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The collision cross sections of sodium from the ground state to the first four excited states at the incident energy
ranging from 0 to 5.4 eV are calculated using the R-matrix method. The convergences of the cross sections are
checked systematically by using four sets of high-quality target states, i.e., 5, 9, 14, and 19 physical target states.
The influence of the Rydberg target states on the collision cross sections is also elucidated at higher incident
energies; i.e., the amplitude of resonance structures will decrease with respect to the effective quantum number υ

of the Rydberg target states. This result is very useful for the calculations of these cross sections at intermediate
energy with finite target states by combining the partial-wave-expansion methods valid at low energy with the
first Born approximation method valid at high energy, which would be of great importance in obtaining complete
cross-section data for related scientific fields.
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I. INTRODUCTION

The process of electron-impact excitation plays an impor-
tant role in various fields, such as radiation physics [1], plasma
physics [2], atmospheric physics [3], and astrophysics [3–5],
in which the collision cross sections are the indispensable
physical parameters. Since the 1930s, both experimental
measurements and theoretical calculations have been carried
out to obtain the electron collision cross sections of sodium
owing to its relatively simple electronic structure (reviewed
by Ref. [6,7]). For instance, Enemark and Gallagher measured
the collision cross section for the strong transition 3s-3p at a
wide energy range; i.e., from threshold (2.1 eV) to 1000 eV
[8]. The measurement of collision cross sections from the
ground state to the final excited states (up to 7f ) with the
energy range of 0–150 eV was also reported [9]. However,
due to the experimental difficulties, distinct differences exists
between the collision cross sections obtained in the above
two measurements, which reaches 50% even for the 3p state.
As for the theoretical calculations, apart from the Bethe or
first Born approximation, calculations based on close-coupling
method were also reported, e.g., four-state close coupling
calculations [10] and coupled-channels R-matrix calculations
with 11 target states [6]. But those theoretical calculations
at low incident energies are still limited. The dynamical
process in this energy region becomes very complicated
when the resonance structures caused by including higher
Rydberg target states are involved. Therefore, more complete
and precision theoretical results are motivated. In this work,
using the R-matrix method [11–17] we systematically calcu-
lated the collision cross sections of sodium from ground state
to the first four excited states at incident energy ranging from
0 to 5.4 eV (above the 3s ionization threshold) by four sets of
high-quality target states; i.e., 5, 9, 14, and 19 physical target
states, respectively. Our calculated cross sections are in good
agreement with the available absolute experimental results [9].

At low incident energies, our calculated cross sections are in
good agreement with the previous theoretical results [6]. At
higher incident energies, the influence of such Rydberg target
states to the collision cross sections is elucidated, i.e., the
amplitude of resonance structures will decrease with respect to
the effective quantum number υ represented the Rydberg target
states considered. Therefore, for the cross sections of electron
impact excitation between the lower excited targets, we only
need to use finite physical target states in practical calculations.
It implies that the cross sections obtained by the partial-wave
expansion methods at low energy could be interfaced with
the cross sections obtained by the first Born approximation
method at high energy [18]. A scheme to calculate the cross
sections in the entire incident energy range is discussed in
the conclusions, which should be very important to obtain the
complete cross-section data for related scientific fields.

II. THEORETICAL METHODS AND CALCULATION
RESULTS

The detailed descriptions of R-matrix method dealing with
the electron-atom collision process have been presented in the
previous works [11–17]. Only a brief outline will be given here.
This method begins by partitioning the subconfiguration space
of the colliding electron into two regions by a sphere of radius
a centered on the nucleus. In the external region r > a, where r
is the distance of the colliding electron relative to the centroid
of target (i.e., the atom), the exchange interactions between
the colliding electron and the target electrons are negligible.
The colliding electron mainly feels a “free potential” with
approximate long-range static polarization potentials. Within
the reaction zone r � a, the interactions between the colliding
electron and the target electrons involve electron exchange and
correlation interactions. It is a many-electron problem, which
is solved variationally as a whole to obtain the logarithmic
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TABLE I. The basis sets used in the calculations.

