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X-ray and Sunyaev-Zel’dovich data of clusters of galaxies enable to construct a test of the distance
duality relation between the angular and luminosity distances. We argue that such a test on large cluster
samples may be of importance, as a consistency check, while trying to distinguish between various
models accounting for the acceleration of the universe. The analysis of a data set of 18 clusters shows no
significant violation of this relation for a �-Cold Dark Matter (CDM) model. The origin and amplitude
of systematic effects and the possibility to increase the precision of this method are discussed.
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I. INTRODUCTION

Most cosmological observations provide compelling
evidences that our universe is undergoing a late time
acceleration phase [1]. However, there are still several
debates about the physical interpretation of these obser-
vations. While it seems clear that the Friedmann equa-
tions for a universe only composed of normal matter (i.e.
radiation and dust) even including dark matter cannot
explain the current data, there are different ways of
facing this fact. Either one can conclude that the inter-
pretation of the cosmological data are not correct (i.e. we
do not accept the evidence for the acceleration of the
universe, see Ref. [1] for a recent critical review and,
e.g., Ref. [2]) or one tries to introduce new degrees of
freedom in the cosmological model. In this latter case,
these extra degrees of freedom, often referred to as dark
energy, can be introduced as a new kind of matter or as a
new property of gravity.

In the first approach one assumes that gravitation is
described by general relativity while introducing new
forms of gravitating components, beyond the standard
model of particle physics, which must have some effec-
tive negative pressure to explain the acceleration of the
universe. Various candidates such as a cosmological con-
stant, quintessence [1,3] with many potentials, K-essence
[4] etc. have been proposed. But, one is still left with the
cosmological constant problem [5] (why is the density of
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vacuum energy expected from particle physics so small?)
as well as the time coincidence problem (why does the
dark energy starts dominating today?) unsolved. From a
cosmological point of view, these models are character-
ized by their equation of state which can be reconstructed
from the function E�a� � H2�a�=H2

0 where H0 is the
Hubble constant at present and a the scale factor, either
using the observation of background quantities or the
growth of cosmic structures [6].

The other route is to allow for modification of gravity.
This means that the only long-range force that cannot be
screened is assumed to be not described by general rela-
tivity. Once such a possibility is considered, many classes
of models exist (see, e.g., Ref. [7]). For instance, a light
scalar field can couple to matter leading to models of
extended quintessence [8] and more generally to scalar-
tensor types of theories. Such theories have some diffi-
culties to explain the current cosmological observations
[9] without a quintessencelike potential for the scalar
field or a cosmological constant. This scalar field may
also be at the origin of some variation of the fundamental
constants, depending on its couplings, and violation of
the universality of free fall (see Ref. [10] for a review).
Other possibilities include braneworld models in which
the standard model fields are localized on a 3-
dimensional brane embedded in a higher dimensional
spacetime. Among braneworld models, a subclass of
models have the property of allowing for deviation from
4-dimensional Einstein gravity on large scales. This is,
for example, the case of some multibrane models [11],
multigravity [12], brane-induced gravity [13] or simu-
33-1  2004 The American Physical Society
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lated gravity [14]. In such models, gravity is not mediated
only by massless gravitons; one therefore expects to have
deviations from Newton inverse square law on large
scales. Testing the Poisson equation on large scales may
be a way to distinguish between these alternatives [15,16].

The different types of models are summarized sche-
matically on Fig. 1. A diagnostic of the cause of the
acceleration of the universe will require to make many
tests. In particular, the reconstruction of the function E�a�
(or equivalently measuring the effective equation of state
of the dark energy) will not be sufficient to distinguish
between many models. It is thus important to simulta-
neously check for the Poisson equation, the growth of
structures, and the variation of the constants.

