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ABSTRACT
Using cosmological N-body simulations, we study the radial velocity distribution in dark matter
haloes, focusing on the lowest-order even moments, dispersion and kurtosis. We determine the
properties of 10 massive haloes in the simulation box, approximating their density distribution
by the Navarro, Frenk & White (NFW) formula characterized by the virial mass and concentra-
tion. We also calculate the velocity anisotropy parameter of the haloes, and find it mildly radial
and increasing with distance from the halo centre. The radial velocity dispersion of the haloes
shows a characteristic profile with a maximum, while the radial kurtosis profile decreases with
distance starting from a value close to Gaussian near the centre. We therefore confirm that
dark matter haloes possess intrinsically non-Gaussian, flat-topped velocity distributions. We
find that the radial velocity moments of the simulated haloes are quite well reproduced by the
solutions of the Jeans equations obtained for the halo parameters with the anisotropy measured
in the simulations. We also study the radial velocity moments for a composite cluster made of
10 haloes out to 10 virial radii. In this region the velocity dispersion decreases systematically to
reach the value of the background, while kurtosis increases from below to above the Gaussian
value of 3, signifying a transition from a flat-topped to a strongly peaked velocity distribution
with respect to the Gaussian, which can be interpreted as the dominance of ordered flow with
a small dispersion. We illustrate the transition by showing explicitly the velocity distribution
of the composite cluster in a few radial bins.

Key words: methods: analytical – methods: N-body simulations – galaxies: clusters: general
– galaxies: kinematics and dynamics – dark matter.

1 I N T RO D U C T I O N

The density distribution of bound structures has been a subject of
vigorous research in recent years. An NFW (Navarro, Frenk & White
1997) density profile was established as a universal formula describ-
ing dark matter haloes in a large mass range arising in cosmological
N-body simulations (for recent refinements see Navarro et al. 2004;
Diemand, Moore & Stadel 2004b; Tasitsiomi et al. 2004; Merritt
et al. 2005). Much less attention has been devoted to the velocity
distribution in bound structures, although it also carries a substantial
amount of information about the formation and evolution of struc-
ture in the Universe. The moments of the velocity distribution in
particular proved extremely useful in studies of the mass distribu-
tion in galaxies and clusters (Kronawitter et al. 2000; van der Marel
et al. 2000; L� okas & Mamon 2003).

�E-mail: radek wojtak@o2.pl (RW); lokas@camk.edu.pl (ELL); sgottloe-
ber@aip.de (SG); gam@iap.fr (GAM)

Recently a few groups have studied the velocity distribution
of simulated haloes, showing, for example, that it departs signifi-
cantly from the Gaussian distribution expected for virialized objects
(Kazantzidis, Magorrian & Moore 2004; Sanchis, L� okas & Mamon
2004; Diemand, Moore & Stadel 2004a). Such behaviour, manifest-
ing itself in a form of kurtosis value lower than 3, has also been seen
in real objects like the Coma cluster (L� okas & Mamon 2003) or the
Draco dwarf (L� okas, Mamon & Prada 2004). There have been few
attempts to provide a theoretical explanation for departures from
Gaussianity; it turns out, however, that weakly non-Gaussian ve-
locity distributions arise naturally in the Jeans theory of equilib-
rium structures (Merrifield & Kent 1990; L� okas 2002; Kazantzidis
et al. 2004). Hansen et al. (2005) have shown that the flattened
velocity distribution can also be interpreted in terms of Tsallis
statistics.

In this Letter we study the radial velocity distribution of dark
matter haloes resulting from cosmological N-body simulations, fo-
cusing on the most useful even moments, the dispersion and kurto-
sis. We show that they are quite well reproduced by the solutions of
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the Jeans equations. We also look at the behaviour of the moments
outside the virial radius and the overall velocity distribution.

