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[1] This study presents various strategies to sample databases from large atmospheric data
sets in high-dimensional spaces for satellite remote sensing applications. In particular, two
sampling algorithms are examined: the traditional uniform sampling that lists all possible
situations and the clustering sampling (K-means) that respects the natural variability
probability distribution functions. In order to assess the quality of both sampling methods,
the extracted databases are used to extract first guesses for satellite remote sensing
schemes. They are also employed as training databases for the calibration of statistical
retrieval algorithms. The analysis of these sampling algorithms is illustrated by
constructing both a first guess (FG) extraction and a retrieval databases of temperature and
water vapor profiles over sea for the Atmospheric Microwave Sounding Unit (AMSU)
instrument. The advantages and problems of each sampling approach are thoroughly
examined and sensitivity studies are conducted to analyze the impact on the FG extraction
and retrieval of various algorithmic parameters such as the distance being used, the size of
the databases, or the instrumental noise sensitivity. The K-means clustering algorithm, not
yet used for this kind of problems, is very efficient compared to the more traditional
uniform sampling approach. It is also shown that it is important to have quasi-automatic
and flexible tools that can be used to generate problem-specific databases.

Citation: Aires, F., and C. Prigent (2007), Sampling techniques in high-dimensional spaces for the development of satellite remote

sensing database, J. Geophys. Res., 112, D20301, doi:10.1029/2007JD008391.

1. Introduction

[2] Two main sources of information are used in satellite
remote sensing of geophysical parameters: First and fore-
most, the satellite measurements themselves, second, a
priori information that helps constrain the inverse problem.
A schematic representation of the data and method modules
in a general retrieval algorithm is presented in Figure 1.
First guess (FG) information is often used in the initial step
of a retrieval process. The FG information can come from a
priori knowledge of the situation (e.g., FG provided by a
Numerical Weather Prediction (NWP) model) but it can also
depend upon the satellite observations (i.e., FG derived
from a climatological database using the satellite observa-
tions). Databases are developed to optimize their use in
retrieval scheme.
[3] In order to derive statistical remote sensing algorithms

that retrieve geophysical parameters from satellite observa-
tions, it is necessary to develop ‘‘training’’ (or learning)
database. The training database is used to calibrate the
statistical model in charge of the retrieval: Estimating the

coefficients of a linear regression retrieval scheme, learning
a Neural Network (NN) model [Aires et al., 2001]. or
performing Bayesian retrievals [Kummerow et al., 2001].
This database can come from colocalized satellite measure-
ments and in situ observations (i.e., empirical inversion) or
it can result from the simulation of the satellite measure-
ments using a radiative transfer model (i.e., physical inver-
sion). This training database can be chosen to describe as
well as possible the natural variability probability distribu-
tions or it can be chosen to emphasize some data charac-
teristic of particular interest for the application.
[4] FG information can be important for the retrieval

scheme since the inversion is sometimes a minimization
procedure that modifies iteratively an initial solution. The
iterative process is highly sensitive to the FG solution
(starting point of the iteration) as the optimization scheme
can be trapped in a local minimum. The number of
iterations, hence the computer time, is also sensitive to
the quality of the FG. Furthermore, this additional informa-
tion helps eliminate ambiguities when multiple solutions
are possible (i.e., nonuniqueness of the inverse problem)
[Tarantola, 1987]. In the framework of variational assimi-
lation in operational centers, the FG is provided by the
NWP (a priori information). This paper will focus on FG
that depend essentially upon the satellite observations so
that the resulting satellite retrievals can more easily be used
for model validation. These FG databases are defined both
on the geophysical variables and on the satellite measure-
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ment spaces so that a pattern recognition procedure can link
the satellite measurements to the geophysical FG.
[5] In the meteorology/climatology field, there is gener-

ally a profusion of data. One can use the full original data
set as the training database. For example, Aires et al. [2001]
used a full year of global observations to train a NN
retrieval scheme. However, for other applications, it might
be difficult to perform radiative transfer simulations for
millions of samples and for multiple conditions such as
various scanning angles or surface properties, especially
with the new generation of instruments that can include
thousands of channels (e.g., the ‘‘Improved Atmospheric
Sounding in the Infrared’’ is an ESA instrument with 8461
channels that has been launched in October 2006 on board
the METOP mission). Furthermore, for some specific appli-
cations, a careful monitoring of the data set to be used can
be necessary (e.g., some regimes of particular interest might
be emphasized). In these cases, an adequate sampling of the
initial database will select numerous and diverse samples
representing most of the variability of the original large data
set, but limiting the number of samples to a manageable
size. For many remote sensing applications, the problem is
often to perform a pertinent sampling in high-dimensional
spaces, to generate adequate FG or training databases. The
optimal sampling algorithm is highly dependent on the
application.
[6] The Thermodynamical Initial Guess Retrieval (TIGR)

database [Chédin et al., 1985; Escobar, 1993; Chevallier et
al., 1998] is a good example of such data sets used for FG
retrieval or training databases. TIGR contains 2311 atmos-
pheres sampled from a large ensemble of radiosondes. For

recent applications, TIGR has been improved to account for
specific issues: For surface temperature variability [Aires et
al., 2002a] or for a database composed of reanalysis from
the ECMWF (European Centre for Medium range Weather
Forecast) [Chevallier et al., 2000]. For recent instruments,
and complex applications using their synergy, there is a
need for easy-to-use, flexible, and efficient tools to con-
struct specifically designed databases. An example of such
technical developments is given by Vrac et al. [2005].
[7] Several technical issues will be discussed in this

paper. Which distance should be used? Which sampling
algorithm should be chosen: Should the FG or training
databases be statistically representative of the original data
set variability or should the samples be uniformly distrib-
uted? How to deal with the correlations among variables?
On which space should the sampling be done: In the space
of the geophysical variables or in the space of the satellite
observations? With a good understanding of the answers to
these questions, it becomes possible to define semiautomat-
ic sampling algorithms that can easily evolve to different
time/space frames, to specific conditions (i.e., adapted to a
physical process or a set of geophysical variables), or to
particular instruments. No direct comparisons with existing
FG or training databases will be intended, the focus being a
better understanding of the algorithmic aspects so that
specific and adequate databases can be designed for each
new application.
[8] The original data set on which the sampling algo-

rithms are tested is presented in section 2. Section 3
introduces the various technical concepts, in particular the
two main sampling algorithms used in this study. Applica-

Figure 1. Schematic representation of the data and method modules in a general retrieval algorithm.
Thinner arrows are for the preliminary development stage, and bold arrows describe the data flow in the
operational mode.
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tion to the generation of a FG database is discussed in
section 4, together with various sensitivity studies. Section 5
focuses on the development of training databases. Conclu-
sions are drawn in section 6.

