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The effect of a rotation on a matter-wave-laser beam splitter is studied and modeled. This modeling is shown
to give important nontrivial corrections to the Sagnac phase shift of matter-wave gyrometers when the duration
of the laser action cannot be neglected with respect to the propagation time between beam splitters. This result
is illustrated on a Mach-Zehnder atom gyrometer �rate gyroscope� with running laser beam splitters. A quasi-
classical description of the interferometer arms inside the beam splitters is proposed to interpret the corrected
Sagnac phase shift in terms of an effective interferometer area.
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I. INTRODUCTION

Two steps are particularly relevant for the modeling of
interferometers, whatever the nature of the waves involved
�light, electron, neutron, atomic, molecular,…�. The first one
consists in obtaining a precise analytical expression of the
fringes signal �i.e., with the amplitude, contrast factor, and
phase shift of the fringes�, which can be observed at the
output of such devices. The phase shift is especially impor-
tant since it gives the interferometer sensitivity to the effect
one wants to detect or avoid. Indeed, at the lowest order, the
phase shift expression depends linearly on this effect, and the
proportionality coefficient gives the interferometer intrinsic
sensitivity, i.e., its scale factor. The second step deals with
the phase shift true origin and the interpretation of the scale
factor in terms of geometrical quantities, such as the �space-
time� interferometer area for example. These two steps have
been regularly reexamined so as to respond to experimental
and theoretical advances, and have to be examined afresh in
the light of recent works in light as well as matter-wave
interferometries.

The first step is all the more important for atom interfer-
ometers since their precision, sensitivity, and stability have
become outstanding �1,2�. Atom gravimeters, gradiometers,
gyrometers,1 atomic clocks, etc., have now approached—or
surpassed—the level of all the other similar devices which
do not use atomic waves �such as falling corner cubes, gy-
rolasers, etc.� �1,3–7�. The superior sensitivity of matter
waves over light waves is particularly striking in gyrometry:
for equal rotation rates and interferometer areas, an atom
gyrometer is about 1010 times more sensitive than a gyrolaser

�for visible light and middle-weight atoms�. In practice, how-
ever, this ratio has to be reduced by several orders of mag-
nitude due to the current differences in enclosed areas and
photon and atomic fluxes. The best sensitivity obtained with
an atom gyrometer was 6�10−10 rad s−1 Hz−1/2 in 2000 �5�
�after less than ten years of expertise in atom interferometry�,
whereas it was 9�10−11 rad s−1 Hz−1/2 in 2004 for the best
laser ring gyro �8�. Moreover, a great improvement of this
accuracy level is expected through the use of coherent
atomic and molecular sources �to increase the interferometer
signal-to-noise ratio� �9,10�; the guiding and trapping of
atomic beams �to increase the interferometer area� �11–13�;
the implementation on micro- and nanochips �for quantum
computing as well as commercial and space applications�
�10,13�; the use of particular entangled states �to increase the
interferometer sensitivity� �14–17�; the use of microgravity
environments �to increase the interaction times� �18,19�, etc.
Such progress has opened up new possibilities for testing
tiny relativistic effects �e.g., Lense-Thirring and geodetic ef-
fects �20��, performing tests of the equivalence principle and
variability of fundamental constants �21�, and contemplating
long-term inertial autonomous missions �for positioning and
navigation on Earth, under the sea, or in deep space�.

This high �expected or already reached� accuracy level
requires one to go beyond the former modelings of atom
interferometers and, especially, of their main component: the
atomic beam splitters. A great effort has already been done to
improve both the global modeling of atom interferometers
�1,22–29� and their partial modelings, i.e., the modeling of
their constitutive elements: the atomic source, the detection
process, and the beam splitters �28,31�. Concerning the glo-
bal modeling, a very general phase shift formula has recently
been obtained with the help of symplectic invariants and
Gaussian atom optics tools �27,30�. This formula is valid for
any interferometer geometry and accounts for all the �simul-
taneous� time-dependent effects whose representative poten-
tial is at most quadratic in position and momentum. It gen-
eralizes the previous analytical expressions �25,26�, and, in
particular, the usual Sagnac expression of matter-wave
gyrometers �32� and the Wolf-Tourrenc formula for atom
gradio-gravimeters �33�.

Regarding the partial modelings, a unified approach has
been developed to describe thermal, cold, and ultracold

*antoinec@ccr.jussieu.fr
1The term “gyroscope” is generally used to designate a device

which measures both rotation angles and rotation rates. To distin-
guish between these two different applications, it is preferable to
use different words: “gyroscope” for the measurement of rotation
angles, for example, and “gyrometer” or “rate gyro” for the mea-
surement of rotation rates. The term “gyrometer” is used in the
present paper. A gyroscope can be obtained by integrating over time
the signal of a gyrometer.
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atomic sources in terms of a statistical distribution of Gauss-
ian wave packets, and corresponding formulas have been ob-
tained for the modeling of the usual detection processes �31�.
As for atomic beam splitters, although many of their features
have been studied in the past �see �28� and references
therein�, very simple modelings are still considered some-
times for the global modeling of atom interferometers. In
these oversimplified modelings, only the following effects
are considered: �a� the splitting of the incident atomic wave
packet into several wave packets, �b� among which one is
equal to the incident wave packet, up to a change of ampli-
tude, �c� the others differing from the incident wave packet
in their central momentum, internal state, amplitude, and
phase. Practical though they are, these beam splitter model-
ings do not account for all the effects which depend explic-
itly on the duration and/or width of the atomic splitting
zones, and, consequently, are sometimes called “infinitely
thin modelings.”

In fact, only recently have been modeled several
important such effects, such as the effect of additional exter-
nal potentials during atomic splitting �time-dependent
gravito-inertial and trapping potentials for example� or non-
trivial dispersive effects �atomic Borrmann effect, for ex-
ample�. The reference �28� gives details of this accurate
modeling in the case of a laser beam splitter. A particularly
interesting variant of this modeling consists in developing
the generalized detuning to the first order in the considered
inertial or gravitational effect. The case of a uniform accel-
eration acting on the atoms leads to nontrivial phase shift
corrections, as it is explained in �28�. The rotation case is
treated in the present paper.