2 T H E S I M U L AT E D DA R K M AT T E R H A L O E S

For this study we run a cosmological dark matter simulation within
a box of size 150 h−1 Mpc assuming the concordance cosmolog-
ical model (� cold dark matter, �CDM) with parameters �M =
0.3, �� = 0.7, h = 0.7 and σ 8 = 0.9. We have used a new
‘message-passing interface’ (MPI) version of the original Adap-
tive Refinement Tree (ART) code (Kravtsov, Klypin & Khokhlov
1997). The ART code achieves high spatial resolution by refin-
ing the underlying uniform grid in all high-density regions with
an automated refinement/derefinement algorithm. In the new MPI
version of the code, the whole simulation box is subdivided into
cuboids which contain approximately the same numerical tasks to
achieve load balance (not necessarily the same number of parti-
cles). Each cuboid is handled by one node of the computer us-
ing internal open message-passing (OpenMP) parallelization. At
the given node the remaining box is evolved using more massive
particles as described for the multi-mass version of the ART code
(Klypin et al. 2001). This procedure minimizes the communica-
tion between nodes. After each basic integration step the borders of
the cuboids can be moved if load balance changes. The simulation
uses 2563 particles, therefore it achieves a mass resolution of 1.7 ×
1010 h−1 M�. The basic grid of the simulation is 256 and the max-
imum refinement level is 6. Therefore the force resolution (2 cells)
reaches 18 h−1 kpc.

The haloes have been identified using the hierarchical friends-
of-friends (HFOF) algorithm (Klypin et al. 1999) using different
linking lengths. The linking length of b = 0.17 extracts haloes
with masses close to the virial mass for our cosmological model.
[We define the virial mass and radius as those with mean density
�c = 101.9 times the critical density – see L� okas & Hoffman
(2001).] However, the FOF method is known to connect particles
along thin bridges which are likely to be broken once the linking
parameter is changed. This also means that the shape of structure
formed by linked particles differs strongly from spherical, and the
centre of a halo does not necessarily coincide with the region of
maximum density.

In order to find points of maximum density, we cut out the particles
out to a virial radius (assuming that the FOF mass is equal to the virial
mass) and calculate the centres of mass in spheres of decreasing
radius, each time making the centre of mass the new halo centre.
The centres determined in this way agree very well with centres
found with much smaller linking lengths which pick up regions of
higher density. We then determine the new masses and virial radii
of the haloes by summing up masses of all particles found inside the
virial radius defined as before but now measured with respect to the
new centre. Choosing the haloes for the analysis, we have generally
taken the most massive objects found in the simulation box. We
have, however, rejected those undergoing a major merger with two
or more subhaloes of comparable mass which would significantly
depart from equilibrium. Within the virial radius, the haloes typically
have a few times 104 particles. The virial masses and radii of the
haloes, M v and r v, are listed in Table 1.

For each of the 10 haloes we determine its density profile, taking
averages in radial bins of equal logarithmic length up to the virial
radius. The data points obtained in this way are assigned errors
estimated as Poisson fluctuations. The measured density profiles
are well approximated by the NFW formula (Navarro et al. 1997)
�(s)/�c,0 = �cc2g(c)/[3s(1 + cs)2], where s =r/r v, �c,0 is the

Table 1. Properties of the simulated haloes.

Halo M v r v c
(1014 M�) (Mpc)

1 7.49 2.33 5.968
2 7.04 2.29 10.098
3 6.83 2.26 5.360
4 6.49 2.23 8.301
5 5.87 2.15 6.285
6 5.35 2.08 10.320
7 4.82 2.02 8.577
8 4.25 1.93 3.552
9 3.86 1.87 7.607
10 3.54 1.82 7.424

present critical density, �c = 101.9 is the characteristic density
parameter, c is the concentration parameter and g(c) = [ln (1 + c) −
c/(1 + c)]−1. Fitting this formula to our measured density profiles,
we determine the concentration parameters of the haloes which are
listed in Table 1. Our estimated concentrations are consistent with
the dependence of c on mass inferred from N-body simulations by
Bullock et al. (2001), also run with a �CDM cosmology.

