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Abstract. Collisions between atoms (or ions) and electrons play an important role in the interpretation of line spectra and
for the modelling of stellar interiors. Plasma shielding effects due to electron and ion correlations are not negligible in the
physical conditions of white dwarf atmospheres, owing to their high density. They also play a role in cool stars and for atomic
transitions that are quasi-degenerate. In the standard formalism of Stark impact broadening of spectral lines and of cross
sections, the electrostatic Coulomb potential is used to describe the interaction between the perturbing electrons and the emitting
atom. Electronic correlations (screening effects) are usually taken into account by introducing a cut-off in the interaction when
the electron-atom distance exceeds the Debye radius RD. A more consistent treatment to describe collective effects is the
Debye-Hückel potential: the two-particle Coulomb field is shielded by the ensemble of the surrounding electrons. This is a
good approximation only for high temperature and low density plasmas (weakly non-ideal plasmas), while for strongly non-
ideal plasmas, the Coulomb cut-off potential or the ion sphere potential are more appropriate. These potentials, which can be
written as the Coulomb potential with two correcting terms, are widely used in the literature.
In this paper, we investigate the ion sphere model to describe the electron atom interaction in a strongly coupled plasma. New
semi-classical collisional functions are derived for both the transition probability and the cross section, using the classical path
approximation.

Key words. atomic processes

1. Introduction

Stark broadening of spectral lines is important for astrophysi-
cal modelling. It is found to be a reliable tool for understand-
ing the characteristics of the plasma. This requires, in practice,
a detailed knowledge of various processes, especially inelas-
tic electronic collisions exciting and deexciting the level of the
studied line in the plasma. The atomic processes in strongly
correlated plasma have received particular attention in recent
years.

In a previous work (Ben Nessib et al. 1997) analytical ex-
pressions of the impact semi-classical functions entering the
expression of the electron collisional line width were calcu-
lated by considering the cut-off potential valid for correlated
plasmas. It is found that the surrounding atoms and ions pre-
senting in the plasma may have strong perturbing effects on
the wave functions of the bound electrons. Thereby, they sig-
nificantly affect the atomic transition probability as well as
the atomic cross-section. Unfortunately, the cut-off model is
not applicable to very high density plasmas. For a strongly
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non-ideal plasma the ion sphere model is found to be more suit-
able (Jung & Yoon 2000a; Salzmann & Szichman 1987).

In this work, we derive analytic expressions of the
semi-classical collisional functions using the static screening
Coulomb interactions. As we are interested only in neutral
atoms emitters for large impact parameters at relatively low
energies (temperatures of the order of a few thousands or few
ten thousands of degrees), we may neglect the plasma screen-
ing effects on the trajectory, and we may also use the semi-
classical straight line trajectory. The corrections due to strong
correlations plasma effects, even if they are not negligible, will
be introduced rather in the transition probability calculation. In
fact, dynamic screening Coulomb interactions using the plasma
dielectric function in collision processes in non-ideal plasmas
have been intensively investigated by several authors (Song &
Jung 2003b; Jung 1997, 2002, 2003; Kim & Jung 2001; Jung
& Yoon 2000b,c). However, the difference between the static
and the dynamic plasma screening effects on the atomic exci-
tation process is found to be significant only for relatively high
energy projectiles (Jung & Yoon 2000b). The excitation cross
section including screening effects is shown to decrease as the
non-ideality plasma parameter increases (Song & Jung 2003a;
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Jung 2000). On the other hand, a hyperbolic orbit is reliable
for ions emitters owing to the Coulomb ion-electron inter-
action. Such a trajectory would be also more reliable to de-
scribe screening effects on the perturber motion colliding with
a neutral atom, especially for very low collision energies in the
neighborhood of the threshold (Jung 1993, 1994). However, for
the large impact parameter region, the straight line trajectory
can be used even when the emitter is an ion (Jung 2000).

In this paper, we replace the cut-offmodel by the ion-sphere
potential, and we give new analytical expressions, in the semi-
classical approximation, for both the collisional functions of
the transition probability and the cross-section. We consider the
straight trajectory method to study the motion of the projectile
electron, as a function of the impact parameter ρ and of the ion
sphere radius Rc.

2. Theory

We will study in this part the total inelastic cross-sections en-
tering the expression of the impact width of isolated (non-
hydrogen) lines.