Among these tests it has recently been pointed out in
Ref. [17] that the reciprocity relation, and the distance
duality relation that derives from it, have also to be
checked. The reciprocity relation is a relation between
the source angular distance, rs, and the observer area
distance, ro. The former is defined by considering a
bundle of null geodesics diverging from the source and
which subtends a solid angle d�s (see Fig. 2). This bundle
has a cross section dSs and the source angular distance is
defined by the relation

dSs � r2s d�s: (1)
FIG. 1 (color online). Summary of the different classes of models
(besides the equation of state and the growth of cosmic structures).
way they couple to the metric g�� and to the standard matter fiel
gravitating matter is introduced, e.g., quintessence. In the upper-rig
not described by a spin-2 graviton only. This is the case of scalar-
modified and there may be a variation of the fundamental constants.
exist massive gravitons, such as in some class of braneworld scenar
on large scales. In the last class (lower-left), the distance duality
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The observer area distance ro is defined analogously by
considering a null geodesic bundle converging at the
observer by

d So � r2od�o: (2)

It can be shown that if photons travel along null geodesics
and the geodesic deviation equation holds then these two
distances are related by the reciprocity relation (see
Ref. [18] for a derivation)

r2s � r2o�1� z�2; (3)

regardless of the metric and matter content of the space-
time. Unfortunately, the solid angle d�s cannot be mea-
sured so that rs is not an observable quantity. But, it can
be shown that, if the number of photons is conserved, the
source angular distance is related to the luminosity dis-
tance, DL, by the relation [18]

DL � rs�1� z�: (4)

It follows that there exists a distance duality relation

DL � DA�1� z�2 (5)

that holds between the angular distance DA, the luminos-
ity distance DL, and the redshift z. This relation can be
checked observationally .
and of the specific tests that can help distinguish between them
The classes differ according to the kind of new fields and to the
ds. Upper-left class consists of models in which a new kind of
ht class, a light field induces a long-range force so that gravity is
tensor theories of gravity. In this class, Einstein equations are
The lower-right class corresponds to models in which there may
ios. These models predict a modification of the Poisson equation
relation may be violated.
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FIG. 2. A bundle of null geodesics diverging from the source
(dashed line) subtending a solid angle d�s has a cross section
dSs at the observer while a bundle converging at the observer
(solid line) subtending a solid angle d�o has a cross section dSo
at the source.
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While the reciprocity relation holds as soon as photons
follow null geodesic and that the geodesic deviation
equation is valid, the distance duality relation will hold
if the reciprocity relation is valid and the number of
photon is conserved. In fact, one can show that in a metric
theory of gravitation, if Maxwell equations are valid,
then both the reciprocity relation and the area law are
satisfied and so is the distance duality relation (see
Ref. [18]).

There are many possibilities for one of these conditions
to be violated. For instance the nonconservation of the
number of photons can arise from absorption by dust, but
more exotic models involving photon-axion oscillation in
an external magnetic field [19] can also be a source of
violation [20]. Note also that in principle both the reci-
procity and distance duality relations hold for infinitesi-
mal light bundles so that gravitational lensing may be a
source of violation for macroscopic bodies. More drastic
violations would arise from theories in which gravity is
not described by a metric theory and in which photons do
not follow null geodesic.

In this paper, we propose and explore a potential new
test of the distance duality relation based on Sunyaev-
Zel’dovich [21] (SZ) and X-ray measurements of clusters
of galaxies. In Sec. II, we first show that when the relation
(5) does not hold, cluster data do not give a measurement
of the angular distance but of DA=�

2 where
��z� �
DA

DL
�1� z�2: (6)
In Sec. III, we use existing cluster data to search for any
hint that � � 1 may be excluded and then we discuss in
Sec. IV the possibility to improve the accuracy of the test.
083533
II. RECIPROCITY RELATION FROM GALAXY
CLUSTER OBSERVATIONS

Galaxy clusters are known as the largest gravitationally
bound systems in the universe. They contain large quan-
tities of hot and ionized gas which temperatures are
typically 107�8 K. The spectral properties of intracluster
gas show that it radiates through bremsstrahlung in the X-
ray domain. Therefore, this gas can modify the Cosmic
Microwave Background (CMB) spectral energy distribu-
tion through inverse Compton interaction of photons with
free electrons. This is the so-called SZ effect. It induces a
decrement in the CMB brightness at low frequencies and
an increment at high frequencies.

