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Abstract. In the first paper of this series (Paper I) we computed time dependent simulations of multifluid shocks with chemistry
and a transverse magnetic field frozen in the ions, using an adaptive moving grid.
In this paper, we present new analytical results on steady-state molecular shocks. Relationships between density and pressure
in the neutral fluid are derived for the cold magnetic precursor, hot magnetic precursor, adiabatic shock front, and the following
cooling layer. The compression ratio and temperature behind a fully dissociative adiabatic shock is also derived.
To prove that these results may even hold for intermediate ages, we design a test to locally characterise the validity of the steady
state equations in a time-dependent shock simulation. Applying this tool to the results of Paper I, we show that most of these
shocks (all the stable ones) are indeed in a quasi-steady state at all times, i.e.: a given snapshot is composed of one or more
truncated steady shock. Finally, we use this property to produce a construction method of any intermediate time of low velocity
shocks (u < 20 km s−1) with only a steady-state code. In particular, this method allows one to predict the occurrence of steady
CJ-type shocks more accurately than previously proposed criteria.
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1. Introduction

In a previous paper (Lesaffre et al. 2004, hereafter Paper I), we
presented a numerical method to compute the time-dependent
evolution of molecular shocks with a realistic cooling and
chemistry in the presence of a transverse magnetic field. The
use of a moving grid algorithm allowed us to reduce the num-
ber of zones and the computational time. However, the com-
putation of the evolution of a stable shock from formation to
steady-state still involves one or two days of CPU time on a
500 MHz workstation. Oscillating shocks require one week or
two. This prevents the use of this code to fit shock parameters
to observations.

On the other hand, steady-state codes give a fast answer
(in one or two minutes) and include much richer physics.
They have therefore been extensively used to interpret ob-
served spectra. Nevertheless, steady-state codes have their lim-
its. Observed magnetic molecular shocks may not be fully
in steady-state yet, in which case they show a combination
of C-type and J-type features. They might also be mildly or

strongly unstable (Lim et al. 2002; Smith & Rosen 2003, and
Paper I of this series), in which case a steady state model will
have limited success.

However, different attempts have been made to circumvent
these problems. In the field of shocks in supernovae remnants,
Raymond et al. (1988) among others were successful in inter-
preting spectra with truncated steady J-shocks. Those models
allowed them to account for incomplete recombination zones
in a filament of the Cygnus loop. Chièze et al. (1998) discov-
ered that the nascent magnetic precursor in a C-type shock was
identical to a truncation of the steady state shock (for suffi-
ciently late ages). Flower & Pineau des Forêts (1999) used this
result to reproduce H2 excitation diagrams in Cepheus A West.

The aim of this paper is to rigorously test the ideas of
Raymond et al. (1988) and Flower & Pineau des Forêts (1999),
by clarifying the relationship between time-dependent mod-
els and steady-state models. Indeed, we will show that time-
dependence is within reach of steady state codes, as long as the
shock is not subject to strong instabilities.
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In Sect. 2 we study the stationary equations of magnetic
shocks, and derive new analytical relations. Section 2 is inde-
pendent of the other sections. Then, in Sect. 3, we assess the
validity of the stationary approach by using the results of our
fully hydrodynamical code (Paper I). In Sect. 4, we explain how
to build time-dependent models of low velocity shocks with
the only help of a steady-state code. We discuss our results in
Sect. 5 and sum up our conclusions in Sect. 6.

2. Analytics of steady shocks

When the flow is in a steady state, time derivatives can be
skipped in the steady frame. We derive here a few analytical
relations valid along such steady flows.

2.1. Dynamical equations in a conservative form

We recall here the time-dependent monodimensional equations
of multifluid hydrodynamics with a frozen transverse magnetic
field. We put them in their conservative form:
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∂x
(n jun + J j) = R j for j neutral specie (1)

∂

∂t
(n j) +

∂

∂x
(n juc + J j) = R j for j ionic specie (2)

∂

∂t
(ρnun) +

∂

∂x
(ρnu2

n + pn + πn) = Fc→n (3)

∂

∂t
(ρcuc) +

∂

∂x

(
ρcu2

c + pc + πi +
B2

8π

)
= Fn→c (4)

∂

∂t

(
1
γ − 1

pn +
1
2
ρnu2

n

)
+
∂

∂x

[
un

(
γ

γ − 1
pn +

1
2
ρnu2

n + πn

)]

= Λn + Qi→n + Qe→n + unFc→n − 1
2

u2
nMn (5)

∂

∂t

(
1
γ − 1

pi +
1
2
ρiu

2
c +

B2

8π

)

+
∂

∂x

[
uc

(
γ

γ − 1
pi +

1
2
ρiu

2
c + πi +

B2

4π

)]

= Λi + Qn→i + Qe→i + ucFn→c − 1
2

u2
c Mi (6)

∂

∂t

(
1
γ − 1

pe +
1
2
ρeu2

c

)
+
∂

∂x

[
uc

(
γ

γ − 1
pe +

1
2
ρeu2

c

)]

= Λe + Qn→e + Qi→e − 1
2

u2
c Me (7)

∂

∂t
(B) +

∂

∂x
(ucB) = 0 (8)

n, i, e, and c indices stand for neutrals, ions, electrons, and
charges. n j, ρ, u, B, p, and π are respectively the number den-
sities, mass densities, velocities, magnetic field, thermal and
viscous pressures. M, F, Q are the mass, momentum, and heat
transfer rates. Λ denotes radiative losses. R j stands for chemi-
cal rates, and J j for diffusive fluxes.

2.2. Steady state equations

Let us assume we are in a frame where the flow is in a steady
state. We may then drop the ∂∂t terms in Eqs. (1)–(8). If we now
integrate Eqs. (1)–(8) along the x coordinate, we link the state
of the gas at one point x in the shock to the state of the gas far
upstream, i.e. to the entrance parameters of the shock (denoted
with a 0 superscript in the following). We give here the result of
such an integration in terms of conserved fluxes (dotted letters)
through the steady region:
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Ṁn = ρ
0
nu0
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where S n, S i, and S e stand for the source terms in the right hand
side of the conservative form of the total energy Eqs. (1)–(8).
We define Λ = S n +S i+S e and we note that Λ = Λn+Λi+Λe.