Configurations of (N + 1)-
Basis Atomic No. of physical No. of other electron system in
set no. orbitals (AO)a Physical target statesc target states target statese R-matrix calculationf

Set 1 v2, v3, v̄4
b 2p63s1 2Se, 2p63p1 2P ◦, 2p64s1 2Se, 5 26 2p6AO2, 2p5AO3

2p63d1 2De, 2p64p1 2P ◦

Set 2 v2, v3, v4, v̄5
b Set 1d+2p65s1 2Se, 2p64d1 2De, 9 42 2p6AO2, 2p5AO3

2p64f 1 2F ◦, 2p65p1 2P ◦

Set 3 v2, v3, v4, v5, v̄6
b Set 2d+2p66s1 2Se, 2p65d1 2De, 14 41 2p6AO2, 2p5AO3

2p65f 1 2F ◦, 2p65g1 2Ge, 2p66p1 2P ◦

Set 4 v2, v3, v4, v5, v6, v̄7
b Set 3d+2p67s1 2Se, 2p66d1 2De, 19 43 2p6AO2, 2p5AO3

2p66f 1 2F ◦, 2p66g1 2Ge, 2p67p1 2P ◦

aOne-electron atomic orbitals used to construct the multielectron bases, including the spectroscopy orbital denoted as nl and polarized
pseudo-orbitals denoted as nl̄.
bOrbitals classified by manifold, denoted by: v2 = 3s, 3p; v3 = 4s, 3d, 4p; v4 = 5s, 4d, 4f, 5p; v̄4 = 5s̄, 4d̄, 4f̄ , 5p̄; v5 = 6s, 5d, 5f, 5g, 6p;
v̄5 = 6s̄, 5d̄, 5f̄ , 5ḡ, 6p̄; v6 = 7s, 6d, 6f, 6g, 7p; v̄6 = 7s̄, 6d̄, 6f̄ , 6ḡ, 7p̄; v̄7 = 8s̄, 7d̄, 7f̄ , 7ḡ, 8p̄.
cDenote the target states formed by spectroscopy orbitals, represent the physical states observed in the spectrum.
dDenote the physical target states used in corresponding basis set.
eDenote other quasistates involve pseudo-orbitals.
fConfigurations formed by spectroscopy orbitals and pseudo-orbitals in corresponding basis set. AO2 denote the n1l1n2l2 and n1l

2
1 types of

configurations. AO3 denote the n1l1n2l2n3l3, n1l1n2l
2
2 , and n1l

3
1 types of configurations.

derivative boundary matrix R(E). Therefore, within the re-
action zone the electron correlations for the (N + 1)-electron
system including the target Na and a colliding electron are
calculated adequately by variational method [19]. The wave
function � for the (N + 1)-electron system of eigenenergy E

within the reaction zone are expanded as:

� =
∑

k

AEk
�k, (1)

where �k are the energy-independent bases, which are ex-
panded by the following way:

�k = A
∑
ij

aijk�i

1

rN+1
uij (rN+1) +

∑
j

bjkφj , (2)

where A is the antisymmetrization operator which accounts
for the electron exchanges between the target electrons and
the colliding electron. �i are the channel wave functions
obtained by coupling the N -electron target wave functions
with the angular momentum and spin of the colliding electron.
uij are the continuum orbitals. φj are (N + 1)-electron wave
functions formed from the bound-type orbitals to ensure the
completeness of the total wave functions and take account
of the electron correlations within the reaction zone. The
coefficients aijk and bjk are obtained by diagonalizing the
Hamiltonian matrix of the (N + 1)-electron system. Using
the R-matrix method, we can accurately calculate the interac-
tions between the N -electron target and the colliding electron
in various channels within the reaction zone.

