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Abstract

Robustness studies of black-box models is recognized as a necessary task for numerical models based
on structural equations and predictive models learned from data. These studies must assess the
model’s robustness to possible misspecification of regarding its inputs (e.g., covariate shift). The
study of black-box models, through the prism of uncertainty quantification (UQ), is often based on
sensitivity analysis involving a probabilistic structure imposed on the inputs, while ML models are
solely constructed from observed data. Our work aim at unifying the UQ and ML interpretability
approaches, by providing relevant and easy-to-use tools for both paradigms. To provide a generic and
understandable framework for robustness studies, we define perturbations of input information relying
on quantile constraints and projections with respect to the Wasserstein distance between probability
measures, while preserving their dependence structure. We show that this perturbation problem can
be analytically solved. Ensuring regularity constraints by means of isotonic polynomial approximations
leads to smoother perturbations, which can be more suitable in practice. Numerical experiments on
real case studies, from the UQ and ML fields, highlight the computational feasibility of such studies
and provide local and global insights on the robustness of black-box models to input perturbations.

Keywords: interpretability, machine learning, sensitivity analysis, computer model, sensitivity
analysis, robustness, epistemic uncertainty, domain uncertainty, quantiles, isotonic polynomials

1. Introduction

Multiple engineering fields require models for prediction and phenomenological understanding.
Machine learning (ML) and uncertainty quantification (UQ) of numerical models are essential ap-
proaches to developing and manipulating such models. Because they require, for their enlightened
use, an adequate understanding of their characteristics, they share fundamental similarities. These
two frameworks feed off each other through the duality of sensitivity analyses (SA), a fundamental
methodological corpus in UQ, and ML interpretability methods, as highlighted by [72, 50]. In partic-
ular, recent advances in explainable ML leverage tools from SA to produce meaningful interpretations
of black-box models [35, 17], and novel SA estimation schemes are heavily based on the construction
of suitable ML models [15, 9]. Both SA and ML interpretability rely on studying the relationships
between a black-box model behavior and its inputs [24, 59, 77]. Formally speaking, let a model f be
defined as a mapping between inputs X ∈ X and outputs Y ∈ Y where (X ,Y) are two metric spaces:

Y = f(X).

In an ML context, f can be understood as a predictive model (e.g., penalized linear regression, neural
network) linking an observation x of an input X to a prediction y = f(x) [46]. In the UQ framework, a



so-called computer model f represents the numerical implementation of a hypothetical-deductive link
(e.g., by systems of ordinary differential equations, by finite element methods) between X and Y [80].

In both fields, the inputs X are generally assumed to be random, leading to random outputs Y .
Let P be the distribution of X. In the ML context, P is defined implicitly by an empirical measure:
given a set of observations x(1), . . . , x(n) ∈ X ,

P =
1

n

n∑
i=1

δx(i) (1)

where δ denotes the Dirac measure. On the other hand, in the UQ setting, P is often explicitly
chosen based on observations of X, expert assessment (domain knowledge), or stochastic inversion
from observations of Y [85].

Quantities of interest (QoI) are key in measuring the relationships between X and Y . They are
generally expressed as statistics of Y . In the SA literature, they are often referred to as scores [76],
while ML researchers are usually interested in predictive performance metrics [66]. QoIs can be either
global (e.g., variance [81, 35], loss metric [43, 22, 49]), or local (e.g., a prediction instance [84, 90],
numerical model derivatives [24]). These quantities are usually chosen to be interpretable in that
domain experts or decision-makers can understand the information they bear.

Diagnostics are evaluations of interpretable quantities related to specific QoI. They can be the
evaluation of QoIs themselves or based on their decomposition [47]. For instance, evaluations of local
interpretation tools such as SHAP [58] and LIME [74] are diagnostics, as well as global SA methods
such as Sobol’ indices [81] or Shapley effects [65].

The present paper is concerned with one particular problem: robustness to input perturbations.
More precisely, the main goal is to study changes in key diagnostics of Y whenever P is perturbed.
This main problem is analogous to many frameworks in both the ML field (e.g., domain adaptation
[16], covariate shift [44, 88], adversarial attacks [4]) and SA (e.g., distributional sensitivity analysis
[2, 62], distributional robustness [56, 41]) or distributional modifications to understand the fairness
of algorithms [26, 27]. In the context of this work, the perturbations are subject to four desirability
criteria:

• Interpretable, i.e., can be understood by domain experts and decision-makers;

• Generic, i.e., the overall perturbation scheme should not depend on properties of either P or f ;

• Proximity, i.e., the perturbed distribution should be as “close” to P as possible;

• Exploration, i.e., the perturbed distribution should allow exploration of unobserved or low prob-
ability regions of X .