Magnetic flux:

Ḃ = u0
c B0 = ucB. (16)

Integrals involve the source terms describing collisional, chem-
ical, and thermal exchanges between different fluids, and ra-
diative losses. The other terms describe the conservative phe-
nomena that share mass, momentum, and energy between their
available reservoirs (thermal, kinetic, viscous, magnetic...).
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In each sector of a steady J or C shock, we will now get
algebraic relations between the dominant conserved quantities.
We tackle successively the following features, in the order in
which a parcel of gas entering a magnetised shock would meet
them:

– the cold magnetic precursor, in which the ion velocity is
mainly decelerated, and friction starts to brake the neutrals;

– the hot magnetic precursor, in which the friction has
brought the temperature to a sufficiently high level that H2

cooling starts to play a dominant role (usually above neutral
temperatures of 103 K);

– the adiabatic front, in which viscosity in the neutrals con-
verts their remaining kinetic energy into heat;

– the relaxation layer, in which the gas cools down, is
compressed, and gets back to a thermal and chemical
equilibrium.

Finally, we derive analytical properties of the atomic plateau
that follows dissociative shock fronts.

2.2.1. Cold magnetic precursor

We assume here and in all the following that the ionisation frac-
tion is very low:

Ṁ = Ṁn + Ṁc = ρnun. (17)

Viscous, ram and thermal pressure of the charges also
are negligible compared to neutrals and magnetic pressure.
Furthermore, since this region is far from the adiabatic shock
front, neutral viscosity can safely be neglected as well. The to-
tal momentum flux is then:

Ṗ = Ṗn + Ṗc = ρnu2
n + pn +

B2

8π
· (18)

If the temperature of the neutrals stays low, radiative losses can
be neglected, and the total energy flux is:

Ė = Ėn + Ėc = un

(
γ

γ − 1
pn +

1
2
ρnu2

n

)
+ uc

B2

4π
· (19)

Finally, conservation of the magnetic flux through the steady
region gives:

Ḃ = Buc. (20)

We thus get 4 equations with 5 unknowns ρn, un, pn, B, and uc.
One variable can then be chosen to get expressions for all the
others. For example, pn is solution of a quadratic whose coef-
ficients depend on the shock parameters and the neutral den-
sity ρn:

p2
n

2π

Ḃ2

Ṁ2

ρ2
n
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+ pn
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1 − 2πṀ

Ḃ2ρn

2γ
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n

)]
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Ṁ2
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+

2π

Ḃ2

(
Ė − 1

2
Ṁ3

ρ2
n

)2

= 0. (21)

As another example, un is solution of a quadratic whose coeffi-
cients depend on the shock parameters and uc:

γ + 1
2(γ − 1)

Ṁu2
n −

γ

γ − 1

(
Ṗ − Ḃ2

8πu2
c

)
un + Ė − Ḃ2

4πuc
= 0. (22)

These relations hold up to the point above which radiative
losses cannot be neglected anymore (they would hold as well
in C-shocks upstream this point). In our simulations (Paper I),
this corresponds to the point where Tn > 103 K. The gas then
enters the hot magnetic precursor, where H2 cooling becomes
dominant.

2.2.2. Hot magnetic precursor

In this part of the magnetic precursor, ram pressure is directly
transferred into radiation via friction. There is no more increase
in the thermal pressure. Therefore, the neutral thermal pressure
becomes very quickly negligible against magnetic pressure. It
also remains negligible against ram pressure in the rest of the
magnetic precursor. This leads to the following reduced set of
equations:

Ṁ = ρnun

Ṗ = ρnu2
n +

B2

8π
Ḃ = Buc. (23)

We can derive from this a relation between the speeds of
neutrals and charges that is valid in magnetic precursors (or
C-shocks) downstream the point where | ∫ x

0
Λdx| dominates

over un
γ
γ−1 pn (usually, when Tn is greater than 103 K):

un =
1

Ṁ

(
Ṗ − Ḃ2

8πu2
c

)
· (24)

This last equation is complementary to Eq. (22). These equa-
tions provide a powerful way to test if the magnetic field com-
pression is correctly treated in a multifluid code.

2.2.3. Adiabatic shock front

In the shock front, the viscous pressure πn is one additional
unknown. We will therefore assume that we know the mag-
netic field Bp at the end of the magnetic precursor, as well
as the amount of energy radiated away in the precursor Ėp =∫
precursor Λdx′. Since the shock front is very tenuous, it is fair

to assume that neither the magnetic field nor the integrated ra-
diative losses will vary across it.

We can then define the new conserved fluxes for this region:

Ṗ′ = Ṗ − B2
p

8π

Ė′ = Ė + Ėp.
(25)

Four equations then combine together:

Ṁ = ρnun

Ṗ′ = ρnu2
n + pn + πn

Ė′ = un

(
γ

γ − 1
pn +

1
2
ρnu2

n + πn

)
+ uc

B2
p

8π

Ḃ = ucBp. (26)

Here, we explicitly deduce the pressure in terms of the density:

pn = (γ − 1)

(
1
2

Ṁ2

ρn
− Ṗ′ +

Ė′ − ḂBp/8π

Ṁ
ρn

)
· (27)
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We are not aware of any previous analytic expression relating
pressure to density throughout an adiabatic shock front, even in
the absence of magnetic fields. This relation is useful to test a
code in a shock front.