In this work, based on multiconfiguration self-consistent
field (MCSCF) calculation strategies [20], we use CIVPOL

code [21] to optimize four sets of high-quality target orbital
bases where polarized pseudo-orbitals [22–24] are included,
by which we can take into account the static polarization
effects between the scattered electron and the target electrons
adequately. The differences between the four sets of bases are

mainly the number of spectroscopy orbitals used to describe
the physical target states which correspond to the physical
states observed in the spectrum. The orbitals in each set
are listed in Table I. More specifically, the four sets of
orbital bases classified by manifold of effective quantum
number ν are constructed from atomic orbitals including
spectroscopy orbitals (labeled as nl and with fixed number of
radial nodes, i.e., n-l-1) and pseudo-orbitals (labeled as nl̄ and
without restriction of radial nodes). For ν � np, where np =
3, . . , 6 for basis sets p = 1, . . , 4 respectively, the orbitals
are optimized as spectroscopy orbitals with the configurations
generated with single excitation from 3s1 only. In order to
consider the dynamic polarization correlations adequately,
we further optimize the ν = np + 1 manifold orbitals as
polarized pseudo-orbitals with the configurations created by
single excitations respectively from core 2p6 and valence 3s1.
The calculated energy levels of the corresponding physical
target states of the four sets are all in good agreement with the
experimental values [25] within 1%. As an example, using the
orbitals of Set 4, our calculated lowest 19 energy levels of target
(i.e., Na) are shown in Table II. Such agreement demonstrates
that the electron correlations of target are taken into account
adequately. Using these sets of “quasicomplete” bases, we
can construct configuration interaction (CI) wave functions of
the target states with the configurations generated by single
excitations respectively from core 2p6 and valence 3s1. Based
on these wave functions, we carefully choose four sets of target
terms respectively to calculate the collision cross sections. The
highest target state excitation energy of each set is larger than
2.89 au. As shown in Table I, Set 1 includes five physical
states (with effective quantum number υ � 3) and 26 other
pseudostates which involve pseudo-orbitals, Set 2 includes 9
physical states (with υ � 4) and 42 other states, Set 3 includes
14 physical states (with υ � 5) and 41 other states while Set
4 includes 19 physical states (with υ � 6) and 43 other states.
By using these sets of target, we can systematically examine
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TABLE II. Our calculated lowest 19 energy levels of Na (in eV
unit) relative to the energy level of ground state Na[2p63s1] 2Se using
basis set 4.

No. Physical target state This work NIST data [25] �a

1 2p63s1 2Se – – –
2 2p63p1 2P o 2.120 123 79 2.104 550 266 0.74%
3 2p64s1 2Se 3.171 185 44 3.191 535 405 −0.64%
4 2p63d1 2De 3.593 495 87 3.617 178 752 −0.65%
5 2p64p1 2P o 3.738 819 42 3.753 537 088 −0.39%
6 2p65s1 2Se 4.093 060 03 4.116 595 446 −0.57%
7 2p64d1 2De 4.258 547 37 4.283 742 686 −0.59%
8 2p64f 1 2F o 4.261 839 97 4.288 477 79 −0.62%
9 2p65p1 2P o 4.323 855 21 4.345 009 152 −0.49%

10 2p66s1 2Se 4.486 267 65 4.509 889 087 −0.52%
11 2p65d1 2De 4.566 37 86 4.592 235 937 −0.56%
12 2p65f 1 2F o 4.568 215 38 4.594 826 859 −0.58%
13 2p65g1 2Ge 4.568 310 62 4.595 061 203 −0.58%
14 2p66p1 2P o 4.600 665 21 4.624 419 867 −0.51%
15 2p67s1 2Se 4.687 361 37 4.713 163 429 −0.55%
16 2p66d1 2De 4.733 498 64 4.759 686 583 −0.55%
17 2p66f 1 2F o 4.734 614 31 4.761 240 566 −0.56%
18 2p66g1 2Ge 4.734 668 74 4.761 377 701 −0.56%
19 2p67p1 2P o 4.753 757 67 4.778 647 708 −0.52%

aPercentage difference between our calculation results and the NIST
data [25], (Etheor − ENIST)/ENIST.