This rotation can act either on the atoms or on the lasers,
according to the chosen reference frame where the atomic
evolution equation is expressed. Physical results, such as the
interferometer phase shift, for example, do not depend on
this choice since observables are scalar, i.e., gauge invariant.
In the following, one will consider the atomic evolution
equation in a rotating frame where the lasers are at rest. In
this case, the laser wave vectors are constant and a term “

r� · ��� � p��” appears in the total Hamiltonian �see Eq. �3��.
The reverse case �where the reference frame is defined as the
rest—or inertial—frame of the atoms, with respect to which
the lasers frame is rotating� would lead to time-dependent
laser wave vectors in the atom-laser interaction Hamiltonian,

but without any “r� · ��� � p��” term. These two descriptions
are equivalent. Let us underline, however, that this question
has to be carefully examined when we consider the addition
of several other �unavoidable� inertial and gravitational ef-
fects as it is outlined in �27�. Indeed, the evolution equation
which is obtained in this case may be simpler in one of these
two reference frames, according to the symmetry properties
of these additional potentials. For example, an atom
gyrometer—used as inertial sensor in a vehicle—is sensitive
not only to the �artificial� vehicle rotation but also to various
accelerations and gradients of acceleration caused by the
nonuniform mass distribution around the vehicle �time
independent field of gravity of the Earth, for example�. In
this case, the atomic evolution equation is simpler to solve
in the frame which is defined by this constant mass distribu-

tion, with respect to which the vehicle and lasers are
rotating.

Actually, regarding the Sagnac effect, i.e., the effect of a
rotation on an interferometer fringes pattern, many open
questions and problems remain, which highlights the neces-
sity to deepen the “second step ” mentioned above. Indeed,
this Sagnac effect has always caused controversies, regarding
its different derivations �within or without relativistic theo-
ries, for example� as well as its interpretations and the ques-
tion of its true origin �gauge invariance problem, link to
Mach principle, topological origin, and geometrical interpre-
tation� �34–39�. Recent works tend to clarify some of these
problems, but essentially with light waves �40�. The advent
of well controlled slowing, trapping, cooling, and guiding
techniques of atoms and molecules as well as promising ac-
tive matter-wave gyrometers will certainly give new insights
into these questions as well.

The beam splitter modeling is particularly relevant as it
has already been outlined in neutron interferometry, where
the Borrmann effect proved to be crucial to understand dis-
crepancies between phase shift calculations and measure-
ments �41,44�. This effect, discovered by Borrmann in 1941
�42�, is well known in dynamical diffraction of x rays �43�
and neutron waves �44�, and has been recently studied in
atom optics �45�. It demonstrates the existence of privileged
wave propagation directions �i.e., group velocities� inside the
crystal where a wave is diffracted. This crystal can be made
of matter or light �e.g., with lasers�. Historically, this effect
was defined for absorbing crystals, but this condition can be
relaxed for atom-laser interaction. This effect is valid for any
kind of waves and can be stated as follows: “for a certain
angle of incidence with respect to the crystal surface, the
propagation of an incident wave packet inside the crystal is
made �with no attenuation� along a unique trajectory which
is orthogonal to the crystal surface.” Conversely, if this con-
dition is not fulfilled, two main wave packets propagate in-
side the crystal with two different central trajectories, defin-
ing what is called the “Borrmann fan.” With neutron and
light waves, this particular angle of incidence is the well
known “Bragg angle.” Actually, the Borrmann effect can be
related in a natural way to the usual “Bragg regime,” which
is observed in atomic diffraction when the diffraction zone is
thick enough.

The Borrmann effect helps us to answer the question:
“Where do the waves propagate inside the diffraction
zones?,” and if this question is meaningful. This fact is
crucial for the definition of the interferometer arms inside
the laser beam splitters and, consequently, for the definition
of both the interferometer area and its geometrical scale
factor.

In this paper, I first solve the problem of a rotating atomic

laser beam splitter to the first order in ��� � /�0, where �� is
the rotation rate vector and �0 the laser Rabi frequency
which characterizes the atom-laser interaction. Then, I
express the solution as an effective instantaneous interaction
in order to obtain a beam splitter modeling which is particu-
larly well suited for the global modeling of atom interferom-
eters. This beam splitter modeling is illustrated on two im-
portant cases: the � and � /2 beam splitters, which play
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respectively the role of mirror and 50:50 beam splitter for
atomic waves �Sec. II�. Then, after recalling the general
interferometer phase shift formula which has been recently
obtained �27,30�, I apply the � /2 and � beam splitters mod-
eling to a Mach-Zehnder atom gyrometer and express the
phase shift formula to the first order in � /T, where � is the
beam splitters typical duration and T the propagation time
between two beam splitters �Sec. III�. Finally, before con-
cluding and giving some prospects, I detail the problems
encountered in defining the interferometer arms inside the
beam splitters and propose a semiclassical approximation of
the interferometer area.

II. EFFECT OF A ROTATION ON A
MATTER-WAVE-LASER BEAM SPLITTER

The matter-wave beam splitters considered in this study
consist of multilevel atomic systems subject to an interaction
potential which couples the levels together. Until now, many
different interaction potentials have been used to create
atomic beam splitters. A recent review of these techniques
is given in �28�. In the present paper I focus on the atomic
beam splitters which are based on the quasi-resonant
interaction between atoms and laser fields.

The atomic levels are not restricted to internal atomic lev-
els, but more generally refer to energy-momentum states,
i.e., eigenstates of both the internal and kinetic Hamiltonians.
Atomic transitions can occur between internal states only
�spectroscopy without Doppler effect, for example�, external
states only �diffraction in Kapitza-Dirac and Bragg regimes,
for example�, or between entangled states, the entanglement
being between the internal and external states �stimulated
Raman transitions, for example� or between the previous
energy-momentum states and the eigenstates of the splitting
potential �with the Fock states of the quantized electromag-
netic field, for example�.

Here, the two beam approximation is supposed to be
valid: only two energy-momentum eigenstates are effectively
coupled by the lasers. This coupling can be direct �for true
two-level systems� or indirect �Raman transitions or atom
diffraction in the Bragg regime, for example�. In fact, it can
be shown �46–48� that any N-photon transition �induced by
running or standing laser waves� of a multilevel atom is
equivalent to an effective 1-photon transition between two
atomic levels if the other levels can be adiabatically elimi-
nated. The effective photon may not be real, its frequency
being null in the case of atomic Bragg diffraction, for ex-
ample. Atomic beam splitters using stimulated Raman tran-
sitions between two atomic ground state levels belong to this
class of matter-wave beam splitters. Indeed, the third �ex-
cited� atomic level can be eliminated if the lasers are far
enough from resonance, and a single Rabi frequency is
needed to characterize the effective laser beam which causes
the transition between the two remaining ground states.
Eventually, the spatial and temporal structure of the true laser
beams appears only in the amplitude of the effective running
laser beam. Here, for simplicity, is considered a running la-
ser pulse with a square amplitude of duration �.