In the following, all velocities will be calculated with respect
to the mean velocity inside the virial radius of a given halo. For
each halo we measure the mean radial velocity (with the Hubble
flow added) of dark matter particles enclosed in shells of thickness
0.1 r v centred at 0.05 r v, 0.15 r v etc., assuming a convention that
the negative sign indicates infall motion towards the centre of the
halo and normalizing to V v = (GMv/r v)1/2, the circular velocity
at r v. For a fully virialized object the mean radial velocity should
be zero. We find that the measured values are consistent on average
with zero inside r v for most haloes, although some radial varia-
tions caused by internal streaming motions are present. They do
not exceed 0.4 V v, however, indicating a rather relaxed state of the
objects.

We then average our measurements, calculating the mean and dis-
persion of the measurements for the 10 haloes in the corresponding
bins. The results are plotted in the upper left panel of Fig. 1 with
the middle solid line showing the mean and the two other solid lines
indicating the dispersion with respect to the mean. The upper right
panel of Fig. 1 shows the radial profile of the anisotropy parameter

β = 1 − σ 2
t (r )

2σ 2
r (r )

(1)

averaged in the same way over the 10 haloes, where σ 2
t = σ 2

θ + σ 2
φ

and σ θ,φ and σ r are the angular and radial velocity dispersions with
respect to the mean velocities. As we can see, the orbits are mildly
radial, with positive mean β.

The dispersions needed for the calculation of β are approximated
by σ = S, where S2 is the most natural estimator of the variance
from a large sample of n velocities vi:

S2 = 1

n

n∑
i=1

(vi − v)2, (2)

where v = (
∑n

i=1 vi )/n is the mean of velocities in the shell. The
lower left panel of Fig. 1 shows the radial velocity dispersion calcu-
lated in the same way. In the lower right panel of Fig. 1 we plot the
fourth radial velocity moment normalized by the variance squared,
i.e. the kurtosis

K =
1
n

∑n
i=1(vi − v)4

(S2)2
. (3)
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Figure 1. The mean radial velocity in units of V v, the circular velocity at
r v (upper left panel), the radial profile of the anisotropy parameter β (upper
right panel), and the radial moments: velocity dispersion σ r in units of V v

(lower left panel) and kurtosis κ r (lower right panel) inside r v averaged
over the 10 haloes listed in Table 1. Middle solid lines show the mean and
the other solid lines the dispersion in the measurements. Dashed lines give
predictions from the Jeans equations for c = 7.4 and a variable β changing
as shown in the upper right panel.

Although the moments show a significant scatter from halo to
halo and some variability due to substructure in every halo, the
overall trend in their behaviour, shown by the mean values plotted
in Fig. 1, is clearly visible. In particular, the slightly increasing
and then decreasing velocity dispersion profile agrees well with the
predictions of L� okas & Mamon (2001) for the NFW haloes. The
trend observed in the behaviour of kurtosis, which decreases from a
value close to 3 (characteristic of a Gaussian distribution) to values
well below 3, suggests a flat-topped velocity distribution in the outer
radial bins.

3 C O M PA R I S O N W I T H P R E D I C T I O N S
F RO M T H E J E A N S F O R M A L I S M

The Jeans formalism (e.g. Binney & Tremaine 1987) relates the
velocity moments of a gravitationally bound object to the underlying
mass distribution. We summarize here the formalism, as developed
by L� okas (2002) and L� okas & Mamon (2003). The second σ 2

r and
fourth-order v4

r radial velocity moments obey the Jeans equations

d

dr

(
νσ 2

r

) + 2β

r
νσ 2

r + ν
d�

dr
= 0, (4)

d

dr

(
νv4

r

) + 2β

r
νv4

r + 3νσ 2
r

d�

dr
= 0, (5)

where ν is the 3D density distribution of the tracer population (here
it is the same as the total mass density) and � is the gravitational
potential, which for an NFW density distribution is �(s)/V 2

v =
−g(c) ln (1 +cs)/s. The second equation was derived assuming a
distribution function of the form f (E , L) = f 0(E)L−2β and the
anisotropy parameter β, equation (1), to be constant with radius.
We will consider here −∞ < β � 1 which covers all interesting
possibilities from radial orbits (β = 1) to isotropy (β = 0) and
circular orbits (β → −∞).

