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Abstract—The reliability of sales forecasting is critical for an
industrial decision support system dedicated to raw material
retailers. However, it turned difficult to train and maintain a
custom model dedicated to each of the numerous references.
For every reference, it would be needed to select the most
accurate algorithm together with its relevant features, then,
to exhaustively test every relevant combination of parameters.
This was the reason why we explored an approach based on
auto parametrization of well-known predictive models, while
adding specific seasonal features. From our experiments, the
Dynamic Harmonic Regression (DHR) based on ARMA stood
out as being the most effective model for popular products:
it reached a fair accuracy while requiring a reasonable cost
to train. However, when it came to more volatile products, a
simple prediction like the average sales per week over a year
often performed the best. Thus, YearlyMean saved computational
resources that could then be used to exhaustively train DHR
or LSTM models on some company key products, leading to a
potential improvement of their forecasts. Then, one details the
implementation of a smart computing machine learning process
based on predictive scenarios that seek for a trade-off between
the consumed resources and the predictive performances.

Index Terms—smart computing, data analysis, neural net-
works, arma model, random forest, sales forecast

I. INTRODUCTION

Material dealers are little known to the public despite
their key role in the construction industry. On the surface,
the basic principle of these trades seems simple: to buy in
large quantities from suppliers and wholesalers construction
materials such as plasterboard, pipes, paint, and then to resell
these products to craftsmen on construction sites. Sales volume
prediction is a regression problem that consists of using the
description of a period to predict its sales volume. While
this problem is critical in the materials trading sector where
sales margins are low and storage costs are high, none of the
popular prediction methods are currently used by players in
the field. Most often, the players rely on empirical methods
linked to their business skill, close to chartist [2] analysis,
older methods such as the Wilson model [12], [10] or the
Chaikin [1] oscillator analysis.

If these methods and the business knowledge of domain
specialists can guarantee a certain profitability, a decision
support based on relevant sales prediction could assist the
players and potentially increase their profit margins. It is
therefore worth asking why traditional predictive models such

as ARIMA, random forests or neural networks are not already
integrated into ERP modules. This can be explained by a
combination of factors. From a strictly logistical point of
view, materials trading is not easy to automate: there is a
desire to maintain expertise and human contact, prices are
often negotiable, suppliers’ end-of-year bonuses are difficult to
evaluate. A product usually has several alternatives, transport
rates are complex to predict. It is usual to build up a stock
to satisfy the customer, even if the latter is at a loss, and the
activity is also the result of complex arrangements between
the players. All these characteristics make a strict automation
of the field difficult.

A sales volume prediction system is then hard to build, it
is however the cornerstone of an intelligent system for this
domain. There are several reasons for this complexity. The first
is the number of different items: with an average of 20,000
items per trader, proposing a predictive solution for all these
products that can be trained and updated in a reasonable time
is a computational challenge. For example, it is not appropriate
to train a neural network for each of the products. Also,
the selection of relevant descriptors is a difficult task. Some
products are weather sensitive, others depend on one or more
specific seasonality (monthly, quarterly), and it is impossible to
test all possible descriptors to determine an optimal selection.
Finally, the sales volume at the product level is too fine to
predict the sales of an entire warehouse. In practice, it is
necessary to take a strategic view and consider each product
as an element of the business to which only a portion of the
predictive resources can be allocated. To be able to make
a prediction, a metalearning approach like ensemble model-
ing [4] necessitates to train every model on every product.
Other approaches [6] are focused on forecasting the future
losses made by the investigated models, then to specifically
choose the proper model according to the conditions. Both
methods require to train many models to predict sales volumes
or to forecast the related errors, which causes a very heavy
computational burden, often an unaffordable one.

While risks are limited when predicting all the sales on
all the warehouses because a general average stabilizes the
system, it is not the case when the granularity is the sales pre-
diction of a particular warehouse, because they can fluctuate
greatly according to parameters that are difficult to determine
or anticipate. There are different physical granularities, from



the single reference to the entire network and the warehouse.
From another point of view, the temporal granularity is also
very important and shows a great diversity of problems: it is
easier to predict monthly sales than weekly sales. However,
weekly accuracy may be necessary, depending on the supply
time and the turnover rate of the products. Our work thus
consists in proposing a predictive system optimizing the total
learning time for all products, by adapting the physical (ware-
house) and temporal (weekly predictions) granularities.