2.1. Total inelastic cross-section and collisional impact
broadening of isolated lines.

Within the impact approximation the profile is Lorentzian for
isolated lines. Overlapping lines are beyond the scope of the
present study. For the line corresponding to the transition be-
tween the initial level i and the final level f , the half half-
width w and the shift d are given by Baranger’s formula (1958):

w + id = Np

∫ ∞

0
v f (v)dv

∫ ∞

0
2πρdρ

×
{
1 −

〈
i |S | i

〉 〈
f
∣∣∣S −1

∣∣∣ f
〉}

AV
, (1)

where Np designates the density of the perturber, S the scat-
tering matrix obtained for the atom-perturber interaction corre-
sponding to the impact parameter ρ and the relative velocity v,
f (v) the relative atom-perturber Maxwell distribution of veloci-
ties, and {...}AV the angular average over the magnetic quantum
numbers.

For the transition between the level i(niliLiS iJi) and
f (n f l f L f S f J f ), the total width at half intensity W = 2w can
be put in the form (Sahal-Bréchot 1969):

W = Np

∫ ∞

0
v f (v)dv ×

∑
j�i

σi j(v) +
∑
j′� f

σ f j′ (v) + σel

 , (2)

where j, j
′
refers to the perturbing levels.

The elastic contribution to the width σel is not relevant for
the present paper. The inelastic cross-section σi j(v) (respec-
tively σ f j′ (v)) are obtained by an integration over the impact
parameter ρ of the transition probabilities Pi j(v, ρ) (respectively
P f j′ (v, ρ)) as:

∑
j�i

σi j(v) = πR2
1

∑
j�i

Pi j(v,R1) +
∫ RD

R1

2πρdρ
∑
j�i

Pi j(v, ρ). (3)

The perturbation theory used for the derivation of the S-matrix
leads to a divergence in the integration over the impact param-
eter. Thus a lower cut-off R1 is required. In addition, for high
densities or for very small energy differences, an upper cut-off

RD =

(
kT

4πNee2

) 1
2

, (4)

is introduced to take into account the shielding.
The expression for Pi j (respectively P f j′ ) is given within

the first order time-dependent perturbation theory by an aver-
age over the initial Zeeman states Mi coupled to a sum over the
final states M j (Griem et al. 1962).

Pi j(v, ρ) =
1

2Ji + 1

∑
Mi ,Mj

1
�2

×
∣∣∣∣∣∣
∫ +∞

−∞

〈
niliJi Mi |V(t)| n jl jJ jM j

〉
exp(

i(E j − Ei)t

�
)dt

∣∣∣∣∣∣
2

, (5)

where V(t) designates the interaction potential between the
atom and the charged perturber moving along a classical path at
time t, and Ei, E j are the energies of the initial and final levels
respectively

The cross-section σ follows by an integration over the im-
pact parameter ρ:

σi j(v) = 2π
∫ ∞

0
Pi j(v, ρ) ρ dρ. (6)

2.2. Non-correlated semi-classical collisional functions
for the total cross-section

In a non-correlated plasma the interaction is described by the
electrostatic Coulomb potential, which is expressed as:

V =
ZZpe2

rp
− Zpe2

N∑
i=1

1
rip
, (7)

where Ze and Zpe are the charges of the interacting particles, r,
rip are the coordinates of the projectile electron and the bound
electron, respectively (Ben Nessib et al. 1997).

1
rip

is expanded in multipolar components and only the

long-range part is retained in the perturbation theory:

V =
ZZpe2

rp
−

N∑
λ=1

4πZpe2

2λ + 1
× 1

rλ+1
p

×
+λ∑
µ=−λ

N∑
i=1

rλi Yλµ(r̂p)Y∗λµ(r̂i). (8)

The first term in this expression is the Coulomb term (it is null
for the neutral perturbers), and it does not play a role in the
calculation of the inelastic cross-sections due to its spherical
symmetry. For the calculation of the cross-section between the
levels having dipolar electric transition, we have to retain only
the dipole term (λ = 1), i.e.:

Vdip = −
4πZpe2

3
1

r2
p

∑
µ=0,±1

Y1µ(r̂p) ×
N∑

i=1

ri × Y∗1µ(r̂i). (9)
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Here, we shall adopt the usual semi-classical description of the
collision process. The projectile moves along a straight path
with a velocity v and the radiator is localized at the origin. The
impact parameter is ρ, and t (= 0) is the time of the closest
approach. The transition probability from an initial state i to a
final state j from the first order perturbation theory is given by
(Sahal-Bréchot 1969; Griem et al. 1962).