Moreover, this laser field is supposed to be classical �no
QED effect�, and all relativistic effects as well as relaxation
processes are neglected �long lifetime of atomic levels, no
collision, no absorption, etc.�. All these approximations are
not necessary but are made to focus on the main features of
the triple interaction “laser-matter-rotation ” only.

Finally, the usual dipolar electric Hamiltonian Vem�r� , t�
which models the atom-laser interaction reads:

Vem�r�,t� = − q�0� 0 e−i��t−k�·r�+��

e+i��t−k�·r�+�� 0
� , �1�

where �0=�ba is the Rabi frequency of the atomic transition
between the levels a and b. The quantities �, k�, and � are the
�effective� laser frequency, wave vector, and phase, respec-
tively.

The rotating-wave approximation, which consists in ne-
glecting the off-resonant terms in the Fourier decomposition
of the laser pulse, has also been used, and possible diagonal
terms in Vem have been neglected �no ac Stark shift for sim-
plicity�.

This interaction is usually made in the presence of other
external potentials: inertial and gravitational fields, trapping
potential, van der Waals and Casimir potentials,2 etc. In this
paper I focus on the effect of a constant and uniform rotation

�� . This rotation can have many origins: artificial rotation of
the laboratory or vehicle, “natural” rotation of a planet,
Lense-Thirring effect near a massive rotating body, etc. As
recalled in the introduction, it can act either on the atoms or
on the lasers, according to the reference frame which is cho-
sen to express the atomic evolution equation. In the frame
where the lasers are at rest, this potential reads

r�op · ��� � p�op� or − r�op · �
⇒

· p�op, �2�

where the matrix �
⇒

is defined as �
⇒

·u�ª−�� �u� for any vec-
tor u� . The two operators r�op and p�op are the canonical posi-
tion and momentum operators. Let us underline that there is
no �explicit� centrifugal term in the Hamiltonian formalism.
This one appears only in the corresponding Lagrangian.

Finally, since the relaxation processes are neglected, the
atomic evolution can be described by the following
Schrödinger equation:

iq
d

dt
�	�t�	 = �H0 +

1

2m
p�op

2 − r�op · �
⇒

· p�op + Vem�r�op,t���	�t�	 ,

�3�

2The general case of potentials at most quadratic in position and
momentum is examined in �28�.
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where H0 is the internal Hamiltonian �Eb
Ea�,

H0 = �Eb 0

0 Ea
� =

Ea + Eb

2
1 +

q�0

2
�3, �4�

with �0= �Eb−Ea� /q the atomic transition frequency and �3

the usual third Pauli matrix.
The matrix differential equation �3� cannot be directly

solved because its right-hand side depends explicitly on time
and on the two noncommuting operators r�op and p�op, and,
consequently, does not commute with itself at two different
times. However, it is possible to simplify it with the help of
judicious ket transformations which progressively eliminate
the different �internal and external� sources of atomic evolu-
tion. These transformations can be seen as frame changes
which aim at reaching a more suitable frame �called “least
movement frame” in �28�� where the evolution equation is
easier to solve.

The first frame change corresponds to the transformation
into the interaction picture with respect to H0 and

1
2m p�op

2 −r�op · �
⇒

· p�op,

��1�t�	 = e+i/q�H0+1/2mp�op
2−r�op· �

⇒
·p�op��t−t1��	�t�	 , �5�

where t1 is an arbitrary instant different from t by definition.
This instant “t1” has no physical meaning and can be re-

moved explicitly at each step of the following calculations
�31�. However, it can be interesting to keep it and eventually
assign it a particular value �the central time of laser interac-
tions, for example� which can be useful to simplify some
expressions and describe the atom-laser interaction as an
equivalent instantaneous interaction. As underlined in the in-
troduction, this artificial concentration of the beam splitters
effects at a single time t1 is particularly relevant for the mod-
eling of atom interferometers �see also below�.

The Schrödinger equation �3� becomes

d

dt
��1�t�	 = i�0� 0 e−i
op�t,t1�

e+i
op�t,t1� 0
���1�t�	 , �6�

where 
op�t , t1� is defined as


op�t,t1� = �t − �0�t − t1� − k� · e�
⇒

�t−t1� · �r�op +
p�op

m
�t − t1��

+ � . �7�

The second �non-unitary� transformation corresponds to
the passage into the usual “rotating frame” �� is the recoil
qk2 /2m and t0 the initial instant of the square laser pulse�:3

��2�t�	 = �e+i
op�t,t1�/2 0

0 e−i
op�t,t1�/2 �ei��t−t0�/4��1�t�	 , �8�

which aims at eliminating the main time dependence of the
right-hand side of Eq. �6�,

d

dt
��2�t�	 = i��op�t,t1�/2 �0

�0 − �op�t,t1�/2
���2�t�	 , �9�

where �op�t , t1� is an operator which generalizes the usual
detuning �0=�−�0−k� · p�op /m in the presence of a rotation,

�op�t,t1� =
d

dt

op�t,t1� , �10�

i.e.,

�op�t,t1� = �0 + �k� � �� � · �r�op + 2
p�op

m
�t − t1�� �11�

to the first order in ��� � /�0.
Equation �9� depends explicitly on time and on the two

noncommuting operators r�op and p�op, and consequently is
“non scalar,” i.e., is such that one cannot choose any repre-
sentation �position or momentum representation, for ex-
ample� where the previous differential operator equation be-
comes a differential equation �and not a partial derivative
equation�, which can be solved by applying the common
rules of integration. Here, however, the first order solution of
Eq. �9� is particularly easy to obtain since all commutators

implying r�op and p�op vanish to the first order in ��� � /�0,

��function of k� · p�op�,�k� � �� � · r�op� = 0. �12�

Actually, all happens as if these two canonical operators
were commuting, i.e., as if this nonscalar �operator� problem
was scalar at this perturbation order. This fact explains why
scalar first-order perturbation methods can be used to solve
this non scalar problem �as in �49� with the “sensitivity func-
tion method”�.4

The first-order solution of Eq. �9� is given by

3This rotating frame is not unique. There is an infinite number of
transformations of the type of Eq. �8� as it is detailed in �28�.