Formally, one can define the perturbed distribution Q as the solution to the projection problem:

Q = argmin
G∈P(X )

D(P,G)

s.t. G ∈ C.
(2)

where P(X ) is the space of probability measures on X , D is a discrepancy between probability measures,
and C ⊂ P(X ) is a perturbation class, i.e., a particular subset of probability measures. Leveraging the
pioneering work of [23] on entropic projections, a particular instance of this problem has been studied
in the SA field by [56] and in the ML field by [6], where the chosen discrepancy is the Kullback-Leibler
(KL) divergence, and C is defined through constraints on generalized moments. While this method
produces interpretable perturbed distributions that are close (in the KL sense) to P , they do not allow
for exploration and genericity: the resulting perturbed distribution is a linear reweighting of P , and
the existence of particular generalized moments must be assumed, further restricting the perturbation
class C.
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Motivated by these four desirability criteria and by improving the connections between the inter-
pretability analyses conducted in UQ and ML settings, the present work is focused on the following
choices:

• X ⊆ Rd for a positive integer d and Y ⊆ R.

• The 2-Wasserstein distance as a suitable discrepancy between probability measures to ensure
genericity and exploration;

• Perturbation classes C based on three types of constraints:

1. Interpolation constraints on generalized quantile functions to ensure interpretability and
genericity;

2. Smoothness of the generalized quantile functions to ensure exploration;

3. Copula-preservation to ensure interpretability.

Several results are uncovered and presented. This particular perturbation problem reduces to solving
univariate constrained projections of quantiles functions in L2 (see Lemma 5), and even admits an
analytical result if no smoothness restrictions are enforced (see Proposition 1). However, this closed
form does not satisfy the exploration criterion. To that extent, the use of isotonic piece-wise poly-
nomials to ensure continuity is studied and is shown to lead to a well-posed quadratic program with
convex constraints (see Theorem 1), ensuring practical feasibility. Aside from theoretical results, the
computational tractability of this methodology is studied and implemented in two use cases from the
ML and UQ fields, where the response of several diagnostics is studied, leading to robustness to input
perturbation insights on the black-box model.

This article is organized as follows. In Section 2, preliminaries are presented, and the motivations
behind the four perturbation criteria are discussed. Section 3 is dedicated to perturbation classes. The
desirability criteria are discussed, as well as the three constraints introduced above. Section 4 presents
the framework of probability measure projection using the 2-Wasserstein distance and its declination
when constrained to the chosen perturbation class. Section 5 showcases insights on ML and UQ fields,
highlighting local and global robustness insights. A discussion section ends this article, opening avenues
for improvement. All proofs of technical results are postponed to a dedicated appendix.

2. Preliminaries and motivation for the perturbation criteria

2.1. Motivations for the perturbation criteria

The general question that the proposed method aims to answer is:

What are the variations of a black-box model’s diagnostics induced by a given perturbation of its
inputs?

Answering this question entails uncovering a causal link (in the physical sense) between a perturbation
and the behavior of the black-box model. In the literature, many methods have been proposed in order
to define relevant perturbations (e.g., via geodesics on Fréchet manifolds [41], adversarially [60], using
empirical quantiles [6]). However, while generic and automatic, these methods often disregard the
physical meaning of these perturbations. The overall aim of the proposed criterion is to ensure that
the perturbations are meaningful to the eyes of domain experts and decision-makers. For instance,
perturbations can be used as proxies for epistemic uncertainty, leading to exploratory studies on the
behavior of a model induced by a lack of knowledge. Another example would be to prospectively
design perturbations to anticipate future changes in the inputs (e.g., , climate change). Finally, if a
gap between some observed data and domain experts’ opinions is proven, perturbations can be modeled
to enforce this knowledge while keeping some of the empirical information gathered on the field.
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2.1.1. Interpretability

The perturbations should be meaningful to domain experts and decision-makers. It ensures that
well-understood phenomena induce the uncovered variations in the model’s behavior. Hence, design-
ing perturbations should be done with practitioners and precisely reflect a domain-specific question.
In-fine, perturbation interpretability ensures that the (physical) causal link one aims to draw of a
perturbation on the behavior of a model is insightful on the question at stake.

2.1.2. Genericity

The perturbations should be generic because they should not depend on restrictive properties
assumed to hold for either f (e.g., continuity, derivability) or P (e.g., absolute continuity). Genericity
ensures the proposed methodology is post-hoc [8]. To emphasize the duality between SA and ML
interpretability [72, 50], generic perturbation ensures that the proposed methodology is usable in both
settings.

2.1.3. Proximity

The perturbed distribution should be “close” to the initial distribution P . Proximity ensures
that the perturbed distribution remains somewhat similar to the initial, where similarity needs to be
measured through a discrepancy. For instance, closeness in the KL divergence sense entails similar
information, whereas closeness in the Wasserstein distance sense has a more geometric meaning. Either
way, the initial distribution, be it empirical or chosen, bear some information on the behavior of the
input, which needs to be partially preserved.

2.1.4. Exploration

The perturbation scheme should allow for exploring unobserved or low probability regions of X .
This criterion ensures that “out of distribution” scenarios can be reached. Hence, the model’s behavior
can be assessed on “unusual” (for P ) evaluations, which is crucial when testing for robustness.