The solutions to equations (4)–(5) for β = constant are

ν(r )σ 2
r (r ) = r−2β

∫ ∞

r

x2βν(x)
d�

dx
dx, (6)

ν(r )v4
r (r ) = 3r−2β

∫ ∞

r

x2βν(x)σ 2
r (x)

d�

dx
dx . (7)

After introducing expression (6) into (7) and inverting the order of
integration in (7), the expression for the fourth moment reduces to
a single integral

ν(r )v4
r (r ) = 3r−2β

∫ ∞

r

x2βν(x)
d�

dx
[�(x) − �(r )] dx . (8)

For the specific case of NFW-distributed dark matter particles
tracing their own gravitational potential, the formulae reduce to the
following expressions which can be easily calculated numerically:

σ 2
r (s)

V 2
v

= s1−2β (1 + cs)2g(c)

×
∫ ∞

s

z2β−3

(1 + cz)2

[
ln(1 + cz) − cz

1 + cz

]
dz, (9)

v4
r (s)

V 4
v

= 3s1−2β (1 + cs)2g2(c)

×
∫ ∞

s

z2β−3

(1 + cz)2

[
ln(1 + cz) − cz

1 + cz

]

×
[

ln(1 + cs)

s
− ln(1 + cz)

z

]
dz, (10)

where the distances are expressed in units of the virial radius
(s = r/r v, z =x/r v) and V v is the circular velocity at the virial
radius. As usual, we express the fourth-order moment in terms of
the dimensionless radial kurtosis

κr (r ) = v4
r (r )

σ 4
r (r )

. (11)

Although the velocity dispersion profile depends on the concen-
tration parameter (see L� okas & Mamon 2001), our simulated haloes
all have similar concentration, so for the comparison with the pre-
dictions from the Jeans formalism we will adopt the 10 simulated
haloes’ mean concentration of c = 7.4 and focus on the depen-
dence on the anisotropy parameter β. Since the anisotropy changes
roughly between β = 0 in the centre and β = 0.6 at the virial radius,
as shown in the upper right panel of Fig. 1, we first plot in Fig. 2
the velocity moments obtained from the solutions (9)–(10) for these
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Figure 2. Predicted radial velocity moments for c = 7.4 and different β.
The left (right) panel shows the radial velocity dispersion σ r (kurtosis κ r )
for β = 0 with the lower (upper) solid line and for β = 0.6 with the upper
(lower) solid line. The dashed line in each panel shows the result for β

linearly increasing from 0 to 0.6.
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two constant values of β. We do not have to restrict our analysis to a
constant β, however, since the main contribution to σ r (r ) and κ r (r )
comes from the region close to r in the integrands given in (6)–(7)
and the moments are actually sensitive only to a local value of β at a
given r. We can therefore reproduce the moments for variable beta
taking a different (constant) β for each r. Assuming that β grows
linearly between 0 and 0.6, we get results shown with a dashed line
in each of the panels in Fig. 2. We see that the new solution changes
smoothly from the result for β = 0 near the centre to the result for
β = 0.6 near the virial radius.

In the lower panels of Fig. 1 we show with dashed lines the
predictions from (9)–(10) for β changing as shown in the upper
right panel: namely, as described above, for the calculation of the
predicted moments in each bin we assume a value of β found in
the same bin after averaging over 10 haloes. We can see that the
solutions of the Jeans equations reproduce quite well the trends in
the behaviour of the radial velocity moments, especially in the case
of dispersion. Although the solutions are not formally exact, they
do provide fairly good approximations.

4 R A D I A L M O M E N T S B E YO N D
T H E V I R I A L R A D I U S

In this section we extend the analysis beyond the virial radius and
look at the behaviour of the moments there. Fig. 3 again shows the
same quantities as in Fig. 1 but for a composite cluster made of
particles from the 10 haloes with distances scaled to the r v of each
halo. We plot the measurements up to distances of 10r v, averaged
in radial bins of size 0.2r v. The mean radial velocity displays a
characteristic behaviour: just outside the virial radius it drops to
negative velocities signifying infall, reaches the turnaround radius of
the cluster at about (3–4)r v and approaches the Hubble flow at large
distances. The velocity dispersion falls to the value characteristic
of the background just outside 2r v. The kurtosis falls down inside
r v to values below 3 and then increases sharply at larger distances
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Figure 3. The same quantities as in Fig. 1 measured for a composite cluster
made of 10 haloes for distances out to 10r v. The dashed line in the upper
right panel shows the β parameter including the non-zero mean velocities
(see text).