2. Original Data Set

2.1. ERA40 Geophysical Data Set

[9] A large data set of radiosondes can be used to build
the original data set. However, first these radiosondes are
not uniformly distributed over the globe, second they can
require significant quality control and interpolation/extrap-
olation work to be used as inputs to radiative transfer
simulations. In this study, reanalysis from NWP models
are adopted. In a variational assimilation context, the
horizontal and vertical resolution appropriateness and the
compatibility of the atmospheric situations with the model
are essential.
[10] In the following experiments, we use a data set

composed of the 1999 ECMWF ERA40 reanalyses
[Simmons and Gibson, 2000] over the globe. Only data
over ocean under cloud-free conditions are considered. Data
with relative humidity less than 1% or higher than 100% are
discarded. Over the 1-a period, this results in an original
database of more than 4 million points. We randomly select
more than 140.000 points from the original data set in order
to keep our multiple experiments manageable. However,
other independent data sets used for validation purpose are
also extracted from the same initial database.
[11] In order to run radiative transfer simulations, the

necessary information is kept for each point in the data set
but only the temperature (in Kelvin), water vapor (relative
humidity in percentage) and ozone (in kg/kg) profiles are
used for the sampling experiments. We define the ‘‘GEO-
space’’ to be the space of these three geophysical profiles
(dim n = 3 variables � 23 levels = 69). We will focus on the
temperature and the water vapor profiles since these are
classical and interesting geophysical variables monitored by
the considered satellite instrument.

2.2. AMSU Observations

[12] The AMSU-A and AMSU-B on board the latest
generation of the National Oceanic and Atmospheric Ad-
ministration (NOAA) polar orbiting satellites measure the
outgoing radiances from the Earth atmosphere and the
surface. AMSU-A is designed to retrieve the atmospheric
temperature from about 3 hPa (’45 km) down to the Earth’s
surface. It has 12 channels located close to the oxygen
absorption lines below 60 GHz and four window channels
at 23.8, 31.4, 50.3, and 89 GHz. AMSU-B is used for
atmospheric water vapor sounding and makes measure-
ments in three channels in the vicinity of the strong water
vapor absorption line at 183 GHz and in two window
channels at 89 and 150 GHz. The two instruments have
instantaneous fields of view of 3.3� and 1.1� and sample 30
and 90 Earth views respectively. The AMSU observation
scan angle varies from �48� to +48� with the corresponding
local zenith angle reaching 58�. A detailed description of
the AMSU sounders is reported by Goodrum et al. [2000].
[13] The use of AMSU measurements in operational

Numerical Weather Prediction (NWP) models can provide
accurate monitoring of both air temperature and moisture

profiles with good temporal and spatial sampling. Com-
pared to infrared sounding measurements, AMSU observa-
tions are less sensitive to high thin and nonprecipitating
clouds. Several retrieval techniques have been developed
for temperature and/or humidity sounding with AMSU-A/
AMSU-B and other microwave radiometer measurements.
Rosenkrantz [2001] used surface and atmosphere modeling
to retrieve temperature-moisture profiles from AMSU-A/
AMSU-B data. A NN technique has been used by Shi
[2001] to estimate air temperature profiles from AMSU-A;
a similar technique has been utilized by Franquet [2003] for
the retrieval of water vapor. Over land however, the AMSU
measurements are not fully exploited. Efforts to assimilate
AMSU radiances over land are underway in several NWP
centers.
[14] We use the RTTOV radiative transfer code to simu-

late AMSU-A and AMSU-B observations based on the
ERA40 description of each atmosphere in the data set
presented in section 2.1. The 23 pressure levels of the
ERA40 reanalyses are actually interpolated to the 43 levels
used by RTTOV. RTTOV is a fast radiative transfer model
originally developed at ECMWF [Eyre, 1991] and that is
now supported by the EUMETSAT NWP-SAF (Satellite
Application Facility) [Saunders et al., 1999; Matricardi et
al., 2001]. The model allows for rapid simulations of
radiances for satellite infrared and microwave radiometers
given an atmospheric profile of temperature, variable gas
concentrations, cloud and surface properties, referred to as
the state vector. Numerous platforms and sensors are
supported.
[15] The ‘‘TB space’’ (TB is for brightness temperature) is

defined as the space with 20 coordinates corresponding to
the 15 channels from AMSU-A and the five channels from
AMSU-B (see section 2.2). This ‘‘TB space’’ is the ‘‘dual’’
of the GEO space defined in section 2.1.

3. Sampling Techniques

3.1. Principal Component Analysis

[16] Principal Component Analysis (PCA) of both geo-
physical variables (GEO) and brightness temperatures (TB)
are used here to perform a preliminary analysis of variables
and observations. Furthermore, the PCA will be useful for
the Mahalanobis distance introduced in section 3.2.
[17] An important point concerns the normalization of

data before performing the PCA. This normalization should
be applied very carefully. If two original coordinates are as
important but have a different variability range, no normal-
ization means that the PCA will emphasize the coordinate
with the larger variability to the detriment of the other one.
On the contrary, normalization can be dangerous if one data
coordinate is not informative (e.g., measurement noise
exceeding the information) and has a small variability
range: Normalization would put weight onto this variable
and less onto the valuable ones, which would deteriorate the
PCA results. Furthermore, it should be pointed out here that
using a unit for a geophysical variable is already a normal-
ization choice.
[18] In this application, the variables in the GEO space

are the temperature, water vapor, and ozone atmospheric
profiles in the 23 discrete vertical levels. These pressure
levels correspond to the vertical levels used by the radiative
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transfer code we will be using. It is decided not to normalize
these variables. Ozone with its small variability range (in
kg/kg) will have a very limited impact on the PCA, meaning
that the ozone profile will be well represented by the PCA
only if it is highly correlated with the temperature or water
vapor profiles. Since temperature and water vapor have
variability ranges of the same order of magnitude (temper-
ature in Kelvin and relative humidity in percentage), they
have a comparable impact on the PCA results. Not normal-
izing here limits the impact of high-altitude water vapor
which is not the priority in our application.
[19] The cumulative percentage of variance explained by

the first components is presented in Figure 2 for the PCA of
geophysical variables (n = 69) describing the atmosphere
and for the associated brightness temperatures (n = 20). The
results of the PCA in the GEO space are dependent on the
resolution of the data (from the ERA40 reanalyses in our
case). ‘‘Resolution’’ refers here to the intrinsic variability of
the data, not just the number of discretization of the vertical.
With the data sets presented in section 2, there are more
degrees of freedom in the GEO space than in the TB space,
meaning that the satellite observations are insufficient to
characterize completely the GEO space, even when no
observation noise is added. This characterizes an under-
determined (i.e., underconstrained) inverse problem. None-
theless, if seven PCA components can be extracted from
the satellite observations and can ‘‘perfectly’’ be related to
the first seven PCA components of the GEO variables, the
retrieval would be able to represent about 90% of the GEO
space variability [Tarantola, 1987; Rodgers, 2000].
[20] The errors made by the PCA representation are

shown in Figure 3 for various compression levels (i.e.,
number of PCA components kept). For n0 = n = 69, all
the components remain, which means that there is no
compression and the PCA representation is perfect. The
error increases when components are suppressed in the PCA
representation, but it can be seen that a representation with
40 components is sufficient for the temperature profiles.