In addition, the post-shock velocity un can be calculated by
setting πn = 0 in Eq. (26), which gives the following quadratic
equation:

Ṁ
γ + 1

2
u2

n − γṖ′un + (γ − 1)(Ė′ − ḂBp/8π) = 0. (28)

Without magnetic field and energy losses, this quadratic gives
the post-shock velocity and hence the usual compression factor
in an adiabatic shock. The same kind of reasoning will also
provide us with analytic predictions in dissociative shock fronts
(see Sect. 2.3).

2.2.4. Relaxation layer

Here, radiative losses are not negligible anymore, and the equa-
tion of conservation of energy is left aside. But outside the
shock front, viscous pressures are negligible, so we only need
to make an assumption about the magnetic field. Since we ne-
glect the thermal and ram pressure of the charges, the momen-
tum conservation of the charges yields:

B2

8π
= Ṗc +

∫ x

0
Fn→cdx′. (29)

For low shock velocities, the last integral is dominated by the
magnetic precursor, where most of the ion deceleration occurs,
and B = Bp is also a correct approximation in the relaxation
layer. We are then left with two equations:

Ṁ = ρnun

Ṗ′ = ρnu2
n + pn (30)

pn(ρn) follows easily:

pn = Ṗ′ − Ṁ2

ρn
· (31)

Note that the intersection of this relation with the thermal equi-
librium relation pn(ρn) gives the final steady post-shock condi-
tions. Similarly, the intersection of the algebraic equations in
two adjacent sectors of the shock gives the physical conditions
at the transition between the two regions.

In cases of high shock velocities (greater than 30 km s−1 for
the models in Paper I), a recoupling of the velocities of charges
and neutrals may happen in the relaxation layer, which builds
up an additional magnetic pressure. After the recoupling zone,
we can assume that un = uc:

Ṁ = ρnun

Ṗ = ρnu2
n + pn +

B2

8π
Ḃ = Bun, (32)

pn(ρn) follows easily:

pn = Ṗ − Ṁ2

ρn
− Ḃ2

8πṀ2
ρ2

n. (33)

At the high density end of the relaxation layer, the total pres-
sure is dominated by magnetic pressure. This prevents the gas
to be compressed while it cools down, and leads to much lower
compression factors. The final state of the gas in this case corre-
sponds to the steady isothermal compression factor calculated
in the case of magnetic field coupled to the gas (see Draine &
McKee 1993, Eq. (2.19a)).

2.3. Adiabatic dissociative shock

In an adiabatic dissociative shock, energy losses can still be ac-
counted for by conserved quantities since thermal energy of the
gas is used to dissociate H2, i.e. converted into internal energy.
We then have:

Ė = un

(
γ
γ−1 pn +

1
2ρnu2

n + πn

)
+

∫ x

0
Rd

H2
Qdx′ (34)

where Q = 4.48 eV is the binding energy of the H2 molecule
and Rd

H2
is the local dissociation rate. The integral term is re-

lated to the change in the flux of H2 molecules by:∫ x

0
Rd

H2
Qdx′ = Q(0.5 − f (x))

ṀxH

µH
(35)

where f is the fractional abundance of H2 by number relative
to nH (initially f = 0.5), xH is the (fixed) elemental hydrogen
mass fraction, and µH is the mass of one hydrogen atom.

For more clarity, we neglect here the effects of the charged
fluid, but it would be straightforward to include the magnetic
pressure and radiative effects using primed shock parameters
like in the previous subsections. We then obtain a modified ver-
sion of Eq. (26), including the H2 dissociation energy:

Ṁ = ρnun

Ṗ = ρnu2
n + pn + πn

Ė = un

(
γ

γ − 1
pn +

1
2
ρnu2

n + πn

)
+ (1 − 2 f )

ṀQxH

2µH
· (36)

Unfortunately, we do not have a fixed relation between pn

and ρn as in the non-dissociative case, because the H2 frac-
tion f varies across the front and adds to the unknowns. But
the conditions at the end of the front can be found if one sets
πn = 0 and f = f ∗ where f ∗ is the H2 fraction at the end of the
shock. So doing, we get an equation similar to relation (28):

Ṁ
γ + 1

2
u2

n − γṖun + (γ − 1)

(
Ė − (1 − 2 f ∗)

ṀQxH

2µH

)
= 0. (37)

We simplify this equation by assuming the high Mach number
regime, for which Ṗ = u0Ṁ and Ė = 1

2 (u0)2Ṁ:

γ + 1
2

u2
n − γunu0 + α

γ − 1
2

(
u0

)2
= 0 (38)

where we defined α = 1−(1−2 f ∗) QxH

(u0)2µH
. 1−αmeasures the rel-

ative decrease in energy flux through the shock front due to H2

dissociation. In a non-dissociative shock, α = 1 since f ∗ = 0.5.
α reaches a minimum of 0.74 for a fully dissociative shock
( f ∗ = 0) just above the dissociation limit u0 = ud � 30 km s−1,
and tends to one again for very high shock speeds (where the
H2 dissociation energy becomes negligible compared to the ki-
netic flux).
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The compression factor through such a shock can now be
computed:

C =
u0

un
=
ρn

ρ0
=
γ +

√
γ2(1 − α) + α

(γ − 1)α
· (39)

The usual compression Ca =
γ+1
γ−1 is recovered when α = 1.

C = 5.8 for γ = 5/3 and α = 0.74.
We can get a simple expression for the temperature of the

atomic plateau ( f ∗ = 0) if we neglect the post-shock ram pres-
sure (so that pn = ρ

0(u0)2). This is only 20% accurate for the
compression factor obtained (we use γ = 5/3):

Tp =
µp

kB

(
u0

)2
α (40)

where µp is the mean molecular weight in the plateau. Tp

is hence nearly quadratic in the entrance velocity for strong
shocks.

The knowledge of the compression factor, along with the
assumption of steadiness of the adiabatic front provides us with
the velocity of the front relative to the piston in the adiabatic
phase of a dissociative shock front:

v = u/(C − 1). (41)

2.4. Validation of the analytical results on examples

We verified the analytical relations derived above by comparing
with numerical magnetic shock simulations from Paper I.