2.1.5. Assumptions and notations

In the following, X is an X -valued random vector, where X ⊆ Rd, and Y = f(X) is an R-valued
random variable. Denote by P(X ) the set of probability measures defined on (X ,B(X )). Let p be a
positive integer and denote:

Pp(R) =
{
P ∈ P(R) : E|X|p [<]∞, X ∼ P

}
,

the set of univariate distributions of random variables with finite p-th moment. Suppose that X ∼ P
for some P ∈ P(X ), and denote Xi ∼ Pi the i-th univariate marginals of X, i = 1, . . . , d. It is assumed
that Pi ∈ P2(R), i.e., every univariate marginal of X has a finite variance. In the remainder of the
present work, P is the initial probability measure.

Remark 1. In practice, the initial probability measure can be defined as an explicit distribution
(e.g., from a parametric family) or empirically using a dataset as in (1).

For a univariate marginal input Xi, 1 ≤ i ≤ d, let ΩXi ⊂ R be its application domain. It represents
the range in which Xi is intended to vary in practice [75]. Figure 1 illustrates a typical situation for a
univariate marginal of X.

Remark 2. In practice, the application domains of marginal distribution can be defined in many ways.
For instance, if P is empirical, it can represent the range between the smallest and largest observed
value of Xi in a specific dataset. If P is part of a parametric family, it can be defined using experts’
opinions, usually enforced using truncation. These domains are usually subject to uncertainties in their
bounds.
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For any univariate marginal Pi ∈ P(R), its cumulative distribution function (cdf) is denoted by:

FP (t) =

∫
(−∞,t]

dP = P
(
(−∞, t]

)
.

Furthermore, denote F the space of univariate distribution functions:

F =
{
F : R→ [0, 1] | F is right-continuous, non-decreasing

such that lim
x→∞

F (x) = 1 and lim
x→−∞

F (x) = 0
}
.

(3)

2.2. Preliminaries

2.2.1. Generalized quantile functions

The use of generalized quantile functions (gqf) is motivated by the fact that the marginal distribu-
tions Pi can be atomic. They rely on the two generalized inverses of functions in F . For each marginal
probability measure Pi, one can define a left and right continuous generalized inverse, the former being
usually called the gqf of Xi. However, in the following, both generalized inverses are of interest. They
can be formally defined as follows [73, 31, 52].

Definition 1 (Generalized quantile function). Let P ∈ P(R) with cdf FP .

(i) The gqf of P is the unique left-continuous, non-decreasing generalized inverse of FP , defined, for
every a ∈ (0, 1), as:

F←P (a) = sup {t ∈ R | FP (t) < a},
= inf {t ∈ R | FP (t) ≥ a}. (4)

(ii) The unique right-continuous non-decreasing generalized inverse F→P of FP , almost-everywhere
equal to F←P , is defined, for every a ∈ (0, 1), as:

F→P (a) = sup {t ∈ R | FP (t) ≤ a},
= inf {t ∈ R | FP (t) > a},
= F←P

(
a+
) (5)

(a.)
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X(0) X(n)

Figure 1: Application domain ΩX of P when P admits a density (a.) and when it is empirical (b.). In (a.), X is
the support of the density (in grey), and the application domain ΩX (in purple) is contained in X . In (b.), X is the
interval between the minimum and maximum observed values (in grey), and the application domain ΩX (in purple) is
also contained in X . In both cases, ΩX is chosen to be strictly included in X , although it can be bigger.
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where F←P (a+) = lim
x→a+

F←P (x).

If the cdf FPi of Xi admits an inverse F−1P in the traditional sense (e.g., it is continuous, strictly
increasing), then the following equality holds:

F−1P = F←P = F→P .

Furthermore, univariate probability measures are intrinsically linked to their gqf. Denote:

F← =
{
F← : (0, 1)→ R | F← is left-continuous and non-decreasing

}
. (6)

the space of gqfs. Recall that each probability measure in P(R) has a unique gqf in F← [73].
For a fixed α ∈ [0, 1], an α-quantile of P is a number pα ∈ R such that, for X ∼ P :

P ({X < pα}) ≤ α and P ({X ≤ pα}) ≥ α.

In certain cases, α-quantiles are not unique. For instance, if P is purely atomic (e.g., an empirical
measure), and its cdf FP takes the constant value α on an open interval (t0, t1) (i.e., it is the case if
t0 and t1 are both atoms of an empirical probability measure), then any t ∈ (t0, t1) is an α-quantile.
One can notice that F←(α) is the infimum of the α-quantiles of P , (i.e., F←P (α) = t0), and F→(α) is
the supremum of the α-quantiles of P (i.e., F→P (α) = t1).

2.2.2. Copulas

Dependencies between random variables can be modeled using copula-based representations [63].
Let X = (X1, . . . , Xd) ∼ P be a d-dimensional Rd-valued random vector with marginal cdfs FPi ,
i = 1, . . . , d, assumed to be continuous. Let U1, . . . , Ud the random variables defined as:

Ui = FPi(Xi)

and denote U = (U1, . . . , Ud)
> ∼ UP . For any u = (u1, . . . , ud) ∈ [0, 1]d, denote Hu = "di=1[0, ui]. The

copula of X is the mapping from [0, 1]d to [0, 1], denoted Cp defined as:

CP (u) = Pr (U1 ≤ u1, . . . , Ud ≤ ud)

=

∫
Hu

dUP

If P is observed (and hence each FPi can jump), the notion of empirical copula characterizes the
dependence structure between the inputs [63]. For j ∈ {1, . . . , d}, denote {xj,i}1≤i≤n the jth marginal
sample of observations. The empirical copula of X is defined as:

ĈP (u1, . . . , ud) =
1

n

n∑
i=1

d∏
j=1

1{
Rj,i
n ≤uj

}(uj), (7)

where Rj,k denotes the rank of xj,k in {xj,i}1≤i≤n.