4The sensitivity function method is closely linked to the Dick
effect �50� and is usually used in frequency standards to character-
ize the influence of laser fluctuations on the atomic transition prob-
abilities �51�.
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��2�t�	 = 
 c�t�+i y
�1+y2

s�t�+ i
2 �k���� � · r�op� 1

1+y2

s�t�
�0

+i y
�1+y2

ts�t�+ y2

1+y2 tc�t�
 i
�1+y2

s�t�+ i
2 �k���� � · r�op

y
1+y2�tc�t�−

s�t�
�0

�+�k���� � ·
p�op

2m�0

1
�1+y2�tc�t�−

s�t�
�0

�
i

�1+y2
s�t�+ i

2 �k���� � · r�op
y

1+y2�tc�t�−
s�t�
�0

�−�k���� � ·
p�op

2m�0

1
�1+y2�tc�t�−

s�t�
�0

� c�t�−i y
�1+y2

s�t�− i
2 �k���� � · r�op� 1

1+y2

s�t�
�0

−i y
�1+y2

ts�t�+ y2

1+y2 tc�t�
 �
���2�0�	 �13�

where, for brevity, the expressions “cos��1+y2�0t� ” and
“sin��1+y2�0t� ” have been replaced by “c�t�” and “s�t�,”
respectively, and where the instants t0 and t1 have been cho-
sen equal to 0 and �t0+ t� /2, the initial and central times of
the interaction.

The y parameter is called “inelasticity parameter ” and is
defined in analogy to the theory of dynamical diffraction of
neutrons in crystals �28,41,44�:

y =
�0

2�0
= �� − �0 − k� · p�op/m�/2�0. �14�

Its scalar version �in momentum representation� tells us
how the laser resonance condition is fulfilled. For example, if
an incident atomic wave packet �for an atom in the internal
state “a,” considered at the central time t1 of the first beam
splitter of an atom interferometer� has a mean momentum
equal to p�1 �i.e., p�1+qk� /2 in the rotating frame�, then the
corresponding inelasticity parameter reads

y1 = �� − �0 − k� · p�1/m − ��/2�0. �15�

In the following, we assume that the detuning �−�0

−k� · p�1 /m−� is negligible compared to the bare Rabi
frequency �0 �quasi-perfect resonance in the atom-laser in-
teraction� or—as it is explained in details in �28,31�—that
the “first Borrmann condition ” is fulfilled,

y1 � 0. �16�

After evolution in an atom gyrometer, the central momen-
tum of this atomic wave packet is changed into p� i= p�1

−�� �ti− t1�� p�1 to the first order in ��� ��ti− t1�, where ti− t1 is
the evolution duration. For example, within a Mach-Zehnder
geometry �see Fig. 1�, one obtains t2= t1+T+3� /2 and t3
= t1+2T+3� for the second and third beam splitters, respec-
tively. Thus, one can write y as

y = yi −
k� · �p�op − p� i − qk�/2�

2m�0
�17�

where the first term yi=−k� · �p� i− p�1� /2m�0 is a first order

term in ��� � /�0, and where the second term is assumed to
have a small effect on the incident atomic wave packet which
is sharply peaked around p�1 �“second Borrmann condition”
�28��:

−
k� · �p�op − p� i − qk�/2�

2m�0
��2�ti�	 � −

k�p�

2m�0
��2�ti�	 �18�

where �p� �m�0 /k is the momentum width of the atomic
wave packet along the k� direction.

Finally, a Taylor expansion of ��2�t�	 can be carried out
up to the first order in y,

��2�t�	 =
 cos��0t� + iy sin��0t� + i�k� � �� � · r�op
1

2�0
sin��0t� i sin��0t� + �k� � �� � ·

p�op

2m�0
�t cos��0t� −

1

�0
sin��0t��

i sin��0t� − �k� � �� � ·
p�op

2m�0
�t cos��0t� −

1

�0
sin��0t�� cos��0t� − iy sin��0t� − i�k� � �� � · r�op

1

2�0
sin��0t� �

���2�0�	 . �19�

Then, one can go back to the initial �laboratory� frame by performing the reverse transformations of Eqs. �8� and �5�, and
obtain �	�t�	 as a function of �	�0�	. This result can be reexpressed as a product of three operators,

�	�t�	 = U1�t,t1�S1�r�op,p�op,t,0,t1�U1�t1,0��	�0�	 , �20�

where U1�t1 ,0� and U1�t , t1� describe the atomic evolution which is due to H0+ 1
2m p�op

2 −r�op · �
⇒

· p�op only �i.e., without any laser
beam splitter potential�. By this analytic rearrangement, one concentrates artificially all the beam splitter effects at a single
moment t1, and describes the laser interaction as an effective instantaneous interaction �generalization of the ttt scheme
introduced in �52��. Contrary to the former naive modelings of atomic beam splitters, such as the “infinitely thin ” one, this
modeling does not neglect the effects which depend on the duration of the beam splitter, although it is expressed in the form
of an �effective� instantaneous interaction. This “ttt modeling” �“ttt” for the three instants t0, t1, and t� is particularly useful not
only to make the link with the former oversimplified modelings, but also to provide a practical beam splitter modeling for atom
interferometer phase shift calculations.

For illustration, let us consider a Gaussian initial atomic wave packet �	G�t1 ;r�1 , p�1�	 �which has the mean position r�1 and
mean momentum p�1 at the time t1�, and let us express the solution S1�r�op , p�op , t ,0 , t1��	G�t1 ;r�1 , p�1�	 in two particular cases—
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the � /2 and � beam splitters—for which �0t is equal to � /4, and � /2, respectively. For example, if the initial “atom” is in
the internal state “a” �lower atomic state�, then the following output is obtained in the case of a � /2 beam splitter:5

S1,aa
�/2 �	G�t1;r�1,p�1�	 =

1
�2

ei��−�0−��t/2+ik�·�p�1+qk�/2�/2m�0−i�k���� �·r�1�1−�0t�/2�0�	G�t1;r�1 −
qk�

2m�0
�1 − �0t�,p�1 −

qk� � ��

2�0
�1 − �0t���

�21�

for the atomic part which is associated to the internal state “a ” after a time t �i.e., at the beam splitter exit�, and

S1,ba
�/2 �	G�t1;r�1,p�1�	 =

i
�2

e−i��t1−k�·r�1+���	G�t1;r�1 +
qk� � ��

2m�0
2 � ��0t�2

2
+ �0t − 1�,p�1 + qk��� �22�

for the atomic part in the upper state “b.” The global phase factor �t1−k� ·r�1+� is nothing else than the laser phase in r�1 at the
time t1.