The possibility of using the SZ effect together with X-
ray emission of galaxy clusters to measure angular dis-
tances was suggested soon after the SZ effect was
pointed out (see, for example, Ref. [22]). Used jointly,
they provide an independent method to determine dis-
tance scales and thus to measure the value of the Hubble
constant (e.g. Ref. [23,24] for details).

In brief, the method is based on the fact that the CMB
temperature (i.e. brightness) decrement due to the SZ
effect is given by

�TSZ � LneTe (7)

where the bar refers to an average over the line of sight
and L is the typical size of the line of sight in the cluster.
Te is the electron temperature, and ne is the electron
density. Besides, the total X-ray surface brightness is
given by

SX �
V

4�D2
L

nenpT
1=2
e (8)

where the volume V of the cluster is given in terms of its
angular diameter by V � D2

A�
2L. It follows that

SX �
�2

4�
D2

A

D2
L

LnenpT
1=2
e : (9)

The usual approach [22], is to assume the distance duality
relation (� � 1) so that forming the ratio �T2

SZ=SX elim-
inates ne. Then, using a measurement of the angular
diameter of the cluster and Eq. (14) one gets an estimate
of the angular diameter distance and thus the Hubble
constant. As a first conclusion, we point out that this
method determines the angular distance only if the dis-
tance duality relation is valid. Therefore one needs to be
careful when using such data to test the distance duality
relation.

To make this point more precise, let us come back to
the details of the method assuming the classical �-model
for the galaxy cluster [25], that is assuming that the
electron density of the hot intracluster gas has a profile
of the form
-3
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ne�r� � n0

�
1�

�
r
rc

�
2
�
�3�=2

: (10)

for 0< r < Rcluster and 0 otherwise, Rcluster being the
maximum extension of the cluster. The temperature dec-
rement due to the SZ effect in the Rayleigh-Jeans part of
the spectrum is given by

�TSZ��� � �2
kT0

mec
2 �T

Z ‘max

�‘max

ned‘ (11)

where we have assumed that the temperature of the hot
gas, Te, is independent of r [T0 � Te�r � 0�]. 2‘max is the
length of the path along the line of sight inside the halo of
the cluster and � is the angular radial position projected
on the celestial sphere from the cluster center. The X-ray
emission is due to thermal bremsstrahlung and the surface
brightness in a beam of angular diameter !� takes the
form

SX��� �
!�2

4�
D2

A

D2
L

Z ‘max

�‘max

dLX

dV
d‘ (12)

where the emissivity in the frequency band ��1; �2	 is
given by

dLX

dV
� "�Te; �1; �2; z�n2e: (13)

"�Te; �1; �2; z� is a function that depends on the properties
of the free-free emission for ions, on the mass fraction of
hydrogen and on the gas temperature (see, e.g., Refs.
[23,24] for its expression). Introducing the angle �c by

�c � rc=DA; (14)

where rc is the cluster core radius, and using the profile
(10) we obtain in the limit Rcluster ! 1

�TSZ��� � �2
kT0

mec
2 �Tn0rcB

�
3�� 1

2
;
1

2

�
�
1�

�
�
�c

�
2
�
�1�3��=2 (15)

and

SX��� �
!�2

4�
D2

A

D2
L

"n20rcB
�
6�� 1

2
;
1

2

�
�
1�

�
�
�c

�
2
�
�1�6��=2

;
(16)

where B is the Euler beta function. Using the definition of
� from Eq. (6), this latter expression rewrites as

SX��� �
!�2

4�
�2�z�

�1� z�4
"n20rcB

�
6�� 1

2
;
1

2

�
�
1�

�
�
�c

�
2
�
�1�6��=2

:
(17)

As expected, �T2
SZ=SX eliminates ne and gives a mea-

surement of the core radius rc from which we can deduce
083533
the angular diameter distance through Eq. (14). When
� � 1, what is thus extracted from the data is an estimate
of erc � rc=�2.