2.2.3. Wasserstein distance

Let p be a positive integer. The p-Wasserstein distance between two univariate marginals can be
defined as follows [89]:

Definition 2 (Wasserstein distance on the real line). Let p ∈ N∗ and P,Q ∈ Pp(R) be two probability
measures on R admitting FP and FQ as probability distribution functions, respectively. Then, the
p-Wasserstein distance between P and Q is:

Wp(P,Q) =

(∫ 1

0

∣∣F→P (x)− F→Q (x)
∣∣p dx)1/p

6



In particular, for p = 2,

W2(P,Q) =

√∫ 1

0

(
F→P (x)− F→Q (x)

)2
dx.

3. Quantile constrained Wasserstein projections

3.1. Quantile perturbation classes

3.1.1. Motivations

First, as long as Pi ∈ P(R), its generalized quantile function F←Pi always exists. Hence, perturbing
marginal quantiles do not require additional assumptions on the initial probability measure P or the
shape of the target perturbed probability measure Q. It ensures that the proposed methodology is
generic, in contrast to the one proposed in [55] based on generalized moments.

Second, quantiles are interpretable. In many applied problems, quantile specifications are often
key to studying the influence of input variables on a decision-making output. Beyond the fact that
quantiles have a decision-theoretical sense through pinball cost functions [20], numerous applications
dealing with economic stress tests or risk mitigation against natural hazards use quantiles as influen-
tial inputs of decision-helping models. For instance, in the drought risk studies in [33], the association
between soil wetness, climatic, seismic, and socioeconomic variables is often carried out using marginal
quantiles that are features for predictive cost models. Input variations of daily value-at-risk percentiles,
computed from legacy data, were recently required by the European Banking Authority for generat-
ing macroeconomic scenarios used for EU-wide stress tests [5]. Reverse SA studies for financial risk
management, such as those conducted in [70], are primarily based on moving values-at-risk, which are
quantiles.

The following examples offer additional concrete illustrations of using quantiles for influence anal-
ysis. They also illustrate two quantile perturbation schemes: quantile shifting and application domain
dilatation. These schemes are formally introduced in Section 3.1.3.

Example 1 (Economic stress test (Inspired by [13])). Assume that an economic shock happens in an
abstract country. Prospective analyses announce a $200 drop in the population median wage. Before
the shock, the population wage distribution P is known (or observed), thanks to some annual census
data. This distribution has a median wage of $2000. The new population wage distribution is unknown
due to the lack of recent data. The economists want to know if they can be confident in their predictive
macro-economic model f w.r.t. this sudden change. A way to answer this problem would be assessing
the behavior of the model f on a distribution Q, such that:

F←Q (0.5) = 1800.

Example 2 (River water level). This example is inspired from [51] and more deeply studied in Sec-
tion 5.2. The safety of an industrial site located near a river is studied through the prediction of the
water level Y = f(X) where f is a numerical hydrodynamic model, and X gathers the physical features
of the river. A key dimension of X is the Strickler roughness coefficient for the upstream water level
[40], which is modeled as a truncated Gaussian distribution on ΩX = [20, 50]. However, this applica-
tion domain is tainted with epistemic uncertainties on the actual nature of the riverbed (e.g., more or
less subject to shrubby vegetation). The practical use of f would require assessing its predictive power
under a wider interval ΩX = [5, 65]. A way to express this prospective study is to assess the model’s
behavior on a distribution Q, such that:

F→Q (0) = 5, F←Q (1) = 65.
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3.1.2. Formal Definition

Since, for a fixed α ∈ [0, 1], α-quantiles are not necessarily unique, equality constraints on quantile
functions seem somewhat arbitrary. It amounts to constraining the infimum of the set of α-quantitles.
Arguably, given a desired α-quantile value of b ∈ R, a reasonable constraint would be for b to be in the
set of α-quantils of the perturbed distribution. Formally, the any perturbed distribution Q ∈ P(R)
should respect the inequality:

F←Q (α) ≥ b ≥ F←Q (α+) = F→Q (α). (8)

In the case where FQ is invertible, it becomes a traditional equality constraint: any α-quantile is
uniquely defined (i.e., F←Q (α) = F→Q (α)). In the following, the inequality constraints of the form (8)
are referred to as quantile constraints.

Definition 3 (Quantile perturbation class). Let K be an integer, and let α = (α1, . . . , αK)> ∈ [0, 1]K

and b = (b1, . . . , bK)> ∈ RK . The quantile perturbation class Q(α, b) ⊆ P(R) is the set of probability
measures defined as:

Q(α, b) =
{
Q ∈ P(R) | F←Q (αi) ≤ bi ≤ F→Q (αi), i = 1, . . . ,K

}
.