About 30 components can describe the water vapor profiles
correctly. This means that the temperature and the water
vapor profile have about 40 and 30 degrees of freedom
respectively. 40 components are enough to represent simul-
taneously the temperature and water vapor profiles. These
numbers are consistent with Figure 2. It is obviously
impossible to retrieve these 40 components from the limited
number of components in the TBs. This simple PCA
analysis gives directly an assessment of the upper limit
information content of the satellite measurements repre-
sented by the best case scenario because the first TB PCs
can be associated to more GEO PCs or to GEO PCs of
higher rank. For a complete information content analysis,
the reader is referred to Thépaut and Moll [1990].

3.2. Distances

[21] In order to sample a data set, a good distance
measure is required to measure similarities and differences
between two points in this database. To extract relevant
samples, an appropriate distance has to be selected.
[22] The Euclidean distance is widely used in statistics or

in physics:

DE y0; y
� �

¼ y0 � y
� �t � y0 � y

� �h i1
2

:

It gives the same weight to each y’s coordinate so that
coordinates with higher variability ranges will drive the
distance. The weighted Euclidean distance is given by:

DW y0; y
� �

¼ y0 � y
� �t � W � y0 � y

� �h i1
2

:

where W is a diagonal matrix with the elements Wii giving
the relative importance of the ith coordinate. The weighted
Euclidean distance allows to define a priori the weight of
each of y’s coordinates.

Figure 2. Percentage of variance explained by the first PCA components in the GEO (solid line) and the
TB spaces (dashed lines).
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[23] Another important distance is the Mahalanobis dis-
tance, e.g., [Crone and Crosby, 1995]:

DM y0; y
� �

¼ y0 � y
� �t � Sy

�1 � y0 � y
� �h i1

2

:

By exploiting the correlations among variables described in
the covariance matrix Sy, the Mahalanobis distance gives
less weight to variables with high variance and groups of
variables highly correlated in order to optimize the use of
each available independent piece of information. The link
with the weighted Euclidean distance is clear: If y’s
coordinates are independent W = Sy

�1 and the weights Wii =
1/si

2. We propose here to use an Euclidean distance based
on the first n0 PCA components, h (see section 3.1). This
Truncated-PCA Euclidean (TPCAE) distance would be
equivalent to the Mahalanobis distance if we used all the

PCA components (n0 = n) [Jolliffe, 2002] (i.e., in that case,
the covariance matrix Sy becomes the identity matrix).
Using fewer components removes irrelevant information
and produces a faster pattern recognition step. This TPCAE
distance was used, for example, by Aires et al. [2002b] for a
remote sensing retrieval problem with first guess. This
TPCAE distance benefits from the correlation structure to
optimally weight the data coordinates. However, using this
TPCAE distance can be computationally expensive (i.e., not
only the FG or learning database needs to be in the PCA
space, but all new satellite observations need to be
projected). If only a pattern recognition is needed and the
optimal weighting of the data coordinates is not essential in
the application of interest, using the TPCAE distance can be
superfluous and inefficient. For more complex and
inhomogeneous data, the TPCAE distance is quite interest-
ing. As long as enough components are used, the number N

Figure 3. Error of the PCA representation for (a) the temperature and (b) the water vapor atmospheric
profiles for an increasing number of PCA components from 1 to 60.
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of components kept in the distance is not too critical: Since
the TPCAE distance takes into account the importance of
each components, adding higher-order components has no
impact on the distance, except to slow down the computa-
tion. In practice, it is recommended to be conservative with
n0 as long as the computations can be dealt with, especially
if the rare events are of interest. In the following, the PCAE
distance is used for each sampling methods with 40
components for the GEO space and 15 for the TB space.
[24] Rare events are not the purpose of this paper, but it is

important to mention the Minkowski distance [Huber, 1981]
that can emphasize the extraction of rare event at a low
algorithmic cost.

3.3. Data Space

[25] On which data space should the sampling applied,
the GEO or TB space? There are advantages to work on the
GEO space. First, it is easier to extract geophysical distri-
butions close to the natural ones. Second, since inverse
problems suffer from the nonuniqueness of the solution, if
there are ambiguities (i.e., two different geophysical situa-
tions associated to a TB measurement), sampling in the
GEO space will help represent this nonuniqueness in the
extracted databases. Third, controlling the importance of a
specific geophysical variable in the sampling process is
easier when sampling directly in the GEO space.
[26] On the other hand, sampling in the TB space can also

be attractive. First, TB measurements are more or less
homogeneous so that a normalization among them is often
unnecessary and if required, it is usually easier to perform.
Second, the sampling is applied directly on the space used
to perform the FG extraction, the TB space, and in the
information theory sense, the sampling is optimal in this TB
space. Sampling of geophysical prototypes that cannot be
discriminated in the TB space is irrelevant since the FG
extraction works directly on the TBs. Sampling in the TB
space ensures that we sample optimally the available
information for the FG extraction or the training of the
retrieval algorithm. Again, sampling in the GEO or the TB

space is a choice that depends upon the use of the extracted
database.

3.4. Uniform Sampling

[27] The uniform (or topological) sampling algorithm can
sample a number of prototypes in a high-dimensional data
set. The different steps are as follows:
[28] 1. Choose randomly a sample in the original data set.

This sample is the first prototype.
[29] 2. Take the following sample in the data set. If

this sample is at a distance larger than an a priori chosen
threshold DMAX from the set of previous prototypes, it
becomes a new prototype. Otherwise, the sample is
discarded.
[30] 3. Repeat step 2 until all the samples in the original

data set have been processed.
[31] This algorithm produces a set of prototypes. Each

sample from the original data set can be associated to its
closest prototype that defines clusters of points. This algo-
rithm is used for example by Achard [1991], Escobar
[1993], or Chevallier et al. [2000].
[32] The maximum distance, DMAX, between each sample

of the original data set and any of the prototypes indicates
the ‘‘precision’’ of the prototype representation: The lower
DMAX and the closer a prototype to any sample in the data
set. The number of extracted prototypes depends on DMAX

but it cannot be determined a priori: Several experiment
needs to be conducted to tune DMAX to provide a number of
prototypes close to what is desired. In Figure 4, the number
of prototypes extracted by the uniform sampling algorithm
using the Euclidean distance on the GEO space is repre-
sented against the DMAX threshold. The number of required
prototypes grows exponentially with decreasing DMAX

threshold (i.e., higher precision). As a consequence, it
becomes rapidly impossible to exceed a certain level of
precision, given the fact that the number of prototypes
cannot be indefinitely increased. This is a direct conse-
quence of the curse of dimensionality discussed in section 7.