First, we find that the temperature and density of the atomic
plateau are well predicted by the formulae (39) and (40) in most
dissociative shocks. This was expected, since the width of the
adiabatic shock is so small that it is very likely to be in a steady
state: the sound crossing time of this feature is much shorter
than the time of variation of the entrance shock speed. In ad-
dition, in strongly oscillating shocks (weakly dissociative case
of Paper I), the maximum expansion of the front, correspond-
ing to the adiabatic, fully dissociative phase, coincides with the
velocity given by Eq. (41) (see Fig. 4d of Paper I).

We also verified the relations predicted for non-dissociative
shocks. As an example, in Fig. 1, we check the relations (22)
and (24) against the final steady-state of a C-type shock (dia-
monds). The agreement is very good, confirming that magnetic
compression is correctly treated in the code.

Finally, in Fig. 2 we plot in diamonds the state of the gas
for the same shock in a snapshot at t = 100 yrs, i.e. well prior
to steady (C-type) state. We overlay the algebraic relations pre-
viously derived for the various shock regions. The agreement
turns out to be very good. This comforts us in the ability of
the code to reproduce the conservation equations. It also points
out the fact that steady equations may well be valid to describe
a shock at early times, even though it has not reached its fi-
nal steady-state. It is to address the domain of validity of this
“quasi-steady” approximation that we set up the technique and
tests described in the next section.

 

Cold magnetic precursor

Hot magnetic precursor

Fig. 1. Steady state analytic relations between the velocities of neutrals
and charges are compared to an overlaid steady C-shock (diamonds).
The parameters of the shock are u = 20 km s−1, n = 104 cm−3 and
b = 0.1, time is t = 105 yr. The velocities in the shock frame are
computed using a velocity of the shock front of 0.13 km s−1, inferred
from Fig. 3d of Paper I.

   precursor 
Hot magnetic

Cold magnetic precursor

Thermochemical equilibrium

Relaxation layer

Adiabatic shock front
Pre-shock

Post-shock
  achieved

    shock
adiabatic
End of the

Fig. 2. Steady state analytic relations between pressure and mass den-
sity are compared to an overlaid future C-shock (diamonds). The pa-
rameters of the shock are u = 20 km s−1, n = 104 cm−3 and b = 0.1,
time is t = 102 yr. The additional necessary parameters Bp and Ėp

are read in the shock model at the end of the precursor (they are
not fitted).

3. Validity of the quasi-steady assumption
in time-dependent shocks

In this section we develop a method to characterise the local
steady velocity for each variable separately, and we use it to
test the “steadiness” of various shock regions in the simulations
of Paper I.
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3.1. Local steady velocities and quasi-steady state

Consider y, one of the N + 6 state variables that enter the set of
Eqs. (1)–(8). Its evolution equation in the frame of the piston
can be cast in the following form:

∂y

∂t
+
∂(uy)
∂x
= s (42)

where u = un or uc is the velocity of the fluid associated with y,
and s is a term that does not depend on the reference frame.

We define the local steady velocity vy for variable y as: the
velocity of a reference frame in which the time derivative in the
evolution equation vanishes. Hence:

∂

∂x
[(u − vy)y] = s. (43)

When y does not involve a velocity, i.e. does not depend on the
reference frame, a direct expression follows for the velocity vy:

vy =

[
∂(uy)
∂x
− s

]
/
∂y

∂x
· (44)

One has to be more careful when y depends on u. For exam-
ple, in the case y = ρu, vy is given implicitly by the following
quadratic equation:

v2y
∂ρ

∂x
− 2vy

∂y

∂x
+
∂(uy)
∂x
= s. (45)

The expression (44) is singular when ∂y
∂x = 0. This can easily be

understood: if the profile of y is flat, any velocity will do. It is
therefore crucial to take into account the finite numerical preci-
sion when trying to evaluate vy with these expressions. Indeed,
roundoff errors can make the gradient of y non zero even in
places where it should be.

Finally, expressions (44) and (45) yield a way of character-
ising the “steadiness” of the flow. At a given position x, if vy
does not depend on y, then there is indeed a frame moving at a
velocity v(x) in which none of the variables is changing in time.
Furthermore, if this velocity is constant throughout an extended
region, then this whole region is moving “en-bloc” at velocity v
and can be modelled with a truncated steady-state model. We
say that this region is in a quasi-steady state.

3.2. Validity of the quasi-steady state
in time-dependent shocks

For a selection of time steps of each of the dynamical models
that we simulated in Paper I, we computed the steady veloci-
ties vy in each zone for each variable y.

We evaluated the numerical noise in the following way: we
computed the change δvyy′ in the steady velocity vy when each
variable y′ was changed by 10−4 in relative value (correspond-
ing to our guess for the numerical precision). We then estimated
the numerical noise σy on variable y by:

σ2
y =

∑
y′

(δvyy′)
2. (46)

The noise-weighted mean steady velocity over all variables of
a subset S was then computed in each zone, as well as the cor-
responding numerical noise σnoise:

v =


∑
y∈S
vy/σ

2
y

 /

∑
y∈S

1/σ2
y

 (47)

σ2
noise = 1/


∑
y∈S

1/σ2
y

 . (48)

For charges and neutral momentum, both roots of
quadratic (45) where included. But for reasons that will
become clear in the next subsections, magnetic field was
excluded from this mean. Finally, the variance of individual vy
values about this mean velocity and the corresponding χ2 were
estimated:

σ2 =


∑
y∈S

(vy − v)2/σ2
y

 /

∑
y∈S

1/σ2
y

 (49)

χ2 =
1

#S
σ2/σ2

noise =
1

#S

∑
y∈S

(vy − v)2/σ2
y (50)

where #S is the number of variables in the subset S .
If the numerical noise is well estimated, a value of χ2 � 1

indicates that the dispersion of invidual vy values is consistent
with local numerical noise, i.e. that there may exist a common
steady velocity for all the variables of the subset S at that po-
sition. Regions where this is fulfilled and v is constant are the
quasi-steady regions for the set S .