Pi j(v, ρ) =
1
3

Z2
p e4

�

4π
3

R2
lineR2

mult l> I2
∑
µ=0;±1

∣∣∣J1µ

∣∣∣2 , (10)

where

J1µ =

∫ +∞

−∞
eiωi j t × Y1µ(r̂p)

r2
p

dt (11)

is the collisional term.
Rline and Rmult are defined in Shore & Menzel (1968) as:

Rline(S LJ, S L′J′) = [(2J + 1) × (2J′ + 1)]
1
2

×
{

J 1 J′
L′ S L

}
, (12)

where Rmult in the case of one electron above a closed shell is:

Rmult(LclS L, Lcl′S L′) = [(2L + 1) × (2L′ + 1)]
1
2

×
{

L 1 L′
l′ Lc l

}
· (13)

Also, the terms l> and ωi j are defined as:

l> = max(li, l j),

ωi j =
E j − Ei

�
,

and the radial integral I is defined as:

I =
∫ ∞

0
Rnili (r)Rnjl j (r)rdr. (14)

If we apply the parametric representation of a straight line tra-
jectory (Sahal-Bréchot et al. 1996):

rp =
√
ρ2 + v2t2 =

ρ

sin(θp)
,

xp = ρ cos(φp),
yp = ρ sin(φp),
zp = rp cos(θp).

(15)

The Ylm functions can be written as:

Y10 =

√
3

4π
cos(θp) =

√
3

4π
vt√
ρ2 + v2t2

, (16)

and

Y1±1 = ∓
√

3
8π

sin(θp) e±iφ

= ∓
√

3
8π

ρ√
ρ2 + v2t2

e±iφ. (17)

By introducing these expressions in Eq. (11) we obtain the fol-
lowing expressions:

|J10| =
√

3
4π

2
ρv

zK0(z), (18)

|J1±1| =
√

3
8π

2
ρv

zK1(z), (19)

where z = ρ ωi j/v, and K0, K1 are the modified Bessel func-
tions. By introducing these two expressions in Eq. (10), the
probability transition becomes (Sahal-Bréchot 1969; Griem
et al. 1962):

Pi j(v, ρ) =
4I2

H

E(E j − Ei)
m
me

× f
(
niliJi → n jl j J j

)
× a2

0

ρ2
A(z), (20)

where a0 designates the Bohr radius, m the electron mass, me

the reduced electron mass, E the perturber energy, f (niliJi →
n jl jJ j) the oscillator strength, IH the ionization energy of hy-
drogen and A(z) the collision function:

A(z) = z2
[
K2

0 (z) + K2
1 (z)

]
. (21)

This can be written also as:

A(z) = A0(z) + 2A±(z), (22)

where

A0(z) = z2K2
0 (z), (23)

and

A±(z) =
1
2

z2K2
1 (z). (24)

Then, the total inelastic cross-section in a non-correlated
plasma σi j(v) is obtained after integration of the transition
probability over the impact parameter, where a lower cut-off R1

is required. An upper cut-off at the Debye radius RD is also in-
troduced to take into account the shielding due to the ensemble
of the surrounding electrons:

σi j(v) = πR
2
1Pi j(v,R1)

+πa2
0Z2

P

8I2
H

E
(
E j − Ei

) m
me

× f
(
niliJi → n jl jJ j

)
[a(z1) − a(zD)], (25)

where z1 =
R1ωi j

v
and zD =

RDωi j

v
.

The integration of
A(z)

z
over the impact parameter leads to

the a(z) function:

a(z) =
∫ ∞

z

A(z′)
z′

dz′ = zK0(z)K1(z). (26)

As for A(z), a(z) can be put in the following form:

a(z) = a0(z) + 2a±(z), (27)
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where

a0(z) =
1
2

z2
[
K2

1 (z) − K2
0 (z)

]
, (28)

and

a±(z) =
1
4

{
z2

[
K2

0 (z) − K2
1 (z)

]
+ 2zK0(z)K1(z)

}
. (29)

3. Strongly correlated plasma

3.1. The collision functions in the cut-off model

Multiparticles correlation effects caused by simultaneous in-
teractions of a large number of particles have been taken into
account according to different criteria to introduce the cut-off
in the interaction when the electron-atom distance exceeds a
certain radius. The potential must depend on the plasma prop-
erties. In a high density and low temperature plasma, the cut-
off potential is reliable to describe the interaction process. In

this case, the impact approximation is expressed as T N
−1
3

e >
4.2 × 10−3 where the temperature T is expressed in Kelvin and
the density in cm−3. The plasma screening parameter