Figure 4. Number of prototypes extracted by the uniform sampling algorithm in the uniGEO for
decreasing DMAX (i.e., increasing precision).
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[33] The uniform sampling is sensitive to the order of
presentation of the samples in the original data set when the
number K of extracted prototypes is relatively small. This is
less a problem for large K. A random reordering in the
original data set is nonetheless encouraged to perform a
more robust sampling and to obtain better uniformity in the
variables not included in the clustering process (such as the
date of the situation).
[34] This algorithm can be computationally demanding

when extracting a large number of prototypes. The curse of
dimensionality is a problem for the number of prototypes
and it also affects the computation time to estimate them.
The number of distances to be computed during the sam-
pling process is about K � (E + 1)/2. It grows linearly with
K, the number of prototypes, and with E, the number of
samples in the original data set. Since the number of
prototypes K increases exponentially with an increasing
precision (i.e., decrease of DMAX, see Figure 4), the number
of computations increases also exponentially with precision.
Chevallier et al. [2007] use a ‘‘preliminary filtering phase’’
to solve this problem.
[35] It can also be noted that the final solution (i.e., the

ensemble of extracted prototypes) is constructed piece by
piece, one prototype after another. It is known in opti-
mization theory that such ‘‘local’’ solutions are less
optimal than global solutions where the whole solution
is estimated at once. This is particularly true for small K,
but is not a concern anymore for a large number of
extracted components.

3.5. Sampling Using Clustering

[36] The K-means algorithm [Lloyd, 1992] is an example
of clustering method and it is selected here to sample a large
and high-dimensional data set (any other clustering algo-
rithm could be used instead). This clustering method has
been used in the atmospheric science disciplines for exam-
ple in the work by Desbois et al. [1982] for the classifica-
tion of clouds. In the works by Jakob et al. [2005] and
Gordon et al. [2005], K-means were used to relate radiative,
cloud, and thermodynamic properties and to validate mod-
els with observations. Omar et al. [2005] use clustering to
classify aerosol measurements and Cordisco et al. [2006]
classify satellite observations in snow types. The K-means
algorithm steps are simple:
[37] 1. First, K prototypes are selected in the data space to

be clustered (GEO or TB spaces in our case). They are
generally randomly chosen uniformly in the original data
set.
[38] 2. Assign each sample of the data set to its closest

prototype by using the data distance. This cluster allocation
determines K clusters of points.
[39] 3. When all samples have been assigned, calculate

the mean of the K clusters. These cluster centers become the
new prototypes. To add stability, a ‘‘learning rate’’ can be
adopted so that the new mean is a linear combination of the
previous mean and its new estimate [Moody and Darken,
1989].
[40] 4. Repeat steps 2 and 3 until the convergence is

reached. A criterion checks this convergence: In our case,
the training phase is stopped when the relative change in the
prototypes is small. This is done by monitoring the relative
change curves.

[41] The K-means clustering presents several problems.
First, the results depend on the initial values of the proto-
types, and suboptimal partitions can be found. The standard
solution is to start with few different starting points and
check the robustness of the outputs. Second, a cluster can
happen to be empty during the sampling process (i.e., no
samples in the original data set are closer to its associated
prototype), so that the prototype cannot be updated. This is
a problem that must be overcome. Third, results depend
upon the metric being used. We provided in section 3.2 few
possible distances, each one with its own advantages and
inconveniences. Lastly, the results also depend upon K, the
number of extracted prototypes.
[42] A major difference between the uniform and the

clustering sampling is that the later one obtains a database
with distributions closed to the original data set distribu-
tions. This is not the case for the former one that obtains by
definition more ‘‘uniform’’ distributions. A popular sam-
pling algorithm that also respect the original data set
distributions is the ‘‘random’’ sampling used for example
in Monte Carlo techniques. Quasi-random sampling is also
often used [Press et al., 2002], it correspond to a sampling
where the sample points are maximally avoiding each other
for a better sampling efficiency and clustering sampling
uses a similar idea. Obtaining realistic distribution can be an
advantage: for example to perform Bayesian statistics, it
might be preferable to use distributions that respect the
natural variability [Gelman et al., 2003]. Uniform distribu-
tions can also be positive: the statistical weight of rare
events is increased in this case and this can beneficial for the
calibration of an inversion scheme since rare events can be
more informative than more frequent situations redundant in
the training database.
[43] Another advantage of clustering is that the number of

clusters K is defined a priori, contrarily to the uniform
sampling approach. This is a disadvantage for specific
applications but not for sampling problems. For a discussion
on the number of prototypes, see Milligan and Cooper
[1985], Mimmack et al. [2001] or Rendell and Whitehead
2003]. The problem of ordering the samples does not
happen in the clustering sampling approach since initial
prototypes are moved during the clustering toward the most
populated parts of the space.
[44] If aberrant data are present in the original data set,

the uniform sampling will extract them as prototypes since
they are different from the other data. These unrealistic
situations being most of the time ‘‘isolated’’ in the original
data set, they will not be extracted as prototypes by
clustering algorithm. Outliers in a FG data set are not a
key issue: They will slow down the FG extraction but will
be rarely selected as FG. On the other hand, they can be
detrimental in a training database since they will impede the
training of the retrieval scheme, even if some special
learning algorithms have been designed to deal with out-
liers, i.e., robust statistics [Moore and McCabe, 2006].
Since we use ERA40 data for the application in this paper,
we limit the possibility of such aberrant data.
[45] To evaluate the clustering algorithm, we use again

the 1-a ERA40 data set described in section 2.1. The
number of prototypes K is chosen equal to nine. The
number nine was chosen as a good compromise between
enough classes to test the method, but keeping the number
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low enough to be able to interpret the extracted prototypes.
The tools developed here can be used to conduct a clima-
tological study [Jakob et al., 2005]. Such classification with
a small number of clusters can also be used to develop
specific retrieval schemes for each cluster (see Chédin et al.
[1985] for such an approach in the 3I algorithm in which
each class is an air mass).
[46] After convergence, it is possible to represent the K =

9 extracted prototypes (Figure 5). Since the clustering has
been applied to the GEO space of the temperature, water
vapor and ozone profiles, the dimension of the prototypes is
3 � 23 = 69. However, the prototypes are shown only for
the temperature and water vapor profiles that are of interest
in our particular application. Prototypes 1 and 2 are polar
situations, with low surface temperatures and low tropo-
pause levels around 250 hPa. Following clusters from 3 to 9

have a tropopause close to 100 hPa and become warmer at
the surface with a maximum around 298�K. Only 4 water
vapor profile prototypes are presented in Figure 5 for clarity.
Their humidity peak varies: The polar prototype 1 reaches
60% between 200 and 300 hPa, prototypes 3 and 6 have
water vapor mostly in the surface layers, and the tropical
prototype 9 has a 70% water vapor content at a higher
altitude, around 100 hPa.
[47] No ordering is imposed in the clusters by the

classification algorithm. However, for the clarity of the
presentation we reorganized the clusters with an increasing
mean Total Column Water Vapor (TCWV) on the succes-
sive extracted clusters. This cluster reordering was per-
formed after the clustering is finished but it could also be
imposed during the actual clustering. See Kohonen map
algorithm for a clustering with imposed ordering of the