the convergence of the scattering calculations and elucidate the
influence of the Rydberg states to the collision cross sections.
For each angular momentum l of the scattering electron,
we choose more than 60 Lagrange-orthogonalized continuum
orbitals. The highest orbital energies of them are larger than 3.5
au. Furthermore, the total wave functions of (N + 1)-electron
system of the inner region are constructed according to
Eq. (2). The (N + 1)-electron configurations used in the
calculations are also shown in Table I, where all configurations
generated by single excitations respectively from the core 2p6

and double excitation from valence 3s2 of each set are adopted
in order to consider the electron correlations within the reaction
zone adequately and avoid pseudoresonance, which will be
discussed later.

In the outer region, the wave function of the colliding
electron satisfies the boundary conditions at infinity:

Fij (r) ∼
r→∞

{
k

−1/2
i [sin θi(r)δij + cos θi(r)Kij ], open channels,

exp[−ϕi(r)]δij , closed channels,

(3)

where ki is the wave number of colliding electron and

θi(r) = kir − 1
2 liπ − ηi ln 2kir + arg �(li + 1 + iηi), (4)

ηi = − z

ki

, (5)

ϕi(r) = |ki |r − z

|ki | ln(2|ki |r), (6)

where z is the residual target charge. K is the reaction matrix,
from which we obtain the transition matrix by:

T = 2iK

1 − iK
. (7)

Here K and T are all diagonal with respect to the total
angular momentum L, total spin S, and parity  of the
(N + 1)-electron system and independent of the projections
of L and S on the quantization axis. From the T matrix we
can construct scattering amplitudes, cross sections, or other
scattering quantities [26]. The differential cross section for
a transition from an initial target state denoted by αiL̃i S̃i

to a final target state denoted by αj L̃j S̃j , where αi and
αj represent the additional quantum numbers necessary to
completely define the target states, is:

dσ

d�
(αiL̃i S̃i → αj L̃j S̃j |θ ) = kj

2ki

|fij |2

=
∑

λ

Aλ(αiL̃i S̃i → αj L̃j S̃j )Pλ(cos θ ), (8)

where fij is the scattering amplitude and

Aλ(αiL̃i S̃i → αj L̃j S̃j )

= 1

8k2
i (2L̃i + 1)(2S̃i + 1)

∑
li lj l

′
i l

′
j Sjt

ili−lj +l′i−l′j (−1)jt+λ

× (2jt + 1)〈li l′i00 | λ0〉〈λ0 | lj l
′
j 00〉W (li lj l

′
i l

′
j ; jtλ)

×M
Sjt∗
l′i l

′
j

(αiL̃i S̃i → αj L̃j S̃j )MSjt

li lj
(αiL̃i S̃i → αj L̃j S̃j ),

(9)

where we define:

M
Sjt

ll′ (αiL̃i S̃i → αj L̃j S̃j )

=
√

(2l + 1)(2l′ + 1)(2S + 1)

×
∑
Lπ

(−1)L(2L + 1)W (lL̃i l
′L̃j ; Ljt )

× T LSπ
(ll′) (αiL̃i S̃i → αj L̃j S̃j ). (10)

Here k2
i is the energy of the incident electron; li and lj are

the angular momentums of incident and scattered electrons;
jt = lj − li = L̃i − L̃j is the angular momentum transferred
during the collision; Pλ(cos θ ) are the Legendre polynomials
and W (abcd; ef ) is a Racah coefficient defined in Ref. [27].
The total cross section for this transition is given by:

σ(αi L̃i S̃i )→(αj L̃j S̃j ) = 4πA0(αiL̃i S̃i → αj L̃j S̃j ), (11)

which can be expressed as the summation of infinite partial
cross sections:

σ(αi L̃i S̃i )→(αj L̃j S̃j ) =
∑
LSπ

σLSπ

(αi L̃i S̃i )→(αj L̃j S̃j ), (12)

where the partial cross section for this transition is:

σLSπ

(αi L̃i S̃i )→(αj L̃j S̃j ) = π

2k2
i

∑
li ,lj

(2L + 1)(2S + 1)

(2L̃i + 1)(2S̃i + 1)

× ∣∣T LSπ
li ,lj

(αiL̃i S̃i , αj L̃j S̃j )
∣∣2

. (13)

Based on the partial cross section method, we calculated the
elastic and inelastic scattering cross sections of Na impacted
by low-energy electron using the FARM code [28]. Figures 1–2
show the partial cross sections excited from ground state to
the final states of 3s and 3p at three low incident energies
(in eV): 3.4, 4.1, 5.4. In Fig. 1, the elastic collision partial
cross sections for 3s decrease rapidly with the increasing
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FIG. 1. (Color online) The elastic partial cross sections for
various L, S.

total angular momentum L. In Fig. 2, the inelastic collision
partial cross sections for optical allowed 3s-3p transitions also
decrease but more slowly with the increasing total angular
momentum. Based on a picture of virtual photon [29], the
optical allowed collision excitation can be viewed as the
interaction between virtual photon sources and the target with
various impact parameters (corresponding to various L), hence
the contributions of high partial waves become larger. Because
of more partial-wave contributions, features of resonances
for specific partial waves and incident energies become less
prominent, which are shown in Fig. 6 later. Therefore, we can
conclude that, at low incident energies, the high partial cross
sections decrease with the increasing angular momentum.
According to this conclusion, since the contributions of infinite
high partial cross sections in the total cross sections are
negligible, we only need to calculate the contributions of finite
low partial cross sections at low incident energies. The partial
waves used are adequate for all calculations of cross sections
in present work.

In order to verify the precision of our partial-wave calcu-
lations, we should note that there exists a bound state for

FIG. 2. (Color online) The 3s-3p partial cross sections for various
L, S.

FIG. 3. (Color online) The elastic differential cross section
excitation at 2.1 eV.

1Se partial wave, the affinity of which can be accurately
measured by the laser spectroscopy experiment. Since the
R-matrix method treats the bound states and adjacent continua
on equal footing, the precision of the calculated bound
states energies can then be used as a precise criterion for
evaluating the accuracy of the continuum states phase-shift
calculations. Our calculated electron affinity of Na−[2p63
s2] 1Se is 0.541 eV, which is in good agreement with the
experimental value [30] of 0.548 eV within about 1%. The
precision of the affinity calculation can even achieve a higher
accuracy if the polarization of the target is described better.
The calculation of the affinity will be reported elsewhere
[31]. Nevertheless, such precision is already adequate for
scattering cross-section calculations and it is demonstrated
that the electron correlations of the (N + 1)-electron system
have been taken into account adequately. We could anticipate
the calculation precision of other partial waves should be at
the same level.

Our calculation results of various cross sections are shown
in Figs. 3–9. The cross sections calculated by 5 physical
target states are shown by a dash-dotted blue line; the cross
sections calculated by 9 physical target states are shown by
a dash-double-dotted green line; the cross sections calculated
by 14 physical target states are shown by the dotted red line
while the cross sections calculated by 19 physical target states
are shown by the solid black line. The differential elastic cross
section for the ground state 3s at 2.1 eV (below the next
excitation threshold 3p) is shown in Fig. 3. The calculated
cross sections using the four sets of “quasicomplete” bases
of the target are consistent with each other and in good
agreement with experimental measurements [32]. The total
cross section including the dominant elastic cross section as
well as various excitation cross sections (with incident energies
above excitation threshold), at incident energy ranging from
0 to 5.4 eV is shown in Fig. 4. It needs to be noted
that, for sodium, the experimental total cross section is
the most accurate absolute measurement of scattering cross
sections, because no cascade corrections [7] are needed. As
shown in Fig. 4, our calculated cross sections using the four
sets of “quasicomplete” bases of the target are consistent
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FIG. 4. (Color online) Total cross section for scattering of
electrons by sodium.