An equivalent characterization, thanks to the uniqueness of gqfs, is:

Q(α, b) =
{
Q ∈ P(R) | F←Q = L ∈ F←, L(αi) ≤ bi ≤ L(α+

i ), i = 1, . . . ,K
}
.

It is possible to derive sufficient conditions on α and b in order for Q(α, b) to be non-empty:

Lemma 1. Let α ∈ [0, 1]K and b ∈ RK , which are assumed to be ordered without loss of generality. If

0 ≤ α1 < · · · < αK ≤ 1, and b1 < · · · < bK , (9)

then Q(α, b) is non-empty.

Quantile perturbation classes contain probability measures with discontinuous gqfs. Ensuring
smooth perturbed gqfs is of practical interest (see Section 4.1.1). It entails further restricting the
gqfs of the probability measures in a quantile perturbation class to respect some smoothness condi-
tions. They can be formally defined as follows.

Definition 4 (Smooth quantile perturbation class). Let K ∈ N∗, α = (α1, . . . , αK)> ∈ [0, 1]K ,
b = (b1, . . . , bK)> ∈ RK and let V ⊆ F← be a given set of smooth non-decreasing functions. The
smooth quantile perturbation class QV(α, b) ⊆ P(R) is the set of probability measures defined as:

QV(α, b) =
{
Q ∈ P(R) | F←Q ∈ V, F←Q (αi) ≤ bi ≤ F→Q (αi), i = 1, . . . ,K

}
.

Note that smooth perturbation classes generalize perturbation classes since Q = QF← .

3.1.3. Defining interpretable sets of quantile perturbation classes

Two sets of quantile perturbation classes are introduced: quantile shifts and application domain
dilatation.

Quantile shifts.. Quantile shift perturbations defines constraints on an initial α-quantile in a pre-
determined range. Formally, given a quantile level α ∈ [0, 1], and an initial α-quantile pα = F←P (α),
quantile shifts defines a set of quantile perturbations classes of probability measures having their α-
quantiles ranging over a compact interval [η0, η1] ⊆ ΩX such that η0 < pα < η1. In other words, for
each bα ∈ [η0, η1], a quantile perturbation class QV(α, bα) can be constructed. This particular type of
set of quantile perturbation classes can be described by means of a perturbation intensity θ ∈ [−1, 1]:
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F←P
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(a.)
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η0
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θ = 1

θ > 0

θ = 0
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0

F←P

1
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Figure 2: Quantile shift (a.) and application domain dilatation (b.) perturbation schemes. The initial quantile function
is displayed in green. On the left, red points indicate different quantile shifting constraints between η0 and η1, leading
to different intensity values θ. On the right, the application domain’s width (in magenta) is up to doubled (blue points)
or down to halved (red points), according to an intensity parameter θ ∈ [−1, 1].

Lemma 2. Let Θ = [−1, 1] and denote η = (η0, η1) with η0 < pα < η1. For θ ∈ Θ, let,

bα(η, θ) =


pα(1 + θ)− θη0 if − 1 ≤ θ < 0,

pα if θ = 0,

pα(1− θ) + θη1 if 0 < θ ≤ 1.

Then, for any Q ∈ P(R) such that

F←Q (α) ≥ bα(η, θ) ≥ F→Q (α),

one has that, ∀θ ∈ [−1, 1]:

θ = −1⇔ bα(η, θ) = η0,

θ = 0⇔ bα(η, θ) = pα,

θ = 1⇔ bα(η, θ) = η1,

(10)

and for any −1 ≤ θ1 < θ2 ≤ 1,
bα(η, θ1) < bα(η, θ2).

In other words, bα(η, θ) ∈ [η0, η1] is a strictly increasing function of θ and θ = 0 indicates that
pα must remain untouched (i.e., no constraint). Figure 2 (a.) illustrates this perturbation scheme.
Quantile shifts are formally defined as the collection of perturbation classes {T (η, θ)}θ∈[−1,1] where,

T (η, θ) =
{
Q ∈ P(R) | F←Q (α) ≤ bα(η, θ) ≤ F→Q (α)

}
= Q (α, bα(η, θ))

(11)

Application domain dilatations.. Application domain dilatations consists in perturbing the bounds
of the application domain of a marginal input. For a univariate X ∼ P with ΩX = [ω0, ω1], the
dilatation process amounts to widening or narrowing the width (or diameter diam(ΩX)) of ΩX . It
amounts constraining the extreme quantiles (α ∈ {0, 1}) while preserving the midpoint of ΩX . The
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dilatation is characterized by a parameter η > 1 controlling the rescaling magnitude of ΩX . In other
words, one aims at finding a distribution Q with support Supp(Q) = [b0, b1] for b0, b1 ∈ R, b0 < b1,
where the midpoint of [b0, b1] is equal to the midpoint of ΩX , but such that diam(Q) := diam(Supp(Q))
is rescaled compared to diam(ΩX). Similarly to quantile shift, the next lemma formalizes expressions
for these two bounds as a function of a perturbation intensity θ ∈ [−1, 1].