γ = 2.6 × 10−3 z
5
3

N
1
3

e

T
, (30)

must be also greater than 0.5 (Ben Nessib et al. 1997). If only
the dipolar long range part of the perturbation theory is con-
sidered, the Coulomb cut-off potential, for the atom-perturber
interaction, is written as follows:

Vc(t) = −4πZpe2

3

∑
µ=0;±1

Y1µ

r2
p
− Y1µ

Rcrp


×∑N

i=1riY∗1µ(r̂i), if rp < Rc,

Vc(t) = 0, if rp > Rc,

(31)

where

Rc =

(
3Z

4πNe

) 1
3

(32)

designates the ion sphere radius. To obtain the transition prob-
ability, the J1µ functions in Eq. (11) have to be replaced by the
correlated functions Jc

1µ given by Ben Nessib et al. (1997):

Jc
1µ =

∫ +∞

−∞
eiωi j t

Y1µ(r̂p)

r2
p
− Y1µ(r̂p)

Rcrp

 dt. (33)

After some calculations, the preceding A(z) function becomes
the correlated function Ac(z):

Ac(z) = A(z) − π z2

zc
e−z [K0(z) + K1(z)] +

π2

2
z2

z2
c

e−2z, (34)

where zc =
Rcωi j

v
.

The integration of
Ac(z)

z
over z involves the correlated func-

tion, which is denoted by ac(z):

ac(z) =
∫ ∞

z

Ac(z′)
z′

dz′. (35)

This leads to the following expression:

ac(z) = a(z) − π z
zc

e−zK1(z) +
π2

8z2
c

(1 + 2z)e−2z. (36)

3.2. The collision functions in the ion sphere model

The plasma is considered to be strongly correlated if γ ≥ 0.5. In
this condition, we replace the cut-off potential by the ion sphere
model, which seems to be a quite reliable framework. In prac-
tice it corresponds to the Coulombian potential corrected by
two terms (Jung & Yoon 2000a; Salzmann & Szichman 1987;
Gutierrez 1994):

VSI(t) =
1
rip

1 − 3
2

rp

Rc
+

r3
p

R3
c

 ; r ≤ Rc,

VSI(t) = 0; r > Rc.

(37)

As mentioned above Rc is the ion sphere radius. Accordingly,
in the expression of the transition probability, the J1µ functions
in Eq. (33) have to be changed by the correlated functions JSI

1µ.

JSI
1µ =

∫ +∞

−∞
eiωi j t

Y1µ(r̂p)

r2
p
− 3

2

Y1µ(r̂p)

Rcrp

+
rpY1µ(r̂p)

R3
c

dt. (38)

Thus, we obtain after integration the collision function ASI(z):

ASI(z) = ASI
0 (z) + 2ASI

± (z), (39)

where

ASI
0 (z) =

zK0(z) −
(

3
2

)
πz
2zc

e−z

+

(
z
zc

)3 (
sin(xcz)

z2
− xc cos(xcz)

z

) 
2

, (40)

and

ASI
± (z) =

1
2

[
zK1(z) −

(
3
2

)
πz
2zc

e−z +
z2

z3
c

sin(xcz)

]2

. (41)

Here xc =
vtc
ρ

, where tc designates the time cut-off. We notice

that xc is introduced to solve the divergence problem originat-
ing from the third term of the potential expression.

To obtain the aSI(z) function, we have to integrate
ASI(z)

z
over z:

aSI(z) =
∫ ∞

z

ASI(z′)
z′

dz′. (42)

The cross-section collisional function is obtained finally by a
simple integration of Eq. (42):

aSI(z) = aSI
0 (z) + 2aSI

± (z), (43)

where

aSI
0 (z) = a0(z) + α1(z) + α2(z) + α3(z) + α4(z). (44)
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Here a0(z) designates the collisional function for the cross sec-
tion corresponding to an ideal plasma. In the α1(z) function we
find the modified Bessel functions K1 and K2:

α1(z) = −3
2
π

z
zc

e−z
{(

1 +
z
3

)
K1(z) − z

3
K2(z)

}

+

(
3
2

)2
π2

16
(2z + 1)

z2
c

e−2z. (45)

The α2(z), α3(z) and α4(z) are sinusoı̈dal functions from the
third term in the potential expression, i.e.:

α2(z) = − z2

4z6
c

{
1 +

xcz2

2

}

+
z

2xcz6
c

{
11
4
− z2 x2

c

2

}
sin(2xcz)

+
1

2xcz6
c

{
11
8xc
− 7z2xc

4

}
cos(2xcz). (46)

