J′ k3

}
(32)

{ } (2 lines × 2 columns) is a 6 j-coefficient (Messiah 1961).
– Lc = 0 and S c = 0 (simple atoms): we retrieve from the

general expression of equation (28) the depolarization rate
of the particular case of simple atoms in a spherically sym-
metric state because,

Ak(L J → L J′; k3)=δ(s, J)δ(s, J′)δ(k3, k), (33)

so that,

ζk(nLJ → nLJ′, T ) = ζk3 (n1s, T )δ(s, J)δ(s, J′)δ(k3, k)

and

Dk(nLJ, T ) = Dk3 (n1s, T )δ(s, J)δ(s, J′)δ(k3, k).

7.2. Example of calculation

In order to illustrate how our theory allows us to ob-
tain depolarization and polarization transfer rates of lev-
els of complex atoms, we consider the particular cases
of the lower states involved in the transitions of Ti I
of multiplets 42 (3d3 (4F)4s (5F)) and 145 (3d3 (4P) 4s (5P))
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Table 2.Ak(n1LJ → n1LJ′)(J = J′) for the lower state of multiplet 42 of neutral titanium Ti I.

J J′ k Ak(n1 L J → n1 L J′; 0) Ak(n1 L J → n1 L J′; 1)
1 1 0 6.43 × 10−2 1.46 × 10−1

1 1 1 7.29 × 10−2 2.42 × 10−1

1 1 2 6.94 × 10−2 4.87 × 10−1

2 2 0 2.68 × 10−2 5.06 × 10−1

2 2 1 3.75 × 10−2 4.50 × 10−1

2 2 2 7.12 × 10−2 3.47 × 10−1

2 2 3 1.15 × 10−1 2.63 × 10−1

2 2 4 4.97 × 10−2 4.17 × 10−1

3 3 0 6.67 × 10−2 3.20 × 10−1

3 3 1 6.37 × 10−2 3.22 × 10−1

3 3 2 5.92 × 10−2 3.27 × 10−1

3 3 3 5.95 × 10−2 3.3 × 10−1

3 3 4 7.50 × 10−2 3.27 × 10−1

3 3 5 1.01 × 10−1 3.37 × 10−1

3 3 6 5.21 × 10−2 4.71 × 10−1

4 4 0 8.57 × 10−2 5.78 × 10−2

4 4 1 8.37 × 10−2 7.59 × 10−2

4 4 2 7.83 × 10−2 1.13 × 10−1

4 4 3 6.89 × 10−2 1.67 × 10−1

4 4 4 5.87 × 10−2 2.36 × 10−1

4 4 5 5.62 × 10−2 3.10 × 10−1

4 4 6 7.02 × 10−2 3.80 × 10−1

4 4 7 9.20 × 10−2 4.58 × 10−1

4 4 8 6.00 × 10−2 6.11 × 10−1

5 5 0 6.55 × 10−3 8.04 × 10−3

5 5 1 9.64 × 10−3 1.02 × 10−2

5 5 2 1.64 × 10−2 1.51 × 10−2

5 5 3 2.78 × 10−2 2.42 × 10−2

5 5 4 4.46 × 10−2 4.04 × 10−2

5 5 5 6.71 × 10−2 6.90 × 10−2

5 5 6 9.31 × 10−2 1.19 × 10−1

5 5 7 1.17 × 10−1 2.06 × 10−1

5 5 8 1.27 × 10−1 3.54 × 10−1

5 5 9 10−1 3/5
5 5 10 0 1

(Manso Sainz & Landi Degl’Innocenti 2002). These multiplets
show high degrees of polarization in the second solar spectrum.
For the first case, (3d3 (4F)4s (5F)), we have Lc = 3, s = 1/2,
L = 3, S = 2, S c = 3/2 and J takes on the values 1, 2, 3,
4 and 5. In the second case of the (3d3 (4P) 4s (5P)) multiplet
Lc = 1, s = 1/2, L = 1, S = 2, S c = 3/2 and J takes on the
values 1, 2 and 3. By application of Eqs. (20), (21) and (27),
the depolarizing rates are given by:

Dk(n1 L J, T ) =
( [

31.214 − 53.630 × n∗ + 25.177 × n∗
2]

×
[
1 − Ak(L J → L J; 0)

]

+
[
27.234 − 48.575 × n∗ + 21.88 × n∗

2]

×
[
Ak(L J → L J; 1)

] )

×10−15 nH

( T
5000

)0.416

(rad s−1), (34)

and the polarization transfer rates:

ζk(n1 L J → n1 L J′, T )(J � J′) =( [
31.214−53.630×n∗+25.177×n∗

2] ×
[
Ak(L J → L J′; 0)

]

+
[
27.234−48.575× n∗+21.88× n∗

2] ×
[
Ak(L J → L J′; 1)

] )

×10−15 nH

( T
5000

)0.416

(rad s−1), (35)

where for the lower levels of the multiplets 42 and 145, n∗ =
1.504 and 1.636 respectively. Tables 2−4 show all non-zero
depolarization coefficients Ak(L J → L J′; k3) for multi-
plets 42 and 145 allowing the calculation of all non-zero de-
polarization and polarization transfer rates. In particular, for
the term levels (5F1) (J = 1) and (5P1) (J = 1) of the multi-
plets 42 and 145 respectively, one can readily get the analytical
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Table 3.Ak(n1LJ → n1LJ′)(J � J′) for the lower state of multiplet 42 of neutral titanium Ti I.

k J J′ Ak(n1 L J → n1 L J′; 0) Ak(n1 L J → n1 L J′; 1)
1 2 0 −4.15 × 10−2 −2.57 × 10−1

1 2 1 −1.44 × 10−2 −2.83 × 10−1

1 2 2 2.66 × 10−2 −2.83 × 10−1

2 3 0 4.23 × 10−2 −4.01 × 10−1

2 3 1 1.34 × 10−2 −3.48 × 10−1

2 3 2 2.00 × 10−2 −2.71 × 10−1

2 3 3 −2.12 × 10−2 −2.13 × 10−1

2 3 4 2.65 × 10−2 −1.88 × 10−1

3 4 0 −7.56 × 10−2 −1.10 × 10−1

3 4 1 −5.67 × 10−2 −1.35 × 10−1

3 4 2 −2.84 × 10−2 −1.74 × 10−1

3 4 3 −3.06 × 10−3 −2.08 × 10−1

3 4 4 1.29 × 10−2 −2.24 × 10−1

3 4 5 2.46 × 10−2 −2.18 × 10−1

3 4 6 3.96 × 10−2 −1.84 × 10−1

4 5 0 −2.37 × 10−2 −1.63 × 10−2

4 5 1 −2.76 × 10−2 −1.94 × 10−2

4 5 2 −3.33 × 10−2 −2.73 × 10−2

4 5 3 −3.72 × 10−2 −4.26 × 10−2

4 5 4 −3.37 × 10−2 −6.88 × 10−2

4 5 5 −1.75 × 10−2 −1.08 × 10−1

4 5 6 1.44 × 10−2 −1.56 × 10−1

4 5 7 5.71 × 10−2 −2.02 × 10−1

4 5 8 8.72 × 10−2 −2.04 × 10−1

expressions of the destruction rates of alignment (k = 2)
in rad s−1 for 100 ≤ T ≤ 10 000 K:
Ti (3d3 (4F)4s (5F1))−H (1s):

D2(4 3 1, T ) = 8.77 × 10−15 nH

( T
5000

)0.416

, (36)

Ti  (3d3 (4P) 4s (5P1))–H (1s):

D2(4 1 1, T ) = 14.30 × 10−15 nH

( T
5000

)0.416

· (37)