Lemma 3. Let η > 1. For θ ∈ [−1, 1], let:

b0(η, θ) =


1
2

(
ω0

(
2− θ(η−1 − 1)

)
+ θω1(η−1 − 1)

)
if − 1 ≤ θ < 0,

ω0 if θ = 0,
1
2

(
ω0

(
2 + θ(η − 1)

)
− θω1(η − 1)

)
if 0 < θ ≤ 1,

b1(η, θ) =


1
2

(
ω1

(
2− θ(η−1 − 1)

)
+ θω0(η−1 − 1)

)
if − 1 ≤ θ < 0,

ω1 if θ = 0,
1
2

(
ω1

(
2 + θ(η − 1)

)
− θω0(η − 1)

)
if 0 < θ ≤ 1.

Then, ∀(θ, η) ∈ [−1, 1]× [1,∞),

b0(η, θ) + b1(η, θ) = ω0 + ω1 (midpoints equality).

Denote b(η, θ) = [b0(η, θ), b1(η, θ)], and notice that

θ = −1⇔ diam (b(η, θ)) =
diam(ΩX)

η
,

θ = 0⇔ diam (b(η, θ)) = diam(ΩX),

θ = 1⇔ diam (b(η, θ)) = ηdiam(ΩX),

(12)

and for any −1 ≤ θ1 < θ2 ≤ 1,

diam (b(η, θ1)) < diam (b(η, θ2)) .

In other words, diam (b(η, θ)) ∈
[
η−1diam(ΩX), ηdiam(ΩX)

]
is a strictly increasing function of θ,

and for θ = 0, one has that b(η, θ) = ΩX , i.e., the application domain is not perturbed.
Figure 2 (b.) illustrates this perturbation scheme. The initial application domain is displayed in

magenta and is subject to a dilatation of parameter η = 2. The red constraints halve its width, and the
blue constraints double it. One can additionally check that in both cases, the midpoint of the original
validity domain is preserved. Application domain dilatations are formally defined as the collection of
perturbation classes {T (η, θ)}θ∈[−1,1] where,

T (η, θ) =
{
Q ∈ P(R) | F←Q (m) ≤ bm(η, θ) ≤ F→Q (m),m ∈ {0, 1}

}
= Q

(
(0, 1)>, (b0(η, θ), b1(η, θ))

>
) (13)

Many perturbation settings can be defined by combining quantile shifts and domain dilatations. How-
ever, for the sake of simplicity, quantile shifts and domain dilatations are studied independently in
Section 5.

3.2. Copula preservation and marginal quantile perturbations

3.2.1. Motivations

Regarding multivariate perturbations in general, independence assumptions are often required [56].
While it facilitates mathematical calculations, it is questionable in practice. One of the main challenges
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in ML interpretability and SA is to account for the potential dependence structure between the inputs
(or features) [71].

Dependencies provide helpful information on the global behavior of the inputs. In SA, the de-
pendence structure is often chosen after extensive studies [28], and expresses the physical relationship
between the uncertainties on the inputs. In ML, it can be argued that preserving dependencies avoids
creating meaningless patterns [10] and is critical in some practical studies [57, 69]. Dependencies
between random variables can be modeled using copula-based representations [63], which relaxes the
framework of probabilistic graphical models usually encountered in ML [34].

From the interpretability standpoint, in practice, the intricacies of multivariate insights due to
stochastic dependence are much more complicated to grasp. Moreover, many of the properties pre-
sented above do not hold regarding multivariate quantile functions. The definition itself of multivariate
quantile functions is a highly non-trivial task. Many interesting approaches have been recently pro-
posed [19, 45]. However, they lack the broad adoption of their univariate counterpart in practice,
which makes them less interpretable.

In order to ensure the interpretability, the proposed methodology is restricted to:

• Quantile perturbations on marginal inputs.

• Perturbed probability measures having the same copula as the initial probability measure.

3.2.2. Marginal perturbation maps and copula preservation

Let X ∼ P and for i = 1, . . . , d, let each marginal input Xi ∼ Pi and (F←i )i=1,...,d be a collection
of quantile functions in F←. A marginal perturbation map is a mapping:

T : X → Xx1...
xd

 7→

T1(x1)
...

Td(xd)

 (14)

where
Tj =

[
F←j ◦ FPj

]
, j = 1, . . . , d.

Denote X̃ := T (X) the perturbed inputs.

Lemma 4. Suppose that each F←i , i = 1, . . . , d is strictly increasing:

(i) If P is an empirical measure then X and X̃ have the same empirical copula.

(ii) If P is atomless then X and X̃ have the same copula.

Hence, perturbation maps composed of compositions of marginal cdfs and strictly increasing quan-
tile functions preserve the copula. For instance, if P is an empirical measure related to an observed
dataset, applying T to every observation results in a perturbed dataset with the same Spearman
correlation matrix.