Figure 5. (a) Temperature and (b) water vapor atmospheric prototype profiles extracted in the clustGEO
experiment for K = 9 clusters. For clarity purposes, only four prototypes are represented for water vapor
in Figure 5b.
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classes [Kohonen, 1984]. After reordering, clusters have the
following mean TCWV (in %): 4.2, 7.0, 16.8, 17.7, 18.2,
18.4, 28.4, 31.2, 38.8. The mean surface temperatures can
also be used to order the clusters, but a strong link exists
anyway with the TCWV content. The clusters are organized
from the drier, colder atmospheres (i.e., polar atmospheres)
to the hotter and more humid atmospheres (i.e., tropical
cases). Figure 6 illustrates the spatial distribution of the
clusters. In Figures 6a, 6b, 6c and 6d, the more frequent
clusters are presented in each pixel during January, respec-
tively April, July, and October 1999. White pixels corre-
spond to locations with no clear situation during the month.
The clusters are organized in latitudinal bands, from polar,
temperate, to tropical situations which confirms the air mass
description of the prototypes in the previous paragraph. The
prototypes are well spread in latitude meaning that the
sampling process used efficiently the atmospheric situations
from the poles to the tropics. The climatological features are
coherent, in particular, the Intertropical Convergence Zone

pattern is correctly characterized. This experiment with a
low number of extracted prototypes shows that this tech-
nique can be used to perform climatological studies but,
most important, it proves that the technical choices are valid
since the sampling technique is able to extract pertinent
physical features. This is confirmed by the literature on the
use of K-means in geosciences [Desbois et al., 1982;
Prigent et al., 2001; Jakob et al., 2005].

4. First Guess Database Generation

4.1. Sampling Configurations

[48] We now use the techniques described in the previous
section to create a first guess (FG) database of more than
2000 prototypes (we will see that this is a reasonable
compromise between a high number of prototypes for good
retrieval results, and a manageable size for computation
time). We have only an indirect control on the prototype’s
number (through DMAX) for the uniform sampling. The goal

Figure 6. Maps of the most frequent prototypes in (a) January, (b) April, (c) July, and (d) October 1999
for the clustGEO experiment with K = 9 clusters.
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being to compare results with the uniform and the clustering
sampling algorithms, we first run the uniform sampling with
a reasonable Dmax that determines the number of prototypes
for the uniform sampling (e.g., 2258 prototypes), then we
use the same number of prototypes for the clustering.
[49] These prototypes need to represent as well as possible

the variability in the 1-a ERA40 data set and to take into
account the information content of the AMSU measure-
ments. In order to test the various technical choices presented
in section 3, four experimental configurations are defined:
(1) uniform sampling on the GEO space, ‘‘uniGEO’’;
(2) clustering sampling on the GEO space, ‘‘clustGEO’’;
(3) uniform sampling on the TB space, ‘‘uniTB’’; and
(4) clustering sampling on the TB space, ‘‘clustTB.’’
[50] These four experimental configurations are com-

pared by analyzing their respective FG extraction results.

For each experiment, the prototypes are extracted in the
GEO and the TB spaces (‘‘dual’’ spaces). We note uniG-
EOGEO the GEOphysical prototypes of the uniGEO exper-
iment, and uniGEOTB the corresponding prototypes in the
TB space. Same notations hold for experiments clustGEO,
uniTB, and clustTB.
[51] To estimate the FG extraction root mean square

(RMS) errors in an testing data set BASE = (BASEGEO,
BASETB) independent of the original data set that was
sampled to constitute the FG database, we proceed as
follows, in the uniGEO case: (1) We first take the ith TB
sample, tbi, from BASETB and its dual, GEOi, in BASEGEO.
(2) Its closest prototype in uniGEOTB is found using a
pertinent distance (see section 3.2): btbuniGEO(tbi). (3) The
GEO dual of btbuniGEO(tbi) is extracted from uniGEOGEO:dGEOuniGEO(tb

i). (4) The RMS difference, RMSuniGEO, for all

Figure 7. RMS errors of the FG extraction for (a) the temperature and (b) the water vapor atmospheric
profiles in the uniGEO, clustGEO, uniTB and clustTB experiments.
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the samples i in BASE is the RMS difference between the
pairs (GEOi, dGEOuniGEO(tb

i)).
[52] The same approach is used for experiments clust-

GEO, uniTB, and clustTB.
[53] The four configurations are tested using the Euclid-

ean distance in the independent data set BASE. The FG
RMS errors for temperature are represented in Figure 7a.
Clustering configurations, both for the GEO and TB spaces,
outperform the uniform algorithm. Furthermore, the
clustTB’s results are very similar to the clustGEO statistics
except for a slight decrease in temperature errors on the
higher atmospheric levels.
[54] The FG RMS errors for water vapor are shown in

Figure 7b: The clustering configurations are very close to
each other and they again do better than the uniform

algorithm, except for levels higher than 40 hPa (note that
the ERA40 water vapor at these levels needs to be consid-
ered with caution).
[55] In conclusion, the clustering is almost always better

than the uniform algorithm. This was expected by design
since the RMS errors criterion favors the clustering ap-
proach: the uniform sampling emphasizes rare events that
do not influence the RMS, where the clustering focusses on
the most common situations that will drive the RMS
statistics. In other words, the clustering sampling extract
the natural distribution that is used to estimate the RMS
error, the uniform sampling extract a different distribution.
[56] It is equivalent in this particular application to use

the clustGEO or the clustTB with a slight advantage to the
TB space. Furthermore, working in the TB space seems

Figure 8. RMS errors of the FG extraction for (a) the temperature and (b) the water vapor atmospheric
profiles in the clustTB experiment when using DE, the Euclidean distance, and DM, the Mahalanobis
distance, with 15, 10 and 5 PCA components.
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more convenient than in the GEO space for normalization
issues: the natural variability of the atmosphere gets trans-
lated into the variability in the observations, so the normal-
ization in the TB space is pertinent and is easier since
observations have a similar range of variability. As a
consequence, we will choose the clustTB version for the
remaining experiments in the next sections.