This text provides practical lessons resulting from our work
in the field. Specifically, we will illustrate the following points:

• the interest of generating seasonal descriptors according
to known sales;

• the comparison of four existing predictive models when
it turns impossible to determine an optimal parameteri-
zation specific to each product;

• the orientation of computational resources towards the
most relevant products while minimizing the backlash on
the general prediction of the other items.

II. MATERIALS AND METHODS

Since the goal of our work was to predict the sales volumes
of different construction items, we evaluated models obtained
from real sales data.

A. Data

The data used resulted from collecting and summing daily
sales volumes of 1,000 products in a trading company, over
three years. In this paper, we focus at first on the analysis
of the results obtained from the ten products generating the
most sales. The learning and testing periods are specified by
Table I. Saturdays and Sundays did not generate sales and
are therefore excluded from the study. Specifically, in the case
of time series, a cross-validation scheme cannot be used as
the observations of the learning set have to chronologically
precede the observations of the test set [8, Chapter 5.10].
Moreover, there are few data available, thus the trade off
between the sizes of the training set, the validation set and
the test set is a complex one. Here, we chose to dedicate 93%
of the data for training, 3% for validation and 3% for the
test (see Table I). For confidentiality reasons, the data cannot
be detailed, nor can the nature of the products processed.
The prediction problem was a regression problem: each object
represented a sales period to which was associated a quantity,
the latter being the information targeted by the prediction. In
the materials trading, a retailer has to be able to immediately
supply the most frequently demanded references. Thus, one
can consider that, for these references, demand is met: there
is no bias in predicting sales instead of demand.

The descriptors used to represent a day could be separated
into three types. First, three pieces of weather information
were considered: wind strength, precipitation volume and
temperature of the warehouse area. All these descriptors
were continuous variables. Second, the date was decomposed
into eight discrete variables: the number of the day in the
current year, the number of the week, the number of the

TABLE I
THE DATA USED AND THEIR PARTITION BETWEEN TRAINING AND TEST

SAMPLES.

Dataset Period Size (in week)

learning from 2017-12-18 to 2020-08-30 141

validation* from 2020-08-31 to 2020-09-27 5

test from 2020-09-28 to 2020-10-30 5
∗ : validation is used for LSTM and RF tuning, for the two other models,
validation set is included in training set

month, but also the number of the week in the month, etc.
Finally, four calendar events were considered in the form of
binary variables: holidays, confinement, COVID-19 period and
the presence of extraordinary activity. In total, we had 15
descriptors.

TABLE II
DETAILS ON THE STUDIED PRODUCTS.

product average max volume min volume relative stdev σ
µ

C2-2 1333 4452 24 0.60
C2-1 370 1176 0 0.67
C4-1 1112 4460 0 0.69
C1-3 121 508 2 0.70
C3-1 64 231 1 0.71
C1-4 273 1010 3 0.71
C1-1 445 1872 11 0.73
C1-2 133 546 1 0.74
C1-5 103 458 0 0.77
C1-6 177 1125 0 0.86

The target variable corresponded to the sales made on a
given week, on a specific reference in a merchant’s ware-
house. The exact nature of the products was anonymized for
confidentiality reasons but they were grouped by category
(C1, C2, C3) and a variation in the category (-1, -2, etc.).
Table II details the average, the maximum sales volume, the
minimum, and the relative standard deviation for each of the
products studied. It can be noticed that there is no obvious
correlation between the average sales of a product and the
associated standard deviation, especially for products C1-2
and C2-3. In view of the differences between each maximum
value and the associated mean, we could expect the presence
of extraordinary peaks of activity.

B. Indicators of prediction quality

Different indicators of the prediction quality for each models
were used: MAE, AIC and MAPE [8, Chapter 3.4 and 5.5],
detailed below. These indicators could sometimes be used
for model development (see Section II-C) in a framework of
optimization (MAE for neural network and random forest) or
choice of parameterization (AIC for the DHR model), and
sometimes they were useful to estimate the quality of a model
in terms of prediction, as an indicator of the risk incurred.