3.2.3. Copula-preserving multivariate perturbation classes

Combining quantile perturbation classes with marginal perturbation maps allows for defining mul-
tivariate perturbation classes, which are generic and interpretable. Let X ∼ P , and for i = 1, . . . , d, let
θi ∈ [0, 1]K × RK and θ = (θ1, . . . , θd). Finally, let Q(i) := Q(θi) be the perturbation class associated
with the input Xi. For Q ∈ P(Rd), and denote Q1, . . . , Qd its marginal distributions. Denote the set:

Qd(θ) =
{
Q ∈ P(Rd) | Qi ∈ Q(i)

}
,

11



and for any Q ∈ P(Rd), denote TQ the marginal perturbation map defined as:

TQ : X → Xx1...
xd

 7→


[
F←Q1
◦ FP1

]
(x1)

...[
F←Qd ◦ FPd

]
(xd)

 (15)

Marginal quantile perturbation classes are defined as the set:

Z(P, θ) = {Q ∈ Qd(θ) | TQ(X) ∼ Q,X ∼ P} ,

and, from Lemma 4, copula-preserving marginal quantile perturbation classes are defined as:

Z̃(P, θ) =
{
Q ∈ Z(P, θ) | F←Qi is strickly increasing, i = 1, . . . , d

}
.

3.3. Wasserstein projections

3.3.1. Motivations

The Wasserstein distance is deeply rooted in optimal transportation theory [89] and has been used
successfully in many ML and deep learning applications [38, 3]. It has also been extensively studied
as a tool for guaranteeing distributional robustness to adversarial attacks in ML [30]. It has been used
in SA to produce novel sensitivity indices [36, 14].

The 2-Wasserstein distance is interpretable. The choice of transportation cost as the squared dis-
tance is intrinsically linked to notions of the L2 norms, which can be interpreted as lengths, analogous
to the well-known Euclidean geometry [89]. It becomes natural and intuitive to quantify transporta-
tion costs as distances between points. It becomes even more natural in one dimension since the
2-Wasserstein distance can be interpreted as the absolute difference in areas between two quantile
functions. Hence, proximity between two univariate probability measures, in the 2-Wasserstein sense,
is rather natural.

Moreover, the 2-Wasserstein distance ensures genericity. The only requirement for two probability
measures to be comparable is the finiteness of their variance. This assumption is classical in SA
and ML interpretability. Compared to the KL divergence, which requires the absolute continuity of
one probability measure versus the other and the existence of logarithmic moments, it appears less
restrictive. In practice, it allows for more flexible perturbations: if P is an empirical measure (i.e.,
purely atomic), then Q is not restricted to be purely atomic; conversely, if P admits a density, then it
does not restrict Q to admit a density. These benefits are key in unifying the frameworks of SA and ML
interpretability: the flexibility of the 2-Wasserstein distance allows for greater explicit control (e.g.,
through smoothing restriction) on the resulting perturbed measure Q, independently of the properties
of P .

Additionally, the 2-Wasserstein distance allows for exploration. Optimal transport maps between
two probability measures w.r.t. the 2-Wasserstein distance are (usually) not linear [78]. In other words,
perturbed solutions are not limited to the support of the initial probability measures: atoms can be
added, and ranges with 0 probability can be made relevant.

3.3.2. Marginal quantile constrained Wasserstein projections

The problem of finding a probability measure Q closest to P , but Q ∈ Z̃(P, θ) can be formalized
as follows:

Q = argmin
G∈P2(Rd)

W 2
2 (P,G) s.t. G ∈ Z̃(P, θ) (16)

However, since the set of probability measures in Z̃(P, θ) share the same copula as P , this problem
can be simplified:
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Lemma 5. The perturbation map T : Rd → Rd that minimizes (16) is defined, for any x =
(x1, . . . , xd)

> ∈ Rd, as:

T (x) =


[
F←Q1
◦ FP1

]
(x1)

...[
F←Qd ◦ FPd

]
(xd)


where, for i = 1, . . . , d:

F←Qi = argmin
L∈L2([0,1])

{∫ 1

0

(
L(x)− F→Pi (x)

)2
dx

}
s.t. L(αj) ≤ bj ≤ L

(
α+
j

)
, i = 1, . . . ,K,

L is strictly increasing.

(17)

where for α = (α1, . . . , αk)>, b = (b1, . . . , bk)>, θi = (α, b).

Hence, solving the projection problem in (16) is equivalent to solving the d problems of the form
of (17).

3.3.3. Relaxed projection problem

Imposing that the resulting optimally perturbed marginal gqf be strictly increasing guarantees
preserving the initial copula of the inputs. However, such constraints can lead to the non-existence
of an optimum of (17) due to the non-closure of the set of strictly increasing functions [12]. To that
extent, this work focuses on a relaxation of the problem in (17) to increasing functions, namely:

F← = argmin
L∈L2([0,1])

{∫ 1

0

(
L(x)− F→Pi (x)

)2
dx

}
s.t. L(αj) ≤ bj ≤ L

(
α+
j

)
, i = 1, . . . ,K,

L ∈ V ⊆ F←.

(18)

where V can be understood as a set of “smooth quantile functions” (see , Definition 4). Notice that
this problem is indeed a relaxation of the initial problem. Indeed, if V is chosen as the set of strictly
increasing functions, this problem becomes equivalent to (17).