with each other and in good agreement with experimental
measurements [10,33], which demonstrates the good quality
of our calculations. The differential cross section for 3s-3p
excitation at 2.6 eV (below the next excitation threshold
4s) is shown in Fig. 5. As shown in Fig. 5, the calculated
cross sections using the four sets of “quasicomplete” bases
of the target are consistent with each other and in agreement
with experimental measurements [34]. The experimental cross
section has data only in small scattering angles; the cross
section of large scattering angles deserves further experimental
studies. Note that our calculated integrated cross sections for
3s-3p at this incident energy are also in good agreement with
absolute experimental measurement [9], which is shown in
Fig. 6.

Figures 6–9 are our calculated integrated collision excita-
tion cross sections of Na, from 3s to 3p, 4s, 3d, and 4p states
respectively. The available experimental cross sections are also
shown in these figures. Since the line widths of the electron
beams used in the experiment are about 750 meV [9], in order
to compare with the experiment data more clearly, we fold

FIG. 5. (Color online) The differential cross section for 3s-3p

excitation at 2.6 eV.

FIG. 6. (Color online) The 3s-3p excitation cross sections.

our calculated cross sections with the experimental line width,
which are shown as the dashed red line in Figs. 6–9. Note that
the experimental measurement method for excitation cross
sections is the optical method [7], in which the cross sections
are obtained from the fluorescence signal of the excited
states. Therefore, the most important issue for experimental
measurements is to determine the population of collision
excitation, i.e., to determine cascade corrections [7].

For the optical allowed 3s-3p excitation cross section,
as shown in Fig. 6, our calculation results are in excellent
agreement with previous 11 physical target states calculation
results [6] with the incident energies lower than about 3.6 eV.
For the incident energies larger than 3.6 eV, our results
are a little smaller than previous theoretical results [6].
Compared with experimental results, for the incident energies
lower than about 3 eV (below 4s threshold), our calculation
results are in agreement with experimental data [9]. Because
no cascade corrections are needed for this energy region.
However, our calculation results and other theoretical results
are significantly smaller than the experimental data at incident
energies larger than 3 eV. These large deviations at high
incident energies should be due to the experimental difficulties,
most probably the uncertainties of cascade corrections [7]
in the measurements of excitation cross sections, because
the main contribution of cascade corrections for 3p comes
from the dipole transition of 4s and 3d. As can be seen

FIG. 7. (Color online) The 3s-4s excitation cross sections.
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FIG. 8. (Color online) The 3s-3d excitation cross sections.

from Fig. 7 and 8, the excitation cross sections of 4s and
3d are not small. So the uncertainties of cascade corrections
are large for 3s-3p excitation cross sections at the incident
energies above these thresholds. Considering the uncertainties
of cascade corrections, our calculation results are in marginally
agreement with experimental results. However, the more
precision experimental measurements are expected. The cross
sections calculated by our four sets of “quasicomplete” bases
of the target, as shown in Fig. 6, exhibit convergent properties
when the physical targets increase. The amplitudes of the
resonance structures are very small, which can be understood
from the picture of virtual photon [29]. Because the electron
excitation is nearly equivalent to the interaction between
virtual photon sources and the target with various impact
parameters (corresponding to various L), the contributions
of high partial waves become larger and the features of
resonances for specific partial waves and incident energies
become less prominent. From Fig. 6 we can also see that the
amplitudes of resonance structures decrease with respect to
the effective quantum number υ of the Rydberg target states,
which will be discussed below.