Reversely, if the initial atomic wave packet describes an atom in the upper atomic state “b,” one obtains the following
output:

S1,bb
�/2 �	G�t1;r�1,p�1�	 =

1
�2

e−i��−�0+��t/2−ik�·�p�1+qk�/2�/2m�0+i�k���� �·r�1�1−�0t�/2�0�	G�t1;r�1 +
qk�

2m�0
�1 − �0t�,p�1 +

qk� � ��

2�0
�1 − �0t���

�23�

for the atomic part in the upper state “b” and

S1,ab
�/2 �	G�t1;r�1,p�1�	 =

i
�2

e+i��t1−k�·r�1+���	G�t1;r�1 −
qk� � ��

2m�0
2 � ��0t�2

2
+ �0t − 1�,p�1 − qk��� �24�

for the atomic part in the lower state “a.”
Similar results are obtained in the case of a � beam splitter,

S1,ba
� �	G�t1;r�1,p�1�	 = ie−i��t1−k�·r�1+���	G�t1;r�1 +

qk� � ��

2m�0
2 �2��0t�2 − 1�,p�1 + qk��� �25�

for the atomic transition a→b and

S1,ab
� �	G�t1;r�1,p�1�	 = iei��t1−k�·r�1+���	G�t1;r�1 −

qk� � ��

2m�0
2 �2��0t�2 − 1�,p�1 − qk��� �26�

for the transition b→a.

5The parameters r�1 and p�1 of the ket �	G�t1 ;r�1 , p�1�	 are not to be confused with the variables r� and p� which appear in the wave function
expression in the corresponding �position �r�	 or momentum �p�	� representation.
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In addition to the “usual” beam splitter effects �amplitude,
phase, and central momentum changes�, one observes many
other effects which depend on t or 1/�0, i.e., on the beam

splitter duration, but also on the rotation vector �� . Those
which depend only on t account for the usual atomic Bor-
rmann effect �as described in �28��, whereas pure

�0-dependent terms �without �� � give corrections to this ef-

fect in the case of a running laser pulse. �� -dependent terms
account for the effect of a rotation on such a beam
splitter. These modifications concern not only the phase but
also the central position and momentum of atomic wave
packets, and can induce important changes in the phase shift
expression of atom interferometers, as it is shown below
�see Eq. �35��.

III. CONSEQUENCES FOR ATOM
GYROMETERS

As mentioned in the introduction, the modeling of atom
interferometers has been significantly improved during the
last 15 years. New theoretical tools have been developed,
such as the ABCD matrices, for example, to describe the
atomic waves evolution in the presence of several and simul-
taneous inertial and gravitational potentials �25,31�, or the
use of fundamental invariants to put on light—and explain—
some important simplifications in the interferometer phase

shift expression �30,31�. Now is available a full analytical
expression of the fringes signal which is very compact and
valid for a large variety of atom interferometers, and, in par-
ticular, for any interferometer geometry, any kind of atomic
source, any kind of atomic beam splitter �for which the two
beam approximation is valid6�, and any kind of detection
process. In addition, this general expression accounts for
some relativistic effects and all the gravitational and inertial
effects whose representative potential is at most quadratic in
position and momentum. Rotations, accelerations, gradients
of acceleration, gravitational waves, and trapping potentials
belong to this class of potentials.

For example, if an atom interferometer possesses two
main arms only, called � and �, its �nonrelativistic� phase
shift expression reads

�� = �
i=1

N ���i − ��i −
b��i + b��i

2q
· �r��i − r��i + a��i − a��i�

−
p��i + p��i

2q
· �a��i − a��i�
 , �27�

where the index “i” refers to the ith beam splitter. The instant
ti is the central time of this ith beam splitter, and could also
be written “t1i” since it is the effective instant of interaction
t1 of the ttt scheme described in Sec. II.

The parameters ��i, a��i, b��i, r��i, p��i are defined as follows
�expressed here for the � branch for illustration�: r��i and p��i
are the central position and momentum of the �Gaussian�
atomic wave packet “wp�” just before the instant ti, whereas

��i, a��i, b��i characterize the modification of its phase, central
position and momentum due to the ith beam splitter,

wp��ti
−;r��i,p��i� → M�ie

i��iwp��ti
+;r��i + a��i,p��i + b��i� ,

�28�

where ti
− �ti

+� is the instant just before �after� the instant ti. All
these parameters depend on the considered transition be-
tween the internal atomic states �a→b, for example�.

With the modeling of Sec. II, one obtains for a � /2 beam
splitter �of duration ��,

6Actually, this condition can be extended to any beam splitting
process which preserves the general form �Gaussian, for example�
of the wave packet which enters an atomic beam splitter. Only the
number of outgoing wave packets and their features �associated
internal state, amplitude, phase, central position and momentum,
position and momentum widths� can change.
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FIG. 1. �Color online� Geometry of a Mach-Zehnder atom in-
terferometer �also called symmetrical Ramsey-Bordé or Chu-Bordé
interferometer�. A sequence of � /2−�−� /2 beam splitters is used
to coherently split, deflect, and recombine an initial atomic beam.
The interferometer phase shift, i.e., the accumulated phase differ-
ence between the two main interferometer arms, is encoded in the
proportion of atoms in states a and b at the exit. For simplicity, the
incidence angle of the atoms �in the first � /2 beam splitter� has
been chosen equal to the Bragg angle, but this condition can be
partly relaxed due to the internal atomic structure �see expression
�15� and condition �16��.
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a ——→
�/2

a:�
�aa,�i =

�/2

��i − �0 − �i��/2 + k�i · �p�1 + qk�i/2�/2m�0i − �k�i � �� � · r��i
1 − �0i�

2�0i
,

a�aa,�i =
�/2

−
qk�i

2m�0i
�1 − �0i�� ,

b�aa,�i =
�/2

−
qk�i � ��

2�0i
�1 − �0i�� ,

� �29�

a ——→
�/2

b:��ba,�i =
�/2�

2
− ��iti − k�i · r��i + �i� ,

a�ba,�i =
�/2

+
qk�i � ��

2m�0i
2 � ��0i��2

2
+ �0� − 1� ,

b�ba,�i =
�/2

+ qk�i,

� �30�

b→
�/2

b:�
�bb,�i =

�/2

− ��i − �0 + �i��/2 − k�i · �p�1 + qk�i/2�/2m�0i + �k�i � �� � · r��i
1 − �0i�

2�0i
,

a�bb,�i =
�/2

+
qk�i

2m�0i
�1 − �0i�� ,

b�bb,�i =
�/2

+
qk�i � ��

2�0i
�1 − �0i�� ,

� �31�

b→
�/2

a:�
�ab,�i =

�/2�

2
+ ��iti − k�i · r��i + �i� ,

a�ab,�i =
�/2

−
qk�i � ��

2m�0i
2 � ��0i��2

2
+ �0� − 1� ,

b�ab,�i =
�/2

− qk�i,

� �32�

where �i, k�i, �i, and �0i are, respectively, the frequency,
wave vector, phase, and Rabi frequency of the ith effective
laser pulse.