A less strict criterion can be chosen for the local steadiness
if we think of the ratio v/σ as a “signal to noise”: even if χ2

is high, it may be possible that the ratio v/σ is high. In this
case, the steady velocities corresponding to different variables
are not equal, but they are close to one another: therefore, a
common steady velocity v is a good approximation.

It turns out that we compute very low values of χ2 in quite a
few zones. This indicates that the numerical precision we have
in these zones is far better than our estimate of 10−4. We hence
rather use the criterion based on the ratio v/σ and define the
quasi-steady regions as the regions with a constant velocity v
and a good “signal to noise” ratio.

The subset of variables S on which the averages are com-
puted should be the whole set of variables. However, the last
section of this paper needs only that the dynamically impor-
tant variables be in a quasi-steady state. Therefore we present
here the results for a subset S including the temperatures of the
three fluids, the four velocities (roots of Eq. (45) for y = ρnun

and y = ρcuc), He, H2, H2O, CO and OH densities. We do not
include the magnetic field in magnetised shocks, because its
steady velocity differs from the other variables as we will show
in the next section. We also did the calculation for S including
all the variables but the magnetic field, and found that it did
not change the general conclusions: the signal to noise ratio is
slightly less good, and a few zones are not quasi-steady any-
more because of marginal chemical species having a different
steady velocity than the bulk of the variables.
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    Relaxation layerAdiabatic front

Fig. 3. We plot the χ2 values and steady velocities for each variables
of S in each zone of snapshot t = 200 years for the shock with param-
eters b = 0, n = 104 cm−3, and u = 20 km s−1. Each dot represents the
steady velocity of one variable computed thanks to expressions (44)
and (45). The error bars are v ± σ evaluated zone per zone on these
values. We indicate the computational domains associated to the adia-
batic front and the relaxation layer of the shock.

We summarise the results of our investigation in the next
two subsections, devoted respectively to non-magnetised and
magnetised shocks.

3.2.1. J-type shocks (B = 0)

Non-dissociative J-type shocks
Figure 3 shows the χ2 as well as vwith error bars±σ in each

zone of a typical snapshot of a non-dissociative J-type shock.
The adiabatic front and relaxation layer show a good “signal to
noise” ratio and a flat steady velocity. On the contrary, the pre-
shock zones show a huge dispersion around the steady velocity,
expected from the homogeneity of the medium there. The fact
that we retained both velocities from expression (45) does not
alter the results, because the numerical errors on velocities are
actually much larger than for the other variables.

We find that all of our non-dissociative J-type shocks are
in a quasi-steady state from the adiabatic phase to the steady
phase (only the initial formation of the shock front is not quasi-
steady). Therefore, a snapshot of such a shock will always co-
incide with the truncated structure of a J-type steady state.

In Paper I, we plotted the trajectory of the point of maxi-
mum ratio of viscous over thermal pressure (see Fig. 1d). We
compute here the average steady velocity v over the whole
structure of the shock (trimmed from the pre-shock values) at
various times and overlay it over this trajectory in Fig. 4. Error
bars show the good consistency of the test, and the correspon-
dence of v with the velocity at which the viscous shock front
moves away from the piston.

Note that the entrance velocity in the shock is not the up-
stream velocity u of the fluid towards the piston, but rather
u0 = u + v. Hence, the entrance shock speed for the truncated
steady shock is evolving in time. In Sect. 4, we present a way
to reconstruct this evolution.

Fig. 4. Trajectory and velocity away from the piston of the J-shock
with parameters b = 0, n = 104 cm−3, and u = 20 km s−1 (from
Paper I). Overlaid diamonds are the steady velocities v averaged over
all variables and all zones, for each snapshot analysed.

Dissociative J-type shocks
On the contrary, dissociative shocks are almost never in a

quasi-steady state. For weakly dissociative velocities, we could
not come up with a coherent picture. This was expected, since
these shocks are highly unstable with large bouncing oscilla-
tions between a fully dissociative expansion phase and a non-
dissociative recoil phase (Paper I). Partly ionised shocks are
less unstable. We illustrate their behaviour with a typical ex-
ample shown in Fig. 5. The adiabatic front is generally in a
quasi-steady state with velocity roughly equal to the velocity
of the viscous maximum, but the dispersion is much higher
than for non-dissociative shocks. The first plateau that follows
(with H ionisation and Lyman cooling) is not at all in a quasi-
steady state: the dispersion is huge and the mean velocity is not
even constant. The second plateau (H recombination) seems
rather quasi-steady, but with a velocity much lower than the
adiabatic shock front. This warns us that steady-state diagnos-
tics may be hopeless for weakly non-dissociative shocks, and
that we have to be cautious for partly ionising shocks.

3.3. CJ-type and C-type shocks

Figure 6 shows v with error bars ±σ in each zone of an early
snapshot of a non-dissociative C-type shock. The shock then
has a composite CJ structure made of a magnetic precursor,
followed by a non-dissociative adiabatic front and a relaxation
layer. We find that the magnetic precursor is in a quasi-steady
state with a high steady velocity. This is in agreement with the
remark of Chièze et al. (1998). At the very end of the magnetic
precursor, the large dispersion in steady velocities is due to the
fact that two different steady velocities coexist among the vari-
ables. Following this, the adiabatic front and relaxation layer
appear to be in a quasi-steady state, but with a much lower ve-
locity than the magnetic precursor. However, strictly speaking,
it is not a real quasi-steady state, as the steady velocity for the
magnetic field remains equal to the high steady velocity of the
magnetic precursor.
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Adiabatic front First and second
plateaux

Fig. 5. Same as Fig. 3, but for a partly ionising shock of parameters
b = 0, n = 104 cm−3, and u = 40 km s−1 at time t = 220 years.
Here, the scale of the plot is linear, so that the dispersion is in fact
much greater than for the non-dissociative shocks, even in the second
plateau.