Based on week granularity of the sales volumes to be
predicted, we note:

• y the actual value of sales;



• ŷ the sales forecast;
• y the average sales.

a) Mean Absolute Error (MAE): The MAE was used
when computing models (e.g., neural network and random
forest, see Section II-C) as the objective function to minimize:

MAE =

∑n

i=1
|ŷi−yi|
n .

b) Akaike Information Criteria (AIC): AIC provides an
estimate of the information loss when using a model and pa-
rameterization to represent the process that generates the data.
The AIC allowed to choose, between several parameterizations
of a model (for example ARMA or DHR, see section II-C),
the one that best represented the training data. However, it
did not give any information on the intrinsic quality of the
model relative to others and could not be a criterion for model
selection. AIC = 2k − 2 ln(L) where k is the number of
parameters to be estimated and L is the maximum likelihood.

c) Mean Absolute Percent Error (MAPE): :
We evaluated the relevance of our predictions in terms of

risk using a normalized version of the Mean Absolute Error
(MAE): the Mean Absolute Percent Error (MAPE). MAPE is
the empirical mean of the prediction deviations normalized by
the true value: E = 1

n

∑ |ŷ−y|
y .

According to the granularity, we considered for a week w
that yw was the sales of this week, as the sum of the sales of
the corresponding days. The associated prediction error was:
Eweek = 1

nweek

∑
w

|ŷw−yw|
yw

.

C. Predictive models

In the experiments reported in Section III, we compared
four predictive models.

a) Yearly Mean (YM): YM was a basic prediction model,
where the ŷi value of the product was considered to be
determined by:

With 52 the number of weeks in a year:

ŷw =
1

52

52∑
j=1

yw−i

The principle behind this naive model was to propose a
prediction based on the average sales of a product during the
last 52 weeks. It is widely used in this industry at the moment.

b) Recurrent Neural Network with Long Short Term
Memory (RNN LSTM): : The neural network is a model
dating back to the 1950s [11]. Initially neglected due to a
lack of computing power, this model has been popular since
the 1990s. The recurrent neural network is a variant allowing
to take into account the sequentiality of the input data, by
linking the output of a cell to its input. Specifically, the short-
and long-term recurrent neural network is a recurrent neural
network in which each cell handles three additional signals:
input, output and forget. This configuration allows to modify at
each iteration a state related to the hidden layers of the model,
influencing the next signals passing through the neuron. The
optimization of this model is done in our case by minimizing
the MAE.

c) Random Forests (RF): [5] Random forests, although
mainly used to solve classification problems, can also be used
in the regression framework as it is the case here. Each tree is
generated by drawing N observations from the training set,
and selecting a sample of the total number of descriptors
related to these observations. Once these N draws and this
selection of B descriptors have been made, a decision tree is
trained for each draw, whose growth is limited by the setting
of a maximum depth. During the prediction, each tree will
provide its prediction and the final value will be an average of
these. The optimization of this model is done by minimizing
the MAE.

d) Dynamic Harmonic Regression based on an ARIMAX
model (DHR): [8, Chapter 9.5] The ARMA models [3,
Chapitre 3] from which ARIMAX is derived are based on two
main processes: autoregression, meaning that a variable X(t)
can be explained by its past values, and a Moving Average
over forecast error process, meaning that the variable can be
explained by the accumulation of white noise (the errors) from
previous predictions. An ARMA model then considers that X
can be explained based on the previous values of X , and the
previous errors. The optimization of this model is done by
minimizing the AIC.

The I in the acronym ARIMAX corresponds to a need to
differentiate the time series to make it stationary, and the
X adds to the model the possibility of using the descriptors
presented previously as terms in the regression. In the context
of a prediction based on multiple seasonalities, some of which
are long, (52 for a year of working weeks for example), it is
possible to move from a SARIMA(X) model to an ARIMAX
model where the different seasonalities are extracted and
considered as descriptors of the model. We later denominate
this method as DHR.

D. Parametric optimization of the predictive models

A specific parameterization was necessary for each predic-
tive model. When the number of references was small, we look
for an optimal parameterization for each model and each prod-
uct. However, for our application, it was impossible to dedicate
a specific model to each of the 20,000 products because the
computation time would be prohibitive. For example, LSTM
need 36mn to test the 162 combinations of values, and would
lead to 500days of computing time for the 20,000 products.

In addition to the selection of model parameters, the se-
lection of relevant parameters could also be preprocessed.
Most parameters selection algorithms are very expensive since
they result from optimizations based on testing all possible
combinations. In this work, we tried to use random forest
feature subset selection [9] to improve our prediction on every
model involved in this study. DHR was the only one improved
by this feature selection, and was therefore the only model on
which this filter was used.