Similarly, for a � beam splitter �of duration ���, one ob-
tains

a→
�

b:�
�ba,�i=

� �

2
− ��iti − k�i · r��i + �i� ,

a�ba,�i=
�

+
qk�i � ��

2m�0i
2 �2��0i���2 − 1� ,

b�ba,�i=
�

+ qk�i,

� �33�

b→
�

a:�
�ab,�i=

� �

2
+ ��iti − k�i · r��i + �i� ,

a�ab,�i=
�

−
qk�i � ��

2m�0i
2 �2��0i���2 − 1� ,

b�ab,�i=
�

− qk�i.

� �34�

Let us now apply these expressions to the most commonly
used interferometer geometry in atom gyrometry, i.e., the
Mach-Zehnder geometry. Such an atom interferometer �also
called symmetric Ramsey-Bordé or Chu-Bordé atom interfer-
ometer �1�� has three beam splitters only �with common fea-
tures, i.e., with the same laser wave vector, intensity, etc.�
and the following time sequence �see Fig. 1�, a first � /2
beam splitter centered in t1 with a duration �, a first “dark
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area ” �laser-free region� of duration T, a � beam splitter
centered in t2 with a duration ��=2�, a second “dark area ” of
duration T, and a second � /2 beam splitter centered in t3
with a duration �. If the beam splitters �made by Raman laser
pulses generally� can be modeled as in Sec. II, then, one can
apply the previous phase shift formula, which finally reads:

�� first = ��0 − �k� � �� � ·
p�1

2m
�T +

1

�0
��T + 2�� , �35�

where ��0 accounts for the constant laser phase shift

��0 = − ��t1 + �1� + 2��t2 + �2� − ��t3 + �3� �36�

and where 1/�0 can also be written as 4� /�.
The expression �35� is one of the main results of this

paper. It gives the Sagnac phase shift of an atom interferom-
eter to the first order in � /T where � is the typical beam
splitter duration and T the propagation time between two
beam splitters.

This result differs greatly from former Sagnac expres-
sions, particularly from the expression obtained with the in-
finitely thin modeling of beam splitters, i.e., without consid-
ering all the effects which depend on the beam splitter
duration,

���thin = ��0 − �k� � �� � ·
p�1

2m
T0

2, �37�

where T0=T+ 3
2� is the time separating the central instants of

two successive beam splitters as illustrated in Fig. 1. Do not
be confused: the phase shift ���thin depends on the beam
splitter duration � through T0, but does not account for any
beam splitter effect depending on �.

These two phase shifts differ by the following expression:

���thin − �� first

= − �k� � �� � ·
p�1

2m
�� 4

�
− 1�T� + � 8

�
−

9

4
��2� .

�38�

To estimate the relevance of this correction, one has to
compare it to the experimental sensitivity and accuracy of
present �and forthcoming� atom gyrometers. Let us call ��

their sensitivity to a rotation rate �� . For example, the
Kasevich’s group at Yale University has obtained the follow-
ing short-term sensitivity for its thermal �cesium� atom gy-
rometer �5�:

��,Yale = 6 � 10−10 rad s−1,

for one second averaging time of the signal. An other ex-
ample is the cold �cesium� atom gyrometer which has been
developed in the BNM-SYRTE lab of the Observatoire de
Paris where the following sensitivity,

��,Paris = 1.4 � 10−7 rad s−1

has been demonstrated for 10 min of averaging time, and
which is expected to be improved by several orders of mag-
nitude soon �6�. Let us also mention the �one shot� sensitivity
which is expected in the cold �rubidium� gyrometer of the

Institute of Quantum Optics in Hannover �53�,

��,Hannover = 10−9 rad s−1 �expected�

as well as the expected accuracy of the ultracold atom gy-
rometers of the space project HYPER �20�,

��,HYPER = 10−16 rad s−1 �expected� .

These sensitivities have to be compared with the global

shift in the �� measurement due to the leading term of Eq.
�38�:

� 4

�
− 1� �

T
��� � , �39�

which gives a correction of the order of 10−4��� � for the first
two atom gyrometers mentioned above �for which � /T
�10−4−10−3�. This correction is larger than the Yale gyrom-
eter sensitivity for rotation rates higher than 6
�10−6 rad s−1 �for 1 s of signal integration�, and larger than
the Paris cold atom gyrometer for rotation rates higher than
10−4 rad s−1 �for 10 min of signal integration�. Let me recall
that the Earth’s rotation rate is equal to 7.3�10−5 rad s−1 and
rotation rates of several rad s−1 are currently encountered in
navigation.

The expression �35� differs also from the expression
which takes into account the usual Borrmann effect in beam
splitters �28�:

��Borrmann − �� first = − �k� � �� � ·
p�1

2m
� 4

�
T� +

8

�
�2� ,

�40�

which is less relevant here since running laser pulses are
considered �and not standing laser pulses where a pure Bor-
rmann effect can take place�. In both cases, however, the
phase shift correction scales as � /T and leads to a global shift

in the �� measurement which scales as ��� �� /T. As explained
in �28�, the two phase shift expressions ���thin and
��Borrmann have a simple interpretation in terms of interfer-
ometer “area,” but it is no more the case for the full first-
order expression �� first.

IV. PHASE SHIFT AND INTERFEROMETER AREA

The area of an interferometer is generally said to provide
its scale factor, i.e., to give the interferometer phase shift
value up to a proportional factor �linear response in rotation
rate�.7 This area can be spatial or, more generally, spatiotem-
poral, as for atom gravimeters, for example. However, one
can face several problems to define it �with light as well as
matter waves�, which raises an issue concerning its link to
the interferometer phase shift value.