Relaxation

magnetic field
steady velocity

    layer

Magnetic precursor

Adiabatic 
     front

Fig. 6. Same as Fig. 3, but for time t = 100 years of the future C-shock
with b = 0.1, n = 104 cm−3, and u = 20 km s−1. We also show the
steady velocity for the magnetic field.

Figure 7 shows that the two steady velocities (relaxation
layer and precursor) correspond well to the velocities of the
viscous maxima of neutrals and charges determined by time-
derivation of their trajectory. As time evolves, the velocity of
the magnetic precursor and that of the relaxation layer get
closer to one another, and finally coincide after the J-front has
disappeared. The C-type structure is then in a quasi-steady state
as a whole.

In principle, one should then be able to model an early age
of a low velocity C shock by combining a truncated C-type
model with a truncated J-type model (in which the magnetic
field is treated appropriately). The problem is a bit more com-
plex than in the J-type case because we need now to determine
two different truncation distances and two sets of entrance pa-
rameters, but we will show in Sect. 4.2 that it is possible to
solve.

This picture holds for all shocks with magnetic field, as
long as there is no dissociation or ionisation plateau. In the case
of dissociative velocities, the same problems described in the

Fig. 7. Same as Fig. 4, but for a C-shock of parameters b = 0.1, n =
104 cm−3 and u = 20 km s−1. Curves plot the trajectory and velocity of
the neutral (solid) and charged (dashed) viscous fronts. Diamonds are
the quasi-steady velocities of the relaxation layer and adiabatic front.
Triangles are the quasi-steady velocities of the magnetic precursor.

previous subsection arise in the corresponding features of the
relaxation layer.

This picture is the same for all magnetic shocks. The only
difference between CJ-type and C-type is whether or not the
J-front has disappeared when the steady velocities of the re-
laxation layer and the magnetic precursor converge. From this
remark, we will obtain in Sect. 4.2.1 a way to assess if a low
velocity shock will eventually become a steady CJ-type shock.

4. Time-dependent constructions of shocks
at early times

Here, we derive methods of reconstruction of time-dependent
shocks using truncated steady models. Those constructions will
be meaningful only for the shocks in which the quasi-steady
state has been validated at all times, although they can in prin-
ciple be realised in any shock. Due to their different complex-
ities, we treat successively the case of non-dissociative J-type
shocks and non-dissociative magnetised shocks.

4.1. Non-dissociative J-type shocks

Section 3.2.1 has shown that the whole structure of non-
dissociative J-type shocks is at all times quasi-steady. One
may then safely fit truncated steady models to observations.
The fitted parameters would be the entrance parameters in the
shock frame and the truncation distance. But one would then
like a method to relate these parameters to the parameters of
the shock in the piston frame, and to the age of the shock.
Conversely, one would like to build at will a snapshot of a shock
of given age and parameters (in the piston frame), with the only
help of a steady state code. We come up with such a procedure
in the following.

A steady-state code provides us with the steady profile of
any variable in the frame of the shock front for a given set of
entrance parameters (u0, n). Say, the steady velocity us(u0, n; x),
where x is the distance from the shock front. If we are given an
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Fig. 8. Schematical view of a J-type shock in the piston frame and in
the shock frame.

inflow speed and density (u, n) in the frame of the piston and a
time t, the problem is to find what is the entrance velocity u0

at the same time t in the frame of the shock front as well as
the corresponding distance r between the shock front and the
piston.

To help set up the notations in both frames of the shock and
of the piston, we sketched in Fig. 8 the different lengths and
velocities involved.

At any given time, velocities in the shock frame are found
by adding v = ṙ to velocities in the piston frame. The entrance
shock speed is then:

u0 = u + ṙ, (51)

while the velocity at the piston – which must be null in the
piston frame – is, in the J-shock frame:

us(u0, n; r) = ṙ. (52)

These relations combine to give an implicit equation link-
ing ṙ to r:

ṙ = us (u + ṙ, n; r) . (53)

Furthermore, in a quasi-steady state, mass conservation re-
quires that us(u0, n; r) × C = u0, i.e. ṙ = v = u/(C − 1)
where C is the compression factor at the piston. From the adia-
batic phase (C = 4) to the steady state (C � 1), the speed v of
the front thus decreases from 1

3 u to nearly 0. Therefore, if the
steady state code provides us(u0, n; r) for a range of velocities
u < u0 < 4

3 u, the Eq. (53) is an implicit ordinary differential
equation straightforward to integrate up to time t with initial
conditions r = 0 and ṙ = 1

3 u. Actually, an interpolation be-
tween a few steady models might be sufficient to get accurate
results.

Conversely, if the problem is to recover the time from a
steady model truncated at distance R, we only have to integrate
Eq. (53) backward in time up to the point where r = 0 and

compute t =
∫ R

0
1
ṙ dr.

High compression factor approximation:
For high compression factors, the final ṙ is small enough

to be neglected with respect to u, which makes the compu-
tation even easier. The integral yielding the age is dominated
by the very low velocities, which are also the most recent
ones. Therefore, we only need one steady state model us(x) =
us(u, n, B; x). The age of such a truncated shock is simplified in
the following way.

t =
∫ R

0

1
us

dx. (54)
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Fig. 9. Schematical view of an early magnetised shock in the piston
frame.

In this last expression, one recognises the flow time across the
shock. Since for strongly radiative shocks, the compression
factor rises very quickly, this approximation is valid even for
very young ages. For example, the shock of parameters b = 0,
n = 104 cm−3, and u = 20 km s−1 has a compression factor
of 10 at as early as t = 1 year (see Fig. 4).

4.2. Non-dissociative magnetised shocks

The analysis of Sect. 3 showed that low-velocity magnetised
shocks are composed of two quasi-steady regions: a mag-
netic precursor, and a non dissociative J-type feature. In faster
shocks, where the entrance velocity in the J-type feature is dis-
sociative, the J-type structure is not in a quasi-steady state, al-
though the magnetic precursor is. We thus restrict our analysis
to the non-dissociative cases.