It follows from this analysis that, if we do not assume
the distance duality relation to hold, what is in fact
determined is Ddata

A �z� � erc=�c which differs from the
angular distance. We thus have access to

Ddata
A �z� � DA�z�=�2�z� (18)

which reduces to the angular diameter distance only
when the distance duality relation holds.
III. METHOD AND DATA ANALYSIS

Our method is straightforward once we have made the
previous remark. Using a data set of angular distances
determined from the combination of X-ray and SZ mea-
surements, we have access to fz;DA�z�=�

2�z�g. To get �
one needs to know the angular diameter distance. The first
possibility would be to use another set of observations,
such as, e.g., type Ia supernovae (SNIa) data, to get either
DA or DL. Another possibility, and probably the most
robust, is to estimate it from its theoretical expression
in a given cosmological model. While the test is com-
pletely general, it is then restricted to the class of chosen
models. In a Friedmann-Lemaı̂tre universe

DTh
A �z� �

1

1� z
fK

�Z 1

1=�1�z�

d

x
x2E�x�

�
(19)

where x � 1=�1� z� and fK is defined by

fK�u� �
�
sin

����
K

p
u����

K
p ; u;

sinh
��������
�K

p
u��������

�K
p

�
(20)

respectively for K � H2
0�1��0

mat ��0
��=c

2 positive,
null and negative. The function E2�x� � H�x�=H0 is ex-
plicitly given, for a �-CDM model by

E2�x� � �0
matx

�3 ��0
� � �1��0

mat ��0
��x

�2; (21)

where �0
mat and �0

� are, respectively, the present matter
and cosmological constant density parameters.

We estimate ��z� as

��z� �
���������������������
DTh

A =Ddata
A

q
: (22)

The error bars on this quantity will be estimated by a
combination of the data error bars and of the one� error
bars on the cosmological parameters as obtained from
Ref. [26]

�0
mat � 0:29� 0:07; �0

� � 0:73� 0:05;

h � 0:73� 0:04:
(23)

Note that in the case of a detection of � � 1, the inter-
pretation of the signal is not trivial since a varying
equation of state may be undistinguishable from a viola-
tion of the distance duality relation. In such a case going
-4
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FIG. 3. � as a function of the redshift for the 18 clusters of
the Reese et al. [27] catalog. The error bars include the
observational error bars as determined by Reese et al. and
the uncertainties in the cosmological parameters.
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back to SNIa data to get DL and of X-ray data to get
DA=�

2 may help to break this degeneracy.
We use the catalog by Reese et al. [27] that contains 18

galaxy clusters, with redshifts ranging from 0.142 to
0.784, all observed in X-ray and SZ (see Table I).
Combining these data as discussed in Sec. II together
with the theoretical estimate of the angular distance, we
get a measurement of ��z� for each cluster, using Eq. (22).
The result is summarized on Table I and is depicted on
Fig. 3.

The question is then whether this data set is compatible
with � � 1 or not. As can be seen from the original data
(see Ref. [27]), the error bars on Ddata

A are not symmetric.
To derive the distribution of � we proceed in the follow-
ing way. We first assume that the data points are indepen-
dent so that the likelihood L � P��data

1 . . .�data
n j�� can be

factorized as L �
Q

iPi��data
i j��. We then introduce S

defined as

S � �2 lnL: (24)

If the probabilities Pi are Gaussian, S reduces to the
standard ,2. In one dimension, a variation �S � 1
around the minimum of S will give the 1� error bar. To
proceed, we need to know the probabilities Pi. Without
any further information, we assume that they follow a

Gaussian distribution that is that �
�!�

i
i�!�

i
corresponds to a
TABLE I. The 18 clusters of the Reese et al. catalog with
their redshift used in our analysis. Ddata

A refers to the angular
distance determined in Ref. [27] assuming that the distance
duality relation holds. It leads, once this hypothesis is relaxed,
to a measurement of � with one� error bars.