4.2. Sensitivity Studies

[57] In this section, we use the clustTB configuration to
measure the sensitivity of FG extraction results to various
parameters of the sampling method, namely the distance,
the number of extracted clusters, and the level of instrument
noise.
[58] Figure 8 shows the dependence of the FG extraction

of temperature and water vapor atmospheric profiles on the

distance used in the sampling algorithm: the Euclidean
distance DE or the Mahalanobis distance DM (with the
number of PCA components n0 = 5, 10 and 15) (see
section 3.2). The Mahalanobis distance performs slightly
better than the Euclidean one, even when using only n0 = 5
components but the impact is not significant enough to
definitely prefer one over the other. In this particular
application, the choice of the distance does not seem to be
determinant. This can be surprising knowing the importance
of distances in general discriminant analysis. However, as
already discussed in section 3.2, one distance can be favored
over the others for various reasons, rapidity of computa-
tions, importance of the rare events, complexity of the
normalization of data coordinates, and it is difficult to
establish a definitive conclusion based on this application
only. The robustness of the results with respect to the

Figure 9. RMS errors of the FG extraction for (a) the temperature and (b) the water vapor atmospheric
profiles in the clustTB experiment with 500, 2258, 2500, and 5000 extracted prototypes.
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distance confirms that we can use the Euclidean distance for
the forthcoming experiments.
[59] The dependence of the FG extraction on the number

of prototypes in the FG database is illustrated in Figure 9.
FG errors are represented for temperature (Figure 9a), and
for water vapor (Figure 9b), when using, from left to right,
2500, 2258, 2000, 1500, 1000 and 500 prototypes in the FG
database. As expected, the RMS errors for both temperature
and water vapor decrease when increasing the number of
prototypes in the FG database. Increasing the number of
samples in the FG database improves the FG extraction
statistics but the required number of samples increases
exponentially with the desired precision (because of the
curse of dimensionality), setting a practical limitation on the
quality of possible FG extraction error statistics.

[60] The FG is retrieved from the AMSU measurements
which are subject to instrument noise. How sensitive is the
FG extraction to the noise level? The 20 AMSU channels
have a specified noise of, respectively, 0.20, 0.27, 0.22,
0.15, 0.15, 0.13, 0.14, 0.14, 0.20, 0.22, 0.24, 0.35, 0.47,
0.78, 0.11, 0.37, 0.84, 1.06, 0.70, and 0.60K [Rosenkrantz,
2001]. Figure 10 represents the FG extraction errors in the
clustTB configuration for the temperature (Figure 10a) and
the water vapor (Figure 10b) when a simulated instrument
noise is added to the AMSU measurements. This noise is
supposed to be Gaussian-distributed and independent from
one channel to another. As expected, the FG extraction
errors increase with the noise level but the sensitivity to
noise is quite low, less than 0.1K in temperature and 1% in
water vapor. This low sensitivity to noise demonstrates that

Figure 10. Sensitivity of the FG extraction to the level of instrument noise in the satellite observations
for (a) atmospheric temperature and (b) water vapor profiles in the clustTB experiment.
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the FG extraction scheme being a multivariate scheme, it
benefits from the correlations among the AMSU channels
so that instrument noises without channel correlation have a
limited impact. This is an additional advantage of multivar-
iate sampling techniques over methods that samples one
variable at a time.

4.3. Further Analysis

[61] The impact of various algorithmic parameters on the
FG extractions has been analyzed in the previous sections.
Beyond these quantitative results, it is important to under-
stand in depth how the algorithms work. The goal of this
paper is not to choose one approach over another one but
rather to better know how each method works and what are
their respective advantages and inconveniences.
[62] The first question concerns the sampling algorithms

and their respective performances. The numerical experi-
ments (section 4.1 and Figure 7) show without ambiguity
that the clustering algorithm obtains better results than the
uniform sampling for the FG extraction. Is the clustering
approach always preferable to the uniform sampling? Scat-
terplots of temperature, water vapor, and ozone content in
the surface layer are represented in Figure 11 for the
propotypes extracted by the uniform algorithm in the
GEO space (i.e., uniGEO) and the clustering algorithm in

the TB space (i.e., clustTB). The uniform sampling algo-
rithm selects more prototypes in the less populated domains
of the natural variability in the BASE data set (not shown
since this domain can well be guessed from the uniTB
scatterplots) and, as a consequence, this sampling includes
rare events. Furthermore, the prototypes are more regularly
spaced than in the clustering approach which selects more
prototypes in the densely populated regions of the BASE
original data set. This is the behavior expected by design
from the two algorithms.
[63] The spread of the uniform prototypes over a larger

domain could be a strong advantage of the uniform algo-
rithm over the clustering method. Nevertheless, Figure 12
shows that the distributions of the temperature (Figure 12c)
and water vapor (Figure 12f) at the surface layer of the
clustering sampling are closer to the natural variability of
the BASE data set (Figures 12a and 12d), than those derived
from the uniform sampling (Figures 12b and 12e). Uniform
sampling by nature tends to increase the statistical weight of
rare events, which can be of interest depending of the
application. However, if spurious/aberrant data are present
in the original data set, these situations can be chosen as
prototypes by the uniform sampling (this might be a
problem if we were using radiosondes instead of ERA40
reanalyses in our application). On the contrary, the cluster-

Figure 11. Scatterplots of the temperature with respect to (a) the relative humidity and (b) the ozone
concentration at the surface layer for the uniGEO. (c and d) Similar but for the clustTB experiment.
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ing sampling provides sample distributions that respect the
original variability which is a key property when using the
extracted database to perform statistics. For the FG extrac-
tion, since the quality criterion was the RMS errors, the
clustering sampling that mimics the BASE distributions and
emphasizes the populated regions performs globally better

than the uniform database. The uniform database FG
extraction would nevertheless perform better than the clus-
tering database for situations located at the edge of the
natural variability.
[64] The histograms of the FG errors for both sampling

techniques (Figure 13a for the uniGEO and Figure 13b for

Figure 12. Histograms of temperature at the surface layer in (a) the BASE data set, (b) the uniGEO
prototype database, and (c) the clustTB prototype database. (d–f) Similar but for the water vapor.
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the clustTB configurations) provide another way to under-
stand the differences between uniform and clustering sam-
pling. For the uniform sampling method, the FG error is by
design lower than a given threshold (i.e., DMAX = 2.6 in our
case). Bayesian techniques can favor this threshold on the
maximum FG error because the error characteristics are
simpler than for the cluster sampling. The clustering histo-
gram has not a threshold on the maximum FG error but its
average is still lower than for the uniform sampling algo-
rithm. The clustering sampling gives more weight to the
populated regions which improve its overall statistics
whereas the uniform sampling can select a limited number
of prototypes in the rare event regions that are statistically
less important.
[65] The curse of dimensionality shows that the number

of required prototypes in the FG database increases expo-
nentially with the desired precision. A practical limit in the
troposphere seems to be about 3K for the temperature and
about 20% for the water vapor.

[66] FG extraction errors for the clustGEO and the
clustTB configurations being quite similar (see Figure 7),
it could be concluded that working in either space is
equivalent but the arguments of section 3.3 must be con-
sidered to make a choice.