The first problem is due to the fact that an interferometer
can have more than two main coherent arms. As explained in
�28,31�, the nontrivial �dispersive� structuring which occurs

7However, let us mention that recent experiments tend to invali-
date this assumption for light interferometers �40�.
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inside beam splitters can lead to a multiplication of the
atomic wave packets inside the interferometer, and, conse-
quently, to a multiplication of the coherent interferometer
arms. A phase shift expression can still be calculated but the
notion of interferometer area �meaning: a unique interferom-
eter area� does not make any sense.

A second problem is due to the possible nonclosure of the
interferometer when it is submitted to external potentials. For
example, the external potentials which are quadratic in r� and
p� �such as rotations, gravity gradients, trapping potentials,
effect of gravitational waves, etc.� induce an asymmetric
modification of the two main interferometer arms which,
consequently, may not cross anymore at the exit of the inter-
ferometer. Thus, an interferometer geometry, which would be
perfectly closed without any of such external potential, may
not be closed when is taken into account the effect of these
potentials on the atom interferometer arms. However, it does
not mean that one cannot observe interferences at the inter-
ferometer exit: the fringes contrast can be sufficient if the
matter wave packets overlap enough during the output detec-
tion process.

More specifically, for an atom interferometer with a per-
fect initial diamond Mach-Zehnder geometry �see Fig. 1�,
the following nonclosure formula is obtained �the terms de-
pending on � have been omitted for simplicity� �31�:

�r�3
+ = �2�T2 + �3�2 + ��T3 +

7

6
�2�3 + �� + ���T4 + ¯ �qk�

m
,

�41�

where � accounts for a rotation and has been defined in Sec.
II, and where � is a 3�3 matrix which accounts for any
three-dimensional �3D� quadratic potential −mr� ·� ·r� /2 �gra-
dient of acceleration, harmonic trap, etc.�. Consequently, this
atom interferometer cannot be considered as “closed ” to the
first order in �T and �T2. Nevertheless, the two main inter-
ferometer arms can sometimes meet before—or after—the
final time t3, and one can still define an interferometer area in
this case. However, in some cases, these two arms never
cross and the concept of interferometer area is meaningless
�to the perturbation order which is considered�.

The notion of “crossing point” of these interferometer
arms is itself problematic. Indeed, these arms are the support
of �light or matter� waves which are not localized in space or
space-time. Consequently, what we call an “interferometer
arm” is an average position obtained from the evolutionary
structure of the main wave packets. These arms are generally
defined by the mean position of the two main atomic wave
packets which are present during the whole interferometer
time sequence. Other definitions can also be considered �with
the help of group velocities and probability currents�, but
they coincide in the present case.

This problem of trajectory or arm definition is particularly
relevant inside the beam splitters where dispersive effects
change both the structure of atomic wave packets and their
dynamical properties �28,31�. For example, a Gaussian wave
packet, filtered by a Sec. II kind beam splitter, will not be
Gaussian any more during and after the splitting. Several

wave packets are created and their spreading and group ve-
locity are nontrivial �e.g., due to the Borrmann effect�.

By way of illustration, let us see the case described in
Sec. II but without any rotation �usual “free case”�. To define
the interferometer arms inside this beam splitter, let us con-
sider the mean position of the wave packets which are asso-
ciated to the internal atomic states a and b. This mean posi-
tion corresponds to the usual group velocity and probability
current, and is defined as follows for a momentum wave
packet 	�p� , t� whose modulus is sharply peaked around the
mean momentum p�1:

r�g�t� = − q� �

�p�
Arg�	�p� ,t���

p�1

. �42�

With this formula and the expressions of Sec. II, one obtains
successively �for �0t�� /2�

r�g,a→b�t� = r�g,b→a�t� = � p�1

m
+

qk�

2m
�t , �43�

r�g,a→a�t� = � p�1

m
+

qk�

2m
�t −

qk�

2m�0
tan��0t� , �44�

r�g,b→b�t� = � p�1

m
+

qk�

2m
�t +

qk�

2m�0
tan��0t� . �45�

These trajectories can define interferometer arms inside
the beam splitters only if there is a bijection between arms
and internal atomic states. It is not the case, for example,
inside a � beam splitter, where one has to examine the mean
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FIG. 2. �Color online� Mean position of the atoms inside a �
pulse �running laser beam splitter�.
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position of the whole atomic wave function, and not only of
the part associated to the considered transition �a→b or b
→a�. To be more explicit, let us consider a set of similar
atoms, in the internal state a, for example, which enters a
perfect � beam splitter. All these atoms will be in state b at
the final time �� �equal to 2� in our previous example� since
a � beam splitter acts as an “internal” mirror for atoms.
Consequently, to define an “arm” in this case, one has to
consider the mean position or trajectory of the whole packet
of atoms and not only of the atoms which might be in state b
during the splitting. This single arm inside a � beam splitter
is consequently defined by the following mean position:

r�g,��t� = � p�1

m
+

qk�

2m
�t ±

qk�

4m�0
sin�2�0t� , �46�

where the sign � ��� corresponds to the transition a→b
�b→a�. This mean trajectory is sketched in Fig. 2 for the
transition a→b.

This problem is all the more fundamental since one can-
not know which atoms are in state “a ” �or “b ”� during the
atomic beam splitting. In particular, one cannot claim that
atoms are progressively transferred from one state to the
other �so as to obtain an equal internal splitting at the end of
a � /2 beam splitter, for example�. Hence, it appears to be
impossible to “internally” label the interferometer arms in-
side the beam splitters.

Nevertheless, in a first approach, one can consider a qua-
siclassical point of view, saying that, inside a � /2 beam
splitter �i.e., a 50:50 beam splitter for matter waves�, half of
the atoms remain in the initial state, and half are progres-
sively transferred to the other internal state. The two corre-
sponding “classical ” arms are thus defined by the following
trajectories �written here for an atom initially in state “a”�:

r�g,�/2,a→a�t� = � p�1

m
+

qk�

2m
�t −

qk�

2m�0
tan��0t� ,

r�g,�/2,a→b�t� =
quasiclassical

� p�1

m
+

qk�

2m
�t

−
qk�

2m�0
tan��0t�cos�2�0t� . �47�

This problem arises in the first and third beam splitters of a
Mach-Zehnder atom interferometer, as it is sketched in Figs.
3 and 4.