For optical forbidden 3s-4s excitation cross section, as
shown in Fig. 7, our calculated cross sections are in good
agreement with the experimental measurements within the
experimental error bars. Because the small excitation cross

FIG. 9. (Color online) The 3s-4p excitation cross sections.

section of 4p (as shown in Fig. 9) made the cascade corrections
small for the 3s-4s cross section. From the calculated cross
sections, we can see that the contribution of resonance structure
is very large. Unlike the 3s-3p excitation cross section, there
are some significant differences between the cross section
calculated by 5 physical target states and by the other 3
target bases sets with more physical target states, which
illustrates that the 5 target physical states are not sufficient
for the cross section calculations in this energy region. The
differences between the cross sections of the other 3 target
bases sets are only in the energy region above the thresholds
of the newly added physical target states, the contributions
of which to the cross sections become smaller and smaller
and almost negligible at υ > 6. This result can be understood
from the point that when the incident energies increase, more
and more channels are opened, hence the contribution of a
specific channel in total resonance structure becomes smaller
and smaller. It is interesting to note that there are some
deviations from previous 11 physical target states calculation
results [6]. More specifically, our calculated results are in
good agreement with other theoretical calculations in low
excitation energies. But for the higher excitation energies, the
previous calculations are a little larger than our work and some
resonance structures may be pseudoresonance, especially the
resonance structure at 4.6 eV (i.e., the thresholds of ν5

manifold). Because the amplitude of this resonance structure
in previous 11 physical target states calculation is much larger
than our 14 and 19 physical target states calculations, while
our two sets of calculations are consistent with each other.
From our experience, some pseudoresonances are relevant to
the balance between the configurations of the target states
and the (N + 1)-electron bound type configurations used to
ensure the completeness of the total wave functions. In fact
we have included all types of (N + 1)-electron configurations
excited with the same excitation level of the target states
to avoid such pseudoresonances. If we omit some (N + 1)-
electron bound-type configurations in the calculations, espe-
cially those with the type of 2p5n1l

2
1n2l2 and 2p5n1l

3
1 , some

pseudoresonances may arise.
For the optical forbidden 3s-3d excitation cross section,

as shown in Fig. 8, there are some significant differences
between the cross sections calculated by 5 physical target
states and the other 3 target bases sets with more physical
target states. The differences between the cross sections of the
other 3 bases sets are only in the energy region above the
newly added physical target states. Their contributions to
the cross sections become smaller and smaller and can be
almost neglected at υ > 6. Our 14 and 19 physical target states
calculation results are in excellent agreement with 11 physical
target states calculation results [6] at the incident energies
lower than about 4.4 eV. For the incident energies larger than
4.4 eV, our results are a little larger than previous theoretical
results [6]. Note that the amplitude of the resonance structure
at 4.6 eV (i.e., the thresholds of ν5 manifold) of previous
11 physical target states calculation is also much larger than
our 14 and 19 physical target states calculations. Compared
with experimental results, for the incident energies lower than
about 4.2 eV (below 4f threshold), our calculation results
are in agreement with experimental data [9]. However, our
calculation results and other theoretical results are significantly
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smaller than the experimental ones at incident energies
larger than 4.2 eV. These large deviations at high incident
energies most probably result from the uncertainties of cascade
corrections of 4f , because the oscillator strength for 4f is
much larger than 4p and the excitation cross section for 4p is
small.

For the 3s-4p excitation cross section, as shown in
Fig. 9, the convergence properties of the cross sections
calculated by 4 sets of “quasicomplete” bases of the target
are the same as other excitation cross sections. There are some
deviations between our calculation results and previous 11
physical target states calculation results [6], which may indi-
cate that the number of physical target states used in previous
calculations is not sufficient for this higher excitation cross
section. Compared with experimental results, our calculation
results are in agreement with experimental one [9] for all
incident energies below 5.4 eV. Because the 3s-4p excitation
cross section is very small, the influence of cascade correction
becomes less prominent.