In principle, one should then be able to model a snapshot
of such a shock by gluing together two truncated steady C
and J models. The problem is to determine the entrance pa-
rameters and lengths of each of the two shock features, for a
given time t and a given set of parameters (u, n, B) in the piston
frame. A rigorous construction method is outlined below.

In the following, rC and rJ denote respectively the distance
of the fronts of the C-type and the J-type features with re-
spect to the piston (see Fig. 9). Variables computed in the refer-
ence frame of the C-type feature are denoted with C subscripts.
Variables in the J-type feature frame are specified with J sub-
scripts. Entrance parameters in the shocks have a 0 superscript.

Now, let us assume that we know the positions rC and rJ

at current time t. To solve for their evolution, we need to find
equations that will determine ṙC and ṙJ.

The entrance velocities in the C-type feature are simply:

u0
nC = ṙC + u

u0
cC = ṙC + u

n0
C = n

B0
C = B. (55)
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The steady-state code for the C-type feature then provides us
with the entrance values of velocities, densities, and magnetic
field at the position of the J-front, x = rC − rJ. After a suitable
change of reference frame for the velocities, they determine
the entrance parameters in the J-type shock:

u0
nJ = ṙJ − ṙC + unC(u + ṙC, n, B; rC − rJ)

u0
cJ = ṙJ − ṙC + ucC(u + ṙC, n, B; rC − rJ)

n0
nJ = nnC(u + ṙC, n, B; rC − rJ)

n0
cJ = ncC(u + ṙC, n, B; rC − rJ)

B0
J = BC(u + ṙC, n, B; rC − rJ).

(56)

The steady-state J-shock must then be integrated. A multifluid
treatment is necessary, since un and uc at the entrance of
the J-front are different. Furthermore, a special treatment
of magnetic field compression is necessary, since Sect. 3.3
showed that the steady velocity for the magnetic field in the
J-type feature is not ṙJ, but remains the same as in the magnetic
precursor, namely vB = ṙC. It means that the product of B with
the velocity of charges computed in the frame of the C shock
remains constant through the J-type feature:

B × (ucJ − ṙJ + ṙC) = B0
C × u0

cC. (57)

Therefore, the evolution of the J-type feature depends not only
on the entrance parameters determined above but also on ṙC−ṙJ.

As in the non-magnetic case, the derivatives ṙC and ṙJ

are then determined by stating that both charges and neutrals
have to be at rest near the piston, i.e., in the frame of the J-front:

ṙJ = unJ(u0
nJ, u

0
cJ, n

0
nJ, n

0
cJ, B

0
J , ṙC − ṙJ; rJ)

ṙJ = ucJ(u0
nJ, u

0
cJ, n

0
nJ, n

0
cJ, B

0
J , ṙC − ṙJ; rJ).

(58)

We thus get two independent implicit equations for ṙJ and ṙC.
Numerical techniques to solve these equations still need to be
designed, but should not be too hungry in CPU time.

4.2.1. Final steady state: C or CJ?

We have now a means of computing the time evolution of a
magnetised shock with only a steady-state code. One should
then be able to integrate it from initial conditions rJ = rC = 0
up to the steady state where ṙJ and ṙC are equal constants. If
during the evolution the entrance velocity in the J-shock u0

nJ be-
comes subsonic, then one should stop the integration because
the J-shock disappears, and the remaining sound wave propa-
gates through the structure until a stationary C-type structure is
obtained. If u0

nJ stays supersonic when ṙJ and ṙC are equal con-
stants, then the result is a CJ-type shock steady-state. Hence,
one is forced to integrate over time ṙJ and ṙC given implicitly
by Eqs. (58) to know what is the final steady-state correspond-
ing to a given set of parameters (u, n, B).

However, one could also think about solving Eqs. (56)
and (58) for given arbitrary values of the final front velocity
vf = ṙJ = ṙC. The result would be a series of physically con-
sistent steady CJ-type states, each characterised by a different
distance rC − rJ. Only one of these is selected by the time evo-
lution but, if the entrance parameters (u, n, B) are allowed to
evolve in time, it might be possible that several (or even all)
of these final states can be realised. The final state would then
depend on the evolution history of the entrance parameters.

In fact, a very easy way to exhibit one of those CJ-type
steady-states would be to use a multifluid steady-state code,
and trigger the viscous dissipation in the neutral at a given po-
sition rC − rJ where the neutral velocity is still supersonic.

4.2.2. Low velocity, high compression factor
approximations

For all the low velocity cases encountered in our simulations,
we noted that after one year of time, the velocity of the charges
was already almost brought to rest at the end of the magnetic
precursor. This approximation yields the following equation:

ṙC = ucC(u + ṙC, n, B; rC − rJ) (59)

which implicitly gives the velocity ṙC. The velocity ṙJ can then
be retrieved by solving the first equation of the set (58).

Just like for the J-type shocks, high magnetic compression
factors will lead to ṙC negligible before u, and will facilitate the
integration of Eq. (59). In this case, and if in addition rJ � rC,
the age of the shock is given by:

t =
∫ rC−rJ

0

1
ucC

dx (60)

which is the flow time of the charges across the magnetic
precursor.

5. Discussion

The analytic relations we found make good benchmarks for
testing codes. In addition, they might provide some theoretical
basis for further investigation of the properties of these shocks
in the parameter space.

The quasi-steady state analysis of shocks opens a new field
of possibilities for the steady-state codes. We compare here-
after our method to previously used algorithms, and sketch pos-
sible extensions of our method.

5.1. Comparison with previous work

Our quasi-steady state analysis of J-shocks justifies the use of
truncated steady-state J-shocks by Raymond et al. (1988). We
provide more theoretical basis to link the true age of the shock
to the truncation distance used.