cluster redshift Ddata
A (Mpc) �

MS 1137:5� 6625 0.784 3179�1103
�1640 0:689�0:352

�0:127

MS 0451:6� 0305 0.550 1278�265
�299 1:001�0:198

�0:136

Cl 0016� 16 0.546 2041�484
�514 0:796�0:167

�0:116

RX J1347:5� 1145 0.451 1221�368
�343 0:977�0:227

�0:161

Abell 370 0.374 4352�1388
�1245 0:489�0:115

�0:083

MS 1358:4� 6245 0.327 866�248
�310 1:049�0:316

�0:166

Abell 1995 0.322 1119�247
�282 0:918�0:189

�0:124

Abell 611 0.288 995�325
�293 0:936�0:225

�0:159

Abell 697 0.282 998�298
�250 0:928�0:189

�0:149

Abell 1835 0.252 1027�194
�198 0:878�0:140

�0:108

Abell 2261 0.224 1049�306
�272 0:831�0:174

�0:131

Abell 773 0.216 1450�361
�332 0:697�0:129

�0:010

Abell 2163 0.202 828�181
�205 0:899�0:179

�0:119

Abell 520 0.202 723�270
�236 0:962�0:258

�0:176

Abell 1689 0.183 688�172
�163 0:948�0:181

�0:136

Abell 665 0.182 466�217
�179 1:149�0:374

�0:240

Abell 2218 0.171 1029�339
�352 0:754�0:213

�0:127

Abell 1413 0.142 573�171
�151 0:936�0:198

�0:148
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probability distribution function of the form

P�x� �

����
2

�

s
1

�!�
i � !�

i �

�
e��x��i�

2=2!i
� x > �i

e��x��i�
2=2!i

� x � �i
(25)

(see, e.g., Ref. [28]).
We perform this analysis using two data sets. The first

set, labeled 1, contains all the clusters, while in the
second, labeled 2, we have removed the point at z �
0:374 that lies outside of the other data points. This point
corresponds to Abell 370 that clearly shows an apparent
bimodal shape in optical and X-ray data, making its
modelling as a single spherical potential a likely over-
simplification for our purpose. The result is summarized
on the plot 4 where we have displayed the function S, its
minimum, and the 1� confidence level. Figure 5 com-
pares the probability distribution function of � to a
Gaussian distribution fitted to the data. We obtain from
0.8 0.85 0.9 0.95 1 1.05

0

2.5

5

7.5

10

12.5

15

FIG. 4. The function S as a function of � for the two data sets
(one in solid line and two in dashed lines). The vertical bars
indicates for each set the position of the minimum and the 1�
confidence interval defined by �S � 1.
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FIG. 5. Distribution of � obtained from the data of Fig. 3 compared with a Gaussian fit (dashed line) (left=set 1 and right= set 2).
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our analysis that

� � 0:87�0:04
�0:03 (26)

for the first data set and

� � 0:91�0:04
�0:04 (27)

for the second.
Additionally we have analyzed, for the second data set

(i.e. without Abell 370), separately the low redshift (z <
0:3) data and the high redshift data. We find for the low
redshift set � � 0:89�0:05

�0:05 and for the high redshift set
� � 0:95�0:07

�0:07. It is noteworthy that the largest departure
from � � 1 is at small redshifts. These results and the one
obtained for the whole data set suggest that there is no
significant violation of the distance duality relation from
combined X-ray and SZ measurements.
1Note also that this trend is opposite to the one obtained in
Ref. [17] (see their Fig. 1), which strengthens that there is in
fact no systematic trend toward �< 1.
IV. PERSPECTIVES AND CONCLUSIONS

Testing for the distance duality relation and/or the
reciprocity relation can give some insight on the puzzling
apparent acceleration of the universe derived from cos-
mological observations. To distinguish between various
models, one needs several complementary tests to the
reconstruction of the Hubble parameter as a function of
the scale factor (or equivalently of the equation of state).
Examples of such tests are the test of the Poisson equation
on large scales, the test of the constancy of the funda-
mental constants, and the test of the reciprocity relation.
Figure 1 illustrates how the combination of these tests can
help in identifying classes of models.

We have then shown that observations of galaxy clus-
ters offer a test of the distance duality relation. In par-
ticular, using SZ and X-ray measurements of the same
clusters give an estimate of DA=�2. An important con-
sequence is that X-ray/SZ combined analysis does not
give a measurement of the angular distances when the
distance duality relation is violated.