α3(z) =

{
z2

5
K3(z) − 4z

3
K2(z) + zK0(z) + K1(z)

}

×2z sin(xcz)

z3
c

−
{(

2 +
2z
3

)
K1(z) +

(
z2

5
− 2z

3

)
K2(z)

}

×2zxc cos(xcz)

z3
c

· (47)

α4(z) = − 3π

2z4
c

ze−z

1 + x2
c

{ (
1 + zx2

c

)
sin(xcz)

+xc(1 − z) cos(xcz)
}

− 3π

2z4
c

e−z(
1 + x2

c

)2

×
{ (

1 + x2
c(4z − 1)

)
sin(xcz)

+2xc

(
1 − z

(
1 − x2

c

))
cos(xcz)

}
+

3π

2z4
c

xce−z(
1 + x2

c

)3

×
{
2xc

(
x2

c − 3
)

sin(xcz) + 2
(
1 − 3x2

c

)
cos(xcz)

}
. (48)

The aSI± function can be written as:

aSI
± (z) = a±(z) + 0.5[β1(z) + β2(z) + β3(z) + β4(z)], (49)

where the first term a±(z) designates the collisional function
for the cross-section corresponding to an ideal plasma, β1(z) a
function of the modified Bessel functions K1 and K2, i.e.:

β1(z) =
π

2
z2

zc
e−z {K1(z) − K2(z)}

+

(
3
2

)2
π2

16
(2z + 1)

z2
c

e−2z. (50)

Fig. 1. Collision functions for the transition probability. Full lines:
non-correlated functions A0(z), A±(z) and A(z). Dotted lines: corre-
lated functions Ac

0(z), A±(z) and A(z). Dashed lines: strongly correlated
functions ASI

0 (z), ASI± (z) and ASI(z) for zc = 20.

β2(z), β3(z) and β4(z) are sinusoı̈dal functions derived from the
third term in the potential expression:

β2(z) =
1

4z6
c

{
z4

2
− z

xc

(
z2 − 3

2x2
c

)
z sin(2xcz)

− 3

2x2
c

(
z2 − 1

2x2
c

)
cos(2xcz)

}
, (51)

β3(z) =
2z2

z3
c

{
(K2(z) − z

5
K3(z)) sin(xcz)

− xcz
5

K2(z) cos(xcz)
}
, (52)

β4(z) = − 3π

2z4
c

z2e−z

1 + x2
c

{
sin(xcz) + xc cos(xcz)

}

−3π

z4
c

ze−z(
1 + x2

c

)2

{ (
1 − x2

c

)
sin(xcz) + 2xc cos(xcz)

}

+
3π

z4
c

e−z(
1 + x2

c

)3

{ (
3x2

c − 1
)

sin(xcz)

+xc

(
3 − x2

c

)
cos(xcz)

}
. (53)

We have compared the effects of the Coulomb, cut-off and
ion sphere potentials on the different collisional functions for
a typical value zc = 20. The curves relative to the transition
probability functions A0(z), A±(z) and A(z) are represented in
Fig. 1, for these three potentials. It can be seen that both the
ion sphere and cut-off models do not alter the standard func-
tions, but they introduce a decrease in their values, especially
for the lower energies. However, as expected, such a decrease
seems to be more pronounced for the ion sphere model. Similar
effects are observed for the three cross-section functions a0(z),
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Fig. 2. Collision functions for the cross section. Full lines: non-
correlated functions a0(z), a±(z) and a(z). Dotted lines: correlated
functions ac

0(z), a±(z) and a(z). Dashed lines: strongly correlated func-
tions aSI

0 (z), aSI± (z) and aSI(z) for zc = 20.

a±(z), and a(z), which are represented in Fig. 2 using the same
value of zc.

The different corrections become insignificant as zc in-
creases, since the approximation of strongly coupled plasma
has no sense when the Rc exceeds a certain threshold value.
On the other hand, the low zc values yield non-physical
SI-curves that may exceed the Coulomb ones, which may be
attributed to the fact that the Rc in this range becomes some-
what problematic.

4. Conclusion

The ion sphere model is expected to be well adapted to describe
strongly coupled plasmas, by adding two correction terms to

the standard one. We use it to calculate new semi-classical col-
lisional functions for both the transition probability and the
cross section. We have compared these collisional functions for
the Coulomb, the cut-off and the ion sphere potentials. The nu-
merical results show that the increase in the screening leads to
a decrease in these functions, especially for the lower values
of the impact parameter. In the next step, we will include these
functions in the computer code calculating widths and shifts in
the impact approximation. This will be the object of a further
paper where an application to a helium line will be given.
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