III. CONCLUSIONS

Finally, we would like to conclude with the following
remarks. In present work, we use the R-matrix method
to calculate the collision cross sections of sodium with
high precision from ground state to the first four excited
states at the incident energy range of 0–5.4 eV (above
the 3s ionization threshold) systematically. The precision of
our scattering calculations can be verified by the accuracy
of the Na− affinities calculation which is about 1%. By
using 4 sets of high-quality target orbital bases including
polarized pseudo-orbitals, as shown in Tables I and II, we
can examine the convergence of the scattering calculations.
Our calculation results are generally in good agreement with
experimental measurements and other theoretical calculations.
More specifically, for the elastic differential cross section of 3s,
differential cross section of 3s-3p at low incident energies and
the total cross section from 3s, where no cascade corrections
for experimental data are needed, our calculation cross sections
show excellent agreement with experimental data, as shown
in Figs. 3–5. For the excitation cross sections of 3s-3p, 3s-4s,
3s-3d, and 3s-4p, our calculation cross sections are in good
agreement with experimental data at low incident energies
where the contribution of cascade corrections is very small.
However, at higher incident energies, our calculation results
are lower than the experimental measurements, especially
for 3s-3p and 3s-3d excitation cross sections, as shown in
Figs. 6–9. Such deviations should be owing to the difficulties
in deciding cascade corrections in the measurements of
excitation cross sections, which deserves further experimental
and theoretical studies. Furthermore, using such 4 sets of
high-quality target orbital bases, we can also elucidate the
influence of the Rydberg states on the collision cross sections,
especially for the optical forbidden excitations. As shown in
Figs. 6–9, the amplitudes of resonance structures decrease
with the effective quantum number υ, which represents
the Rydberg states involved. It means that the resonance
structures in these cross sections at higher incident energies
are not important. Therefore, it needs to include only finite
physical target states in practical calculations. This result

also demonstrates that the cross sections obtained by the
partial wave expansion methods valid at low energy could
be interfaced with the cross sections obtained by the first Born
approximation method valid at high energy [18], which would
be very powerful for providing cross-section data with high
quality in related scientific fields. This is because partial wave
expansions are only appropriate for low-energy region. For
intermediate-energy and high-energy regions, the scattering
amplitudes f should be calculated as a whole. At high
electron energies as Born approximation is valid, various cross
sections can be readily calculated, i.e., f ∼= f Born. Note that,
f Born = ∑

LSπ f Born
LSπ is the summation of infinite partial wave

contributions. The expression for the Born partial scattering
amplitude f Born

LSπ can be found in Ref. [35]. At intermediate
energy region the Born approximation cannot be applied
directly. However, as the angular momentum L increases,
the exact partial scattering amplitude fLSπ converges to
the corresponding Born partial scattering amplitude f Born

LSπ

[36] because the large centrifugal potential will exclude the
scattering electron outside the reaction zone. Therefore starting
from Born approximations [18], the scattering amplitude f

can be calculated by f = f Born + �f , where the correction
function �f can be calculated by partial-wave expansions
involving only a finite number of penetrating partial waves
(i.e., low angular momentums). More specifically, we can
define an Lmax, beyond which all �fLSπ with L � Lmax

satisfy the relation |�fLSπ | < δ, where δ is an appropriate
convergence criterion. Then �f = ∑Sπ,L=Lmax

Sπ,L=0 �fLSπ . For
the intermediate-energy region, when the incident energy is
above the ionization threshold, there will be no resonance
structures at all; when the incident energy is lower than
the ionization threshold, our calculation result shows the
resonance structures can be neglected in such an energy region.
Therefore the correction functions for the transitions between
the lower excited targets were expected to be smoothly
varying functions. In fact, various authors [37,38] have already
made use of empirical quasiuniversal scaling factors between
the Born and “exact” cross sections and obtain some cross
sections in agreement with the experimental and more rigorous
theoretical results. Nevertheless, how to efficiently interface
the cross sections of low incident energies and high incident
energies still deserves further studies. Using the scattering
matrices calculated in present work, we can further calculate
the quantities such as angular distribution and spin polarization
to meet the requirements of “complete experiments.” However,
this is beyond the scope of present article, which deserves
further studies.
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