5. Training Database Generation

[67] In this section, the FG databases generated by the
four experimental configurations of section 4 are used to
train a NN retrieval scheme. The goal is to test the databases
as training tools for a statistical retrieval scheme. No more
information than the databases used in the FG extraction is
introduced into the NN model: Any difference between FG
and NN retrieval results has to be explained by the way the
algorithms use the information. Any other statistical algo-
rithms built from a training database could be used instead
of the NN technique for this comparison purposes.

5.1. Retrieval Methodology

[68] Neural Network (NN) techniques have proved very
successful in developing computationally efficient algo-
rithms for remote sensing applications. A NN algorithm is
applied to retrieve simultaneously the atmospheric temper-
ature and humidity profiles at 23 fixed pressure levels from
1000 to 1hPa over sea using AMSU-A and AMSU-B
observations. The Multilayered Perceptron (MLP) model
is selected [Rumelhart et al., 1986]: It is a nonlinear
mapping model. Given an input X, it provides an output
Y. In our case, X is composed of the AMSU observations
and Y represents the temperature and the water vapor
atmospheric profiles. The architecture has 20 neurons in
the input layer (i.e., the AMSU TBs), 200 neurons in the
hidden layer, and 46 neurons in the output layer (the two
profiles).
[69] The NN is trained to reproduce the behavior de-

scribed by a database of samples composed of inputs Xe

(i.e., the TBs) and their associated outputs Ye (i.e., GEO-
physical variables), for e = 1,. . ., N with N the sample
number in the training database. Provided that enough
samples (Xe, Ye) are available, any continuous relationship,
as complex as it is, can be represented by a MLP [Hornik et
al., 1989; Cybenko, 1989]. The databases extracted from the
algorithms defined in section 4 (uniGEO, clustGEO, uniTB,
and clustTB) are used to train the NN models. Since this
model is very general and efficient, the results obtained with
these four databases can be considered a good measure of
their respective quality as training databases.

5.2. Retrieval Results

[70] Figure 14 represents the NN RMS errors for the
temperature (Figure 14a) and the water vapor atmospheric
profile retrievals (Figure 14b). No bias is observed in the
NN retrievals (not shown) so the RMS represents essentially
the variance error. For the four configurations (uniGEO,
clustGEO, uniTB, and clustTB), the clustering databases
outperform the uniform sampling databases for both tem-
perature and water vapor. This was expected since the RMS
error criterion favors the clustering approach. Differences
between the four configuration results can be significant
with more than 1K in temperature and 5% in water vapor.
Among the uniform sampling databases, the uniGEO is

Figure 13. Histograms of the FG extraction errors for
(a) the uniGEO and (b) the clustTB databases.
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better than the uniTB but for the clustering sampling data-
bases, results of the NN retrieval with clustGEO or clustTB
are similar.
[71] The FG extraction can be considered as a legitimate

retrieval/inversion algorithm, sometimes called ‘‘analogue
inversion’’; this is represented by a direct link between the
first guess retrieval and the geophysical products in the
scheme of Figure 1. Classical look-up table inversion
algorithm is such an example of simple FG inversion. It is
interesting to compare the results of the NN retrievals of
Figure 14 to those of the FG extraction (Figure 7). The NN
is trained with the same database as the FG extractions so
the NN retrieval results can directly be compared to the FG
ones of Figure 7: The differences come from a better
exploitation of the databases by the NN model. The im-
provement is considerable for the temperature, with a

decrease of the RMS error between 1 and 1.5 K depending
on the atmospheric level. The water vapor atmospheric
profile is marginally improved in general, except a 5%
decrease in RMS at the tropopause level. The considerable
improvement in temperature can be explained by the fact
that the FG extraction can only give a database prototype as
answer, whereas the NN retrieval (or any other statistical
retrieval scheme) is able to interpolate between the proto-
types of the training database. This is an important point: A
good retrieval scheme interpolates between the prototypes
inside its training database and is able to overcome the curse
of dimensionality of section 7 by increasing the number of
samples in its training database through interpolation.
[72] We now focus on the clustTB configuration that

provides the best retrieval results for this application.
Two examples of retrievals are presented in Figure 15:

Figure 14. RMS errors in the (a) atmospheric temperature and (b) water vapor profiles for a NN
retrieval trained with the databases from the uniGEO, clustGEO, uniTB, and clustTB experiments.
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Figure 15a shows two temperature atmospheric profiles
with their NN retrieval and Figure 15b is similar but for
the water vapor. The temperature profiles are well estimated
as measured by the global statistics in Figure 14a. The
general profile structure is correctly retrieved, in particular
at the tropopause level. Some oscillations can be found
around the real temperature profile but this is much more
visible for the water vapor profile. The presence of such

oscillations means that there is no bias error in the estima-
tions (i.e., no atmospheric contribution is systematically
missed by the sounder). Variance errors are the consequence
of the limited vertical resolution of the AMSU instrument.
These errors are an illustration of the compensation prob-
lem: An underestimation in one atmospheric layer is com-
pensated by an overestimation at a neighboring layer. This
uncertainty cannot be suppressed because of the lack of

Figure 15. Two examples of NN retrievals for (a) the temperature and (b) the water vapor atmospheric
profiles.
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information in the satellite observations. Such errors occur
in underdetermined inverse problems [Tarantola, 1987].
Increasing the number of samples in the training database
would not solve this problem since it is a direct limitation of
the AMSU measurements.

5.3. Sensitivity Studies

[73] As in section 4.2, we study the dependency of the
retrieval scheme on parameters of the sampling algorithms.
Again, the clustTB configuration is chosen to perform these
tests. Since the FG extraction can be considered as a
legitimate inversion scheme, i.e., ‘‘analogue inversion’’
algorithm, most of the conclusions for the FG extractions
in section 4.2 are valid for the NN retrieval algorithm as
well. In particular, the distance used to sample the training
data set does not impact much the retrieval results (not
shown).
[74] The sensitivity to noise is also low: Experiments

have been conducted to measure the impact of the instru-
ment noise on the NN retrieval statistics. Same character-
istics have been used as in section 4.2, with a magnitude of
noise from one to two standard deviations. The impact of
noise (not shown) is negligible showing clearly that the FG
extraction scheme benefits from the correlations among the
AMSU channels so that a channel-incoherent instrument
noise has a limited effect. A similar behavior was already
observed for the FG extraction.
[75] The temperature estimations appear less stable (not

shown) than the water vapor to measure its sensitivity to the
number of samples in the training database. The RMS errors
of the water vapor atmospheric profiles are represented in
Figure 16 when using the clustTB configuration with
training databases that include 500, 2258, and 5000 proto-
types. The RMS errors for the 500 prototypes are larger, as
expected, but the 2258 and the 5000 prototypes experiment
have similar statistics. This indicates that beyond a certain
number of samples, the NN retrieval does not improve.
Contrarily to the FG extraction statistics of Figure 9, this

precision saturation is not the result of a limitation of the
database: The limiting factor is the information content of
the AMSU observations themselves. The NN retrieval
scheme, by interpolating between the samples in the train-
ing database, succeeds in overpassing the limitation in
sample number. The NN can still suffer from the curse of
dimensionality but it is able to limit the number of samples
to a manageable size. It still needs a database that explores
the relevant regions of the data space, but needs a fewer
sampling density in each of these regions. In other words,
the NN retrieval scheme reduces the problem of curse of
dimensionality.