and oscillates around 5, but staying well above 3. This signifies a
velocity distribution which is more peaked in the centre than the
Gaussian. The solid line in the upper right panel of the figure shows
the anisotropy parameter defined as in equation (1). For comparison
we also plot with a dashed line the parameter with contributions
from non-zero mean velocities (i.e. β ′ = 1 − v2

t /2v2
r where v2

i =
σ 2

i + vi
2). The anisotropies drop to values below zero outside r v

and approach zero or unity at large distances. This behaviour can be
understood as being due to dominance of ordered flow in the radial
direction outside the virial radius: random motions in the radial
direction are smaller while the tangential ones remain the same,
which results in negative β.

5 S U M M A RY A N D C O N C L U S I O N S

We summarize our results by plotting explicitly the radial veloc-
ity distribution of our composite cluster in Fig. 4. The histograms
shown in the figure were made for radial bins of equal numbers
(4 × 104) of particles, and show their velocity distribution with
respect to the mean velocity in each bin. The range of particle po-
sitions in each bin (increasing from top to bottom panel) is marked
in the corresponding panel. On top of the histograms we plot with
dashed lines the normalized Gaussian distributions with dispersions
as shown in the lower left panel of Fig. 3.

The first two panels show the distribution inside the virial ra-
dius. We can see that the distribution is Gaussian to a very good
approximation only in the very centre. In the next bin the distri-
bution is flat-topped with respect to a Gaussian (with the effect
becoming systematically stronger when approaching the virial ra-
dius). This behaviour is reflected in the decreasing kurtosis profile in
the lower right panel of Fig. 1. The distribution shown in the second
panel turns out to be quite well fitted by a Tsallis distribution f (v) ∝
[1 − (1 − q) (v/v0)2]q/(1−q) with entropic index q = 0.65 and v0 =
1178 km s−1 which we show with a solid line (see Lavagno et al.
1998; Hansen et al. 2005).

The third panel shows the velocity distribution in the infall region:
the mean velocity of the particles is now negative, but the shape of
the distribution is also altered. The distribution is more peaked than
a Gaussian, signifying a dominance of ordered flow over random
motion of particles. The last panel illustrates the velocity distribution
in the outflow region, i.e. at distances larger than the turnaround
radius. Here the distribution is also more peaked than the Gaussian
but the mean velocity of particles is positive.

We have therefore shown that, contrary to the still commonly held
belief, the velocity distribution in dark matter haloes is not Gaussian.
Except for the very centre, it remains flat-topped inside the virial
radius. The transition from the virialized to the non-virialized region
is marked by a change in the velocity distribution from flat-topped to
strongly peaked with respect to the Gaussian. We have demonstrated
that the velocity moments in the virialized region are quite well
reproduced by the solutions of the Jeans equations.

The Gaussian shape of the velocity distribution in the centre is
expected, since this kind of distribution is characteristic of structures
with isothermal density profiles (r−2) and isotropic orbits (Binney
& Tremaine 1987; Hansen et al. 2005). Hansen et al. also show
that, for isotropic orbits, steepening of the density profile results in
flattening of the velocity distribution, as we observe in our haloes
despite the fact that their orbits are mildly radial. It would be very
interesting to understand fully the relation between the shape of
the distribution and the density profile and anisotropy of particle
orbits.
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Figure 4. The radial velocity distribution of the composite cluster at differ-
ent distances. The histograms were made for radial bins of equal numbers
of particles. The range of particle positions in each bin is written in the cor-
responding panel. On top of the histograms we plot with dashed lines the
normalized Gaussian distributions with dispersions measured in a given bin.
The solid line in the second panel shows a best-fitting Tsallis distribution
with q = 0.65.
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