Testing the distance duality relation was already pro-
posed in Ref. [17]. In that work, different sets of data were
used such as type Ia supernovae data to get the luminosity
distance, and the FRIIb radio galaxies, X-ray clusters and
compact radio data to derive angular distances.
Interestingly, a general three parameter form of ��z�
was proposed in Ref. [17], based on general arguments
083533
about the violation of the conservation of the number of
photons. Using their data, [17] found a two� violation of
the distance duality relation, mainly caused by an excess
brightening of SNIa at redshift larger than 0.5. This
analysis also allowed to put constraints on systematic
effects, such as SNIa extinction or evolution, that may
bias apparent magnitudes.

The analysis of the Reese et al. [27] cluster catalogue
has shown that � � 1 is marginally consistent with the
data. In our study, we have not searched for a fit of a
general expression for ��z�. Our main concern was first to
use X-ray and SZ combined measurements of galaxy
clusters to check whether the critical value � � 1 was
compatible with the data. Although we found that a value
of � sightly lower than one is favored, drawing any
conclusion on the possible discrepancy between the dis-
tances as predicted in the concordance model and those
determined by our X-ray/SZ combined analysis is pre-
mature. There are indeed several systematic effects that
may bias our derivation of ��z�, like oversimplification of
cluster symmetry (substructures, triaxiallity), or of their
temperature and luminosity radial profiles. For example,
the clusters that deviate most from the ��z� � 1 line on
Fig. 2 are those that clearly show bimodal structures from
X-ray, SZ and optical images (Abell 370, Abell 773, and
Abell 1689). In contrast, those showing a single emission
region with spherical shape lie very close to ��z� � 1. It is
interesting to note that when the three most bimodal
clusters are removed from the sample, the Reese et al.
[27] remaining clusters lead to

� � 0:93�0:05
�0:04 (28)

which is compatible to � � 1 at a two� level. The shape,
temperature distribution, etc., are key points to control in
order to reduce the systematics that limit the accuracy of
this test.

Therefore, we will have to make sure that the marginal
trend1 ��z�< 1 survives further explorations of this
method with new data. This trend is indeed related to
the fact that X-ray/SZ analysis systematically favors a
rather low value of the Hubble constant. Besides, the
-6
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analysis of the low and high redshift subsets and the fact
that the largest departure from � � 1 is at low redshift
suggest that there is no violation of the distance duality
relation. In particular, parametric forms, such as the one
proposed in Ref. [17], predict a cumulative effect with
redshift.

More specifically, a larger number of clusters spread
over the whole redshift range and showing simple appar-
ent geometry (i.e. as compact and spherical as possible)
must be selected carefully. It will improve to lower sys-
tematics, to reduce errors bars on cluster data and, in turn,
to provide much better angular distance estimates, mak-
083533
ing the test of the distance duality relation from X-ray
and SZ measurement an efficient method.
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[17] B. A. Bassett and M. Kunz, Phys. Rev. D 69, 101305

(2004).
[18] G. F. R. Ellis, in Relativity and Cosmology, Sachs edition

(Academic Press, NY, 1971).
[19] C. Csaki, N. Kaloper, and J. Terning, Phys. Rev. Lett. 88,

161302 (2002); C. Deffayet, D. Harari, J.-P. Uzan, and M.
Zaldarriaga, Phys. Rev. D 66, 043517 (2002).

[20] B. A. Bassett and M. Kunz, Astrophys. J. 607, 661 (2004).
[21] R. A. Sunyaev and Ya. B. Zel’dovich, Comments

Astrophys. Space Phys. 4, 173 (1972); R. A. Sunyaev
and Ya. B. Zel’dovich, Annu. Rev. Astron. Astrophys.
18, 537 (1980); M. Birkinshaw, Phys. Rep. 310, 97 (1999).

[22] J. Silk and D. M. White, Astrophys. J. Lett. 226, L103
(1978).

[23] M. Birkinshaw, J. P. Hugues, and K. A. Arnaud,
Astrophys. J. 379, 466 (1991).

[24] Y. Inagashi, T. Suginohara, and Y. Suto, Publ. Astron.
Soc. Jpn. 47, 411 (1995).

[25] A. Cavaliere and R. Fusco-Femiano, Astron. Astrophys.
70, 667 (1978).

[26] D. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175
(2003).

[27] E. D. Reese et al., Astrophys. J. 581, 53 (2002).
[28] G. D’Agostini, physics/0403086.
-7