8. Hyperfine depolarization and polarization
transfer rates

The existence of complicated structures of the observed po-
larization profiles of some lines of the second solar spectrum,
such as Li  6707 Å, Ba  4554 Å, Na  5896 Å, and K  dou-
blet (at 7699 Å and 7665 Å), etc, should be explained in terms
of hyperfine structure splitting. To quantitatively explain these
structures, collisional depolarizing and polarization transfer
rates for the hyperfine sublevels should be taken into account
in the polarized radiative transfer models. If the atom/ion pos-
sesses nuclear angular momentum I, the total angular momen-
tum of the atom is denoted with F where F = J + I. Coupling
of J with I results in the hyperfine splitting of each J into lev-
els, F = |J − I|, |J − I + 1|,..., J + I. As has been mentioned
in Sect. 2, to a very good approximation, I is conserved dur-
ing the collision processes allowing the S sc-matrix is diagonal
in I and its elements do not depend on MI . Then according to
the same procedure as the one used in Sect. 7, it is simple to

deduce hyperfine depolarizing and polarization transfer rates
for simple/complex atoms/ions from our depolarizing rates of
fine structure levels of simple/complex atoms/ions given in
Sect. 6. The linear combinations have been given by Eqs. (4.6)
of Nienhuis (1976) or (4.48) of Omont (1977). In fact, the hy-
perfine polarization transfer rates ζk(n1JIF → n1JIF′, T ) are
readily obtained by carrying out the formal substitutions: J →
F, Lc → J and S → I on the Eq. (24). The hyperfine depolar-
izing rates are Dk(n1JIF, T ) = ζ0(n1JIF, T ) − ζk(n1JIF, T ).

9. Conclusion

In this paper we have proposed a general treatment including
the effects of spin to calculate depolarization rates of s-states
due to isotropic collisions with neutral hydrogen. Rates for the
ground states of alkali metals (Li , Na , K , Rb  and Cs )
have been calculated as an application of the theory and for
comparison. The resulting destruction rate of orientation of the
Na  ground state is in excellent agreement with that found by
full quantum chemistry approach of Kerkeni et al. (2000b). In
fact, at T = 5000 K the difference is less than 1%. We studied
the variation of the depolarizing rates with effective principal
quantum number n∗ ranging from 1.3 to 3. and we found that
the behaviour of the depolarization rates with n∗ obeys a sim-
ple power law. We showed that the depolarization and polariza-
tion transfer rates of levels of complex atoms may be derived
from calculations of rates associated to simple atoms. As appli-
cation, we tabulate results for all non-zero depolarization and
polarization transfer rates of the lower levels of multiplets 42
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Table 4. Depolarization coefficients Ak(n1LJ → n1LJ′)(J = J′ and J � J′) for the lower state of multiplet 145 of neutral titanium Ti I.

k J J′ Ak(n1 L J → n1 L J′; 0) Ak(n1 L J → n1 L J′; 1)
1 1 0 0 1.31 × 10−2

1 1 1 1.05 × 10−1 1.31 × 10−2

1 1 2 6.30 × 10−2 6.51 × 10−1

2 2 0 0 2.19 × 10−2

2 2 1 5.83 × 10−2 7.29 × 10−3

2 2 2 7.50 × 10−2 10−1

2 2 3 10−1 2.94 × 10−1

2 2 4 5.5 × 10−2 7.32 × 10−1

3 3 0 0 2.50 × 10−3

3 3 1 3.33 × 10−3 6.67 × 10−3

3 3 2 1.80 × 10−2 1.60 × 10−2

3 3 3 5.67 × 10−2 3.83 × 10−2

3 3 4 1.22 × 10−1 1.08 × 10−1

3 3 5 1.67 × 10−1 1/3
3 3 6 0 1
1 2 0 0 −1.69 × 10−2

1 2 1 −7.83 × 10−2 9.78 × 10−3

1 2 2 6.87 × 10−2 −2.35 × 10−1

2 3 0 0 −7.39 × 10−3

2 3 1 −1.39 × 10−2 −6.97 × 10−3

2 3 2 −3.67 × 10−2 −1.22 × 10−2

2 3 3 −2.58 × 10−2 −6.13 × 10−2

2 3 4 8.24 × 10−2 −1.94 × 10−1

and 145 of neutral titanium. In addition, we outlined how the
data may also be used to calculate depolarization rates for hy-
perfine structure states.
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