Flower & Pineau des Forêts (1999) and Le Bourlot et al.
(2002) use simple algorithms to produce mixed C-type and
J-type features to mimic time-dependent magnetised shocks.
Le Bourlot et al. (2002) greatly improved the method used by
Flower & Pineau des Forêts (1999) since they keep the mul-
tifluid treatment of the flow through the relaxation layer. They
just switch on viscosity in the neutral fluid when they encounter
a sonic point. The present analysis gives a less heuristic way to
know at which point the viscosity should be switched on, and
Paper I has already shown that it can be way upstream a sonic
point. Furthermore, we specify that a change of velocity frame
has to be done at the end of the magnetic precursor, except for
the magnetic field equation. Finally, we state where the J-type
structure has to be truncated for a given time t.
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Our new method should therefore lead to more accurate re-
sults, and will allow the construction of much earlier phases
of magnetised shocks. It shows as well that the criterion used
by Le Bourlot et al. (2002) to assess whether steady-states will
be of CJ-type (occurrence of a sonic point in the neutral fluid)
has to be revised. CJ-type steady states may in fact occur at
lower speeds, when velocity recoupling between neutral and
charges enhances magnetic compression near the piston, and
slows down the precursor to the expansion speed of the J-front.

5.2. Possible extensions of the method

First, let us point out that the time-dependent construction
method derived here relies only on the quasi-steady state as-
sumption for a limited number of variables, namely velocities,
densities, and magnetic field. For example, if a set of chemical
species can be identified to have no impact on the dynamics,
they can be skipped in the process of building the truncation
radii, and computed only in the last resort.

Following the same idea, if non-dynamically important
species happen to be non quasi-steady, they can be post-
processed in parallel to the quasi-steady time-evolution with
a Lagrangian code.

Here we present an algorithm for two kinematic flows
(charges and neutrals), but the same method may be imple-
mented for more flows. Especially, the treatment of charged
grains could be envisaged, in relation to the questions raised
by Ciolek & Roberge (2002) and Flower & Pineau des Forêts
(2003). The only caveat is that we do not yet have a consistent
check for the validity of the quasi-steady assumption.

Finally, our algorithm is straightforward to apply with
slowly changing input conditions (u, n, B) in the piston frame.
One has only to bear in mind that if these parameters change
over time-scales much shorter than the crossing time scale of
the shock, then the quasi-steady assumption is very likely to be
violated.

5.3. Limitations of our method

Our algorithm is based upon the quasi-steady state assumption.
However, it will give results with any shock. One problem is
that we still have no other way to assess the validity of the
steady-state assumption than computing the time-dependent
evolution with a fully hydrodynamical code.

We encountered several cases where this assumption was
not realised. Strongly unstable shocks like the weakly disso-
ciative ones violate strongly this assumption. Fortunately, they
seem to happen for a very restricted range of parameters. Partly
ionising shocks are very slightly unstable, and are closer to
meet the quasi-steady state assumption. They might therefore
be accounted for by our algorithm. Finally, quite a few magne-
tised shocks have unstable entrance velocities for the J-shock
only at early times, and are afterwards quasi-steady at all times.
These shocks may be as well within reach of our algorithm if
one is ready to skip the early evolution. However, one should

always be cautious when a plateau with dissociated molecules
appears in a steady-state computation.

An other situation where the quasi-stationary assumption
may be strongly violated is the case where a dynamically im-
portant chemical specie is not in a quasi-steady state. This
might happen when a dominating cooling agent varies on very
short time scales. Furthermore, diffusion effects, if they turn
out to be important, will destroy the quasi-steady state as well.

6. Conclusions

In a companion paper (Paper I), we produced fully time-
dependent numerical simulations of molecular shocks.

In the present paper, we derived new analytical relations
valid at quasi-steady state, and successfully checked them on
our simulations. These relations provide useful benchmarks to
test existing and future multifluid codes.

In light of the simulations run in Paper I, we investigated
carefully the validity of the quasi-steady state approximation.
It was found that at all times stable shocks could be accounted
for by truncated steady models. We point out as well that cau-
tion has to be kept regarding the use of steady-state models for
dissociative velocities.

Finally, we produced a new algorithm based on the quasi-
steady state assumption. With only a steady-state code, this
method is able to compute time-dependent snapshots of shocks
in the presence or not of a magnetic field. Therefore, it brings
time-dependence within the reach of steady models, and should
greatly improve the diagnostics of observed molecular shocks.
Furthermore, it provides a way of assessing the CJ nature of
a magnetised shock. Finally, this algorithm can be extended
to many shocks other than molecular, provided that the quasi-
steady state approximation is validated.

Acknowledgements. We thank the referee (Pr. T.W. Hartquist) for hav-
ing kindly accepted to refer both paper I and paper II at the same time.
This work was in part supported by a European Research & Training
Network (HPRN-CT-20002-00303).

References

Ciolek, G. E., & Roberge, W. G. 2002, ApJ, 567, 947
Chièze, J.-P., Pineau des Forêts, G., & Flower, D. R. 1998, MNRAS,

295, 672
Draine, B. T., & McKee, C. F. 1993, ARA&A, 31, 373
Flower, D. R., & Pineau des Forêts, G. 1999, MNRAS, 308, 271
Flower, D. R., & Pineau des Forêts, G. 2003, MNRAS, 343, 390
Le Bourlot, J., Pineau des Forêts, G., Flower, D. R., & Cabrit, S. 2002,

MNRAS, 332, 985
Lesaffre, P., Chièze, J.-P., Cabrit, S., & Pineau des Forêts, G. 2004,

A&A, 427, 147
Lim, A. J., Raga, A. C., Rawlings, J. M. C., & Williams, D. A. 2002,

MNRAS, 335, 817
Raymond, J. C., Hester, J. J., Cox, D. et al. 1988, ApJ, 324, 869
Smith, M. D., & Rosen, A. 2003, A&A, 339, 133