6. Conclusion

[76] The objective of this study was to discuss the
characteristics of sampling methods in the framework of
remote sensing databases in high-dimensional spaces. It is
based on a controllable and realistic experiment, the retriev-
al of a temperature and water vapor profile with AMSU-A
and AMSU-B. It is dangerous to draw definite conclusions
based only on one particular test but this experiment was
carefully selected to be representative of complex atmo-
spheric remote sensing problems. The RMS errors criterion
that we use to compare solutions favors the clustering
approach so for this application the clustering approach
does better than the uniform sampling method. Each strat-
egy possess its own advantages and inconveniences and the
goal of this paper was to identify them. We can also state
that the sampling in the space of geophysical variables is
almost equivalent to the sampling in the satellite observa-
tion space which is more easy to work on in practice. The
intrinsic quality of each method is not the only criterion to
choose a sampling algorithm, the computational cost and
the engineering constraints also have to be taken into
account.
[77] It has been shown that the FG extraction is sensitive

to the curse of dimensionality: The number of required

Figure 16. Atmospheric water vapor profile RMS errors for a NN trained with the databases in the
clustTB experiment with 500, 2258, and 5000 extracted profiles.
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samples increases exponentially with the desired precision.
On the contrary, the NN retrievals are less dependent on the
number of samples in the training data sets used to train
them: The size of the database is only determined by the
information content of the satellite observation because the
training process interpolates correctly between the samples.
[78] The quasi-automatic tools developed for this study

can be adapted for the generation of specialized FG and
training databases for each particular application. These
extracted databases will be used to develop remote sensing
algorithms designed for specific conditions such as partic-
ular geographical domains, instrument characteristics (e.g.,
instrumental noise levels), and more generally any specific a
priori information on the observing system.
[79] In addition to their practical application to the design

of retrieval schemes, these routines can help analyze the
information content of satellite observing systems. During
the preparation of a new mission, these tools can be used to
assess the sensitivity of the retrievals to parameters such as
the spatial and spectral resolutions, the number and spectral
locations of the channels, the instrument noise character-
istics, or the impact of the first guess information. These
techniques can quantify precisely the impact of each par-
ticular instrument characteristics on the retrieval.
[80] An atmospheric and surface data set that includes

cloudy conditions is under construction for the Megha-
Tropiques French-Indian mission that will be launched in
2009, and the tools described here will be used to develop
the retrieval algorithm.

Appendix A: Curse of Dimensionality

[81] Handling of high-dimensional data (2IRn with n
large) in statistics or in function approximation introduces
theoretical and practical problems. These difficulties are
referred to as the ‘‘curse of dimensionality’’ in mathematics
[Bellman, 1961] and have important consequences on

multiple-integration, function approximation, or probability
density function estimation.
[82] To obtain good statistics or function approximation,

the original data space has to be densely sampled. When the
data space has a high dimension, the number of required
samples often grows exponentially. The sampling density of
a limited n-dimensional space is proportional to E1/n, with E
the number of samples. This means that in order to obtain
the same sampling density than a one-dimensional space
with 100 samples (E1/n = 100), 1020 samples are required in
a ten-dimensional space.
[83] The understanding of the concept of distance can

also be ‘‘distorted’’ in high-dimensional spaces. The volume
of an hypersphere of radius R in a n-dimensional space
n (n � 2) is:

VR nð Þ ¼ 1

n
� R � AR nð Þ:

where AR(n) is the area of the hypersphere (the area of a
hypersphere with radius R in a n-dimensional space (n � 2)

is given by SR(n) =
2
ffiffiffiffi
pn

p

G n
2ð Þ
Rn�1, where G(x) =

Rþ1

0

ettx�1 dt)

[Hilbert and Cohn-Vossen, 1952]. We call ‘‘periphery
volume’’ the volume between the envelop of the hyper-
sphere of radius r = 1 � e with e = 0.05 and the hypersphere
of unit radius (R = 1). Let r(n) be the percentage of the
periphery volume in the hypersphere of unit radius:

r nð Þ ¼ 100
V1 nð Þ � Vr nð Þ

V1 nð Þ :

Figure A1 shows that when the dimension n increases, the
percentage of the periphery volume inside the unit radius
hypersphere increases rapidly toward 100%. As a conse-
quence, for a uniform sampling of the unit radius hyper-
sphere, the samples concentrate in the periphery when

Figure A1. Percentage r(n) of the ‘‘periphery’’ volume in the unit hypersphere with respect to the space
dimension n.
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dimension n increases. The behavior of distances can thus
be puzzling in high-dimensional space.
[84] The exponential increase of required sample number

and the distortion of distances does not imply that function
approximation or statistical estimation cannot be successful
in high-dimensional spaces. Kolmogorov [1957] showed that
the dimension of the data space is not the leading factor in
function approximation but that the intrinsic complexity of
the function to be approximated or distribution to be esti-
mated is the true constraining factor. Higher dimension gives
the potential for more complexity (i.e., degrees of freedom),
but this is not always the case. The ‘‘intrinsic complexity’’
(i.e., effective degrees of freedom) does not have to increase
exponentially with the dimension so it does not suffer so
severely from the curse of dimensionality. (This concept can
be materialized in various ways, depending on the context
(statistics, computer science, analysis, neural network theo-
ry). In statistics, the degrees of freedom, the entropy or other
complexity measures can be used. The Vapnik-Chervonen-
kis dimension [Vapnik and Chervonenkis, 1971] is an
attempt to measure the complexity of a function, but its
practical use is limited.) The models to be used still need to
characterize this intrinsic complexity. The error of a model is
decomposed into two parts: the bias and the variance. A
model with a lower complexity (not enough degrees of
freedom) or a ‘‘shape’’ that is not adapted to the function
to be approximated will have large bias error (i.e., inade-
quacy of the model). On contrary, a model with too high a
complexity (too many degrees of freedom) will suffer from
overfitting and the variance error will be high [Geman et al.,
1992]. By using good a priori information (e.g., a regular-
ization term), it is possible to introduce additional constraints
to limit the number of free parameters that would require too
many samples in the training database.
[85] In addition to the higher number of samples required,

the curse of dimensionality can also cause rapidity and
computational problems, since the computation number
might increase exponentially with the data dimension.
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