E. Creation of seasonal descriptors

In order for a predictive model to incorporate seasonal varia-
tions associated with the sales of a product, it was necessary to



introduce the causes of these variations in the form of descrip-
tors. Once determined, these seasonalities would become new
descriptors. The calculation of the seasonality began by using
an auto-correlation function (ACF) [3, Chapter 2] to determine
the time lags with which the target variable appears to be
correlated. For example, a peak on the ACF repeated with a 4-
weeks lag (see Figure 1) suggested monthly seasonality, a 12-
or 13-weeks lag for trimestrial seasonality, and so on. Once the
predominant seasonality was determined, a Seasonality-Trend
Loess (STL) [7] decomposition of the target variable was
performed. STL separated the time series into three additive
components: a trend, a seasonality, and a residual that had
the properties of noise. Figure 2 shows on its upper part
the series to be decomposed and on the other three graphs
the components whose addition gives the original series. The
seasonality component gave rise to a new series which was
a new input descriptor to feed the model. This operation
of decomposition according to the predominant seasonality
was repeated until all significant peaks of auto-correlation
(exceeding the gray area on Figure 1) were considered.

For some models, RF or DHR, a simplification of the
seasonal descriptors improved the results. This simplification
consisted in truncating the Fourier transformation of the sea-
sonality signal to filter out the high harmonics, which induced
a generalization of the seasonality. Figure 3 shows on its
upper part the 20-weeks seasonality and the lower part the
simplification obtained.

F. Implementation tools
To experiment on our data, we used a Python imple-

mentation with some of it’s popular library : pandas, to
manipulate dataset of products, sklearn for random forest
forecast, importance filtering and data scaling, pmdarima for
DHR forecast, tensorflow for LSTM forecast, numpy and
statsmodels were used to isolate and transform seasonality
descriptors.

III. RESULTS AND DISCUSSION

This section presents the results of our experiments in sales
volume prediction on the top ten selling products. We begin
by discussing the value of adding seasonal decomposition de-
scriptors and then compare the different models. We conclude
by proposing predictive scenarios combining the best models.

A. Interest of the seasonal decomposition
The value of adding seasonal descriptors can be seen in

the results of Table III. This table shows the weekly error
rates of the three methods, with and without the seasonal
decomposition. The seasonal decomposition always improved
the results. For the rest of the analysis, seasonal descriptor will
be included in models, as they always improved prediction and
are cost effective to compute.

It is also relevant to note that the DHR process had better
performance (29.41% MAPE) than the traditional seasonal
model SARIMAX (32.65%). In addition, the training was
faster (15s for DHR, 4.6mn for SARIMAX) as SARIMAX
needs to tune 4 more parameters.

TABLE III
CONTRIBUTION OF THE SEASONAL DECOMPOSITION ON THE MAPE

ERROR (IN %).

model without seasonality with seasonality
DHR 31.45 29.41

LSTM 42.78 34.00
RF 35.81 35.70

TABLE IV
WEEKLY MAPE RESULTS OF THE DIFFERENT MODELS ON 10 TOP

PRODUCTS.

product YM DHR LSTM RF
C2-2 36.23 26.91 32.06 31.41
C2-1 30.10 19.43 18.94 17.26
C4-1 29.65 25.86 20.83 22.63
C1-3 31.83 25.84 28.67 30.66
C3-1 26.73 26.27 34.45 23,44
C1-4 46.63 39.65 50.79 53.64
C1-1 35.40 17.71 32.96 26.77
C1-2 56.59 44.56 59.14 63.47
C1-5 32.91 38.83 25.18 37.07
C1-6 32.74 29.07 36.96 38.18
mean 35.88 29.41 34.00 34.45

training time 7.3 s 15 s 36 mn 3.4 mn

B. Model comparison

We trained DHR, LSTM, RF and YF for the ten best-
selling products. For each model, Table IV gives the results
by providing the mean absolute percentage error (MAPE) on
these products, as well as the related learning error. It was easy
to designate the model best suited to the constraints imposed:
the DHR. This model was the most suitable because of its
global predictive results and its low learning time. The results
of the LSTM did not justify its training cost, and the RF,
although faster, offered the least good results of the three
models. The naive YM, while being the fastest to train had the
worst performance.Figure 4 gives the same results, and allows
to see that while error value were fluctuating, relative ranking
remained the same for each model (peaks and troughs).

The good performance of the DHR was not surprising,
as the algorithm includes an exhaustive search for the best
parameterization which had little impact on the learning time.
Resulting in a quickly trained model, whose parameterization
is specific to each product.