The area Aclass which is enclosed by these interferometer
arms can be easily calculated:

Aclass = A first − �qk� · p�1

m2 ��/4 − ln�2�
2�0

2 , �48�

where A first is the area corresponding to the full first order
phase shift of Sec. III,

A first = �qk� · p�1

m2 ��T2 + � 4

�
+ 2�T� +

8
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FIG. 3. �Color online� Mean position of the atoms in states a
and b inside a � /2 pulse �running laser beam splitter�. The quasi-
classical trajectory of the atoms outgoing in state b is also sketched.
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FIG. 4. �Color online� Same figure as Fig. 1, but where the
interferometer arms have been defined inside the beam splitters.
Inside the � pulse, it is the mean position of the atoms, as it is
sketched in Fig. 2. Inside the first �last� � /2 pulse, one arm is
defined by the mean position of the atoms in state a �b�, and the
other one is the quasiclassical trajectory of the atoms outgoing in
state b, as it is sketched in Fig. 3. The Sagnac phase shift obtained
in Sec. III is quasi-proportional to the area enclosed by these two
arms. This area differs greatly from the area obtained with the
former modelings of atomic beam splitters �such as the infinitely
thin one, for example�.
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��� first − ��0� =
2m��� �

q
A first.

The quantity A first2m /q is the gyrometer “scale factor”

�linear response in �� �.
The difference Aclass−A first is very small,

Aclass − A first � − ��/4 − ln�2�
2��/4�2 �� �

T
�2

A first, �49�

and can be estimated to few 10−10A first only �in absolute
value� for standard values of T and � in present atom gyrom-
eters �for which � /T�10−4�.

However, one has to underline the nonperfect proportion-
ality of the phase shift expression and quasiclassical area
Aclass �it is true only to the first order in � /T as expected�.
Other definitions of interferometer arms or area can also be
considered, with internally labeled paths, for example, or
with intermediate approaches �internally labeled arms for the
� /2 beam splitters only�, but they do not lead to a better
agreement to A first.

V. CONCLUSION AND PROSPECTS

Some features of the triple interaction “laser-matter-
rotation” have been examined in this paper. It has been
shown in particular how to model the effect of a rotation on

an atomic laser beam splitter, to the first order in ��� � /�0,

where �� is the rotation rate vector and �0 the laser Rabi
frequency. This beam splitter modeling has been applied to
the modeling of atom interferometers, and an important non-
trivial correction to the phase shift expression of matter wave
gyrometers has been put on light �expression �35��. Finally,
thanks to a quasiclassical description of the interferometer
arms inside the beam splitters, it has been shown how to
interpret the total phase shift expression in terms of an inter-
ferometer area �geometrical scale factor�.

However, several problems remain, among which an un-
ambiguous definition of these interferometer arms inside the
beam splitters, where nontrivial dispersive phenomena lead
to changes in the atomic wave packet structure as well as in
its dynamical properties. This question is particularly rel-
evant for long-lasting beam splitters, and, consequently, for
atomic ones, for which the duration is generally non-
negligible compared to the total atomic drift time �the ratio
� /T is equal to 10−4–10−3 in present atom interferometers�.

Thus, it would be interesting to deepen this problem by
considering more complex interferometer geometries: with a
large area, for example �as in the Chu’s experiment �3�,
where many � beam splitters have been added to increase
the area which is enclosed by the two main interferometer
arms�, with loops �as in the BNM-SYRTE �6� and Kasevich
�29� laboratories, where a “butterfly” geometry has recently
been considered�, with asymmetric geometries �such as
asymmetric Ramsey-Bordé interferometers �48�� or geom-
etries which are not closed only because of what happens
inside beam splitters �see Sec. IV�.

Another direction of research is the study of higher order

effects �up to the second order in ��� � /�0, for example� to
see if the previous conclusions hold at the considered pertur-
bation order, and especially if the quasi proportionality
between phase shift and �quasiclassical� interferometer area
remains valid at this order.

It would also be interesting to examine the full effect of
other kinds of external potentials on atomic beam splitters
and interferometers. The case of a uniform acceleration has
already been studied in �28� and leads to a similar result: the
phase shift is proportional to the quasiclassical space-time

gravimeter area to the first order in ��� � /�0. It is noteworthy
that the phase shift correction is identical for atom gyrom-
eters and gravimeters, provided they have the same geometry
�compare expression �35� to the last equation of �28��. This
reflects the fact that the sensitivity of an �atom� interferom-
eter is given by its geometrical scale factor only, i.e., the
space-time area which is �approximately� enclosed by its two
main arms, whatever the effect detected.

One should also easily cope with the effect of simulta-
neous accelerations, rotations, gradients of acceleration,
gravitational waves, trapping potentials, etc., thanks to the
recent advances in atom interferometry �see the introduc-
tion�, especially with the help of the ABCD matrices which
are well suited to this kind of potentials �at most quadratic in
r� and p��. The case of a rotation coupled to an acceleration is
under progress. This case is particularly important to evalu-
ate the full effect of acceleration fluctuations on the atom
gyrometers sensitivity.

As previously underlined, one of the key points of this
work is the search for a realistic definition of the interferom-
eter arms inside the atomic beam splitters. To deepen this
question, it would be interesting to go beyond the Gaussian
approximation of atomic wave packets and contemplate
other ways to define these interferometer arms. This point
illustrates well the difficulty to link quantum phenomena
�matter wave splitting� to classical quantities �interferometer
area�. Theoretically and experimentally, the use of coherent
atomic sources with a large number of atoms should give an
interesting perspective to this issue. A different option would
be to consider other kinds of beam splitters and, more par-
ticularly, the beam splitters made by standing laser waves
�with a spatial or temporal working�, so as to deal with a
pure Borrmann effect �48,54�. More realistic laser beams
with a nontrivial amplitude might bring new insight into this
problem as well.

Finally, one has also to examine the atom interferometers
which have more than two main arms so as to understand the
nature of the link between the interferometer phase shift and
its area, since the latter cannot be defined generally. A simple
case which leads to such multi-arm interferometers is to con-
sider slightly nonresonant beam splitters within a Mach-
Zehnder geometry as it is detailed in �31� �presence of a
“Borrmann fan” inside all the beam splitters�. This case is
particularly relevant for present experiments—and future au-
tonomous atom interferometers—where a perfect laser
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resonance inside the beam splitters is generally impossible to
reach for all the atoms or molecules involved. From this
point of view, the advent of new kinds of matter wave gy-
rometers, such as guided active gyros and rotating Bose
Einstein condensates �12,55–57�, is promising to better un-
derstand the fundamental origin of the �atomic� Sagnac
effect.
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