It is important to keep in mind that, despite the inclusion of
lockdowns and COVID19 in the descriptors, the October 2020
period was part of a year that was globally difficult to predict
due to its exceptional character. Moreover, additional field
parameters, not taken into account in the descriptors, could
remove uncertainty: reliability of vendors to immediately
record their sales, discount on products, price hike due to
COVID. At the end, weekly forecasts prove acceptable for
a good number of products, in particular seven products out
of the ten were found to be below the 30 % error threshold.

C. Predictive scenarios

This study allowed us to determine the most relevant model
to propose a global prediction of the ten most sold products.



Fig. 1. ACF of the C2-2 with periodicity of 52.

Fig. 2. STL decomposition of the C2-2 product with a seasonal periodicity
of 20.

Fig. 3. Simplification by STL decomposition and Fourier order reduction.

However, we tried to generalize this process for the top 100
products, and the results can be viewed on Table V. Even
if some products pulled upwards the week error (one product
reached a 1000% error for example), the YM prediction model
became the best model when the sales decreased. It implies
that the choice of the best forecast model for a product could
be related to the number of sales, or other parameters. In order

TABLE V
PREDICTIVE SCENARIO AGAINST EVERY PREDICTION.

model week error n. of first n. of sec n. of third n. of fourth
YM 61,91 % 312 346 311 31
DHR 69,83 % 115 122 358 405

LSTM 65,81 % 127 178 171 524
scenario 56,90 % 492 318 152 38

to check this theory, we tried to build two decision tree. As
the YM is the fastest and efficient model, we began to build
a tree (YM-TREE) able to determine if the YM could be a
reliable model for a specific product. Then we built another
tree (LSTMDHR-TREE) to determine whether we should use
an LSTM or a DHR, or if both processes could work.

To build these two trees, we used the prediction on 100
products of YM, DHR and LSTM in the following way: a
model was considered viable to predict a specific product if
its error was within a range of 5% with the best prediction
error for this product. For example, our product C1-3 scored
31.83% (YM), 25.84 (DHR)%, 28.67% (LSTM) meaning the
acceptable models for this product were DHR and LSTM. We
then built the YM-TREE by targeting the presence of YM in
the acceptable models, creating a binary target to predict the
relevant use of YM.

We used few and easy-to-compute descriptors: relative
standard deviation, total quantity of sales, number of sales,
results of DHR and YM on the evaluation set. We did the same
process for the LSTMDHR-TREE except that the classification
task contained 3 classes : LSTM viable, DHR viable, LSTM
AND DHR viable.

Once those two tree were built, we checked for each product
if the YM was a good model. If so, YM was used to predict
the sales. If it wasn’t, LSTMDHR-TREE was used to guess
which model would be suitable between LSTM or DHR (if
both were acceptable, DHR would be preferred as it is faster).
In order to evaluate this process, 10 products were randomly
picked, removed from the prediction pool and predict by using
the 90 others. This process was iterated with the 10 next
products from the prediction pool and predicted it with the



Fig. 4. Weekly absolute error.

90 others, until the prediction pool was empty. This process,
named random sub-sampling validation [13], was done 100
times. To simplify, the YMTREE+LSTMDHR-TREE model
would be referred as scenario model in the following.

The results of the scenario model are given on Table V
and we added the number of time a model was the best to
predict a product. Using the scenario model resulted in a
significant improvement in predictions, at least 5% against
any model, while showing that nearly half of the time the
scenario managed to propose the best average prediction on
the 10 random products chose at every iteration.

During 10 000 predictions (prediction on 100 products, 100
times), we observed that in average 70% of YM are computed,
20% of DHR and 10% of LSTM. The overall computation time
on 10 products was then estimated to 39.4mn for the scenario,
which was clearly endurable when compared to 73s for YM,
150s for DHR and 360mn for LSTM.

IV. CONCLUSION

This study was a practical comparison of four classical
forecast models, in the specific framework of material sales
prediction. Beyond the prediction performances, we paid
particular attention to the learning times as well as to the
selection of descriptors. We concluded that taking seasonality
into account was efficient: although it slightly increased the
computation time, it took into account the particularities of
each product. With an adapted scenario model automatically
choosing between YM, DHR and LSTM, we were able to
improve the average prediction for a fully automatized predic-
tion system on numerous products. While the paper reports
a study computed on 100 products, a forecasting problem
has to practically deal with up to 20, 000 items per trader.
Consequently, there are potentially strong correlations between
sales volumes of different items which are not yet exploited
in our current model.
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