Remark 3. In practice, the relaxed problem (18) is frequently computationally easier to solve and can
still lead to strictly increasing solutions.

4. Solving the relaxed quantile perturbation problem

4.1. Relaxed problem with no smoothing

4.1.1. Analytical solution

The following proposition provides a convenient way to solve the perturbation problem (18) in the
particular case of V = F←.

Proposition 1. Let P be a probability measure in P2(R). Let α ∈ [0, 1]K and b ∈ Rk, such that
α1 < · · · < αK and b1 < · · · < bK , and Q(α, b) the associated quantile perturbation class. Define the
intervals Ai = (ci, di] for i = 1, . . . ,K, such that:

c1 = min(β1, α1), ci = min
[
max(αi−1, βi), αi

]
, i = 2, . . . ,K,

dK = max(βK , αK), dj = max
[
min(βj , αj+1), αj

]
, j = 1, . . . ,K − 1.
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Let A =
⋃K
i=1Ai and A = [0, 1] \ A. Then the problem (18) where V = F← has a unique solution

which can be written as, for any y ∈ [0, 1]:

F←Q (y) =

{
F→P (y) if y ∈ A,
bi if y ∈ Ai, i = 1, . . . ,K.

(19)

4.1.2. Interpretation and solution

In order to interpret this result, illustrated in Figure 3, let us recall that when a quantile function is
constant on an interval, it implies that its related probability measure admits an atom at the constant
value taken by the gqf. Moreover, the mass allocated to this atom is equal to the length of the interval.
Additionally, each jump of the quantile function induces an interval with no mass. The solution
displayed in (19) shows that both initial and perturbed quantile functions are equal on A. However,
they differ on every interval Ai in the following fashion:

• Q have atoms at each constraint point bi, i = 1, . . . ,K;

• Each of these atoms have mass Q({bi}) = di − ci, for i = 1, . . . ,K;

• Each open interval Ii ⊂ R defined as

Ii =


(

max(F←P (αi), bi−1), bi

)
, when bi > F←P (αi),(

bi,min (bi+1, F
←
P (αi))

)
, when bi < F←P (αi)

(20)

with, by convention, b0 = −∞ and bK+1 = ∞, has no mass. To put it briefly, Q(Ii) = 0 for
every i = 1, . . . ,K.

In other words, whenever an α-quantile pα is shifted up to a value b, the perturbation entails
sending every possible value in the range (pα, b) to b. Hence, every value in (pα, b) cannot be sampled
according to Q. Moreover, the singleton {b} now admits a probability of being observed equal to the
initial probability of this interval, i.e., Q({b}) = P

(
(pα, b)

)
. When an α-quantile is shifted to b, the

interval becomes (b, pα), and the same reasoning can be done.

0 1
α1 α2 α3 α4 0 1

α1 α2 α3 α4

b1

b2
b3
b4

b1
b2
b3

b4

Figure 3: Characterizing quantile function of the solution of the perturbation problem (dashed blue). The initial quantile
function (i.e., F←P ) is displayed in green, and dashed red lines identify the quantile constraints. (a.) and (b.) illustrate
different possible perturbation configurations, increasing or decreasing several initial quantile values.
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The statement of Proposition 1 is intuitive. Indeed, the Wasserstein distance quantifies the amount
of work needed to transform a probability measure into another one [78]. When using W2, the amount
of work is quantified using the Euclidian distance, i.e., transporting a point x0 to x1 requires (x0−x1)2

units of work. This intrinsic point-wise way of quantifying similarities can be sensed in the previous
result: perturbing an α-quantile entails giving the initial mass of an interval adjacent to b to the
singleton {b} in order to satisfy the constraint.

4.2. Isotonic piece-wise interpolating polynomial smoothing

The analytical solution provided in Proposition 1 presents a significant drawback: part of the appli-
cation domain ΩX of the perturbed input receives no mass, which hurts the perturbation exploration
criteria. This result is because F← contains discontinuous functions. Ensuring continuity through a
smooth perturbation class QV where V is a set of continuous, non-decreasing functions can solve this
issue.

4.2.1. Characterization of the problem

This section studies the projection of F←P onto a space of piece-wise continuous polynomials. It
implies that the support of Q must be bounded. These bounds are made explicit using extremal
quantile constraints (i.e., F←Q (0) and F←Q (1) are constrained to take finite values). Formally, the goal
is to find a piece-wise polynomial of the form

G(x) =



G0(x) if α0 := 0 ≤ x < α1,
...

Gi(x) if αi ≤ x < αi+1,
...

GK(x) if αK ≤ x ≤ 1 =: αK+1.

(21)

under the continuity constraints at each knot on the grid α1 < · · · < αK , i.e.,

Gi(αi+1) = Gi+1(αi+1), i = 0, . . . ,K − 1.

Here, each Gj ∈ R[x]≤p, for j = 0, . . . ,K, where R[x]≤p denotes the set of all real polynomials of degree
at most equal to p. Let Sp denote the space of functions defined by (21). Restricting the solution of
the perturbation problem (18) leads to the following optimization problem

F←Q = argmin
L∈L2([0,1])

{∫ 1

0

(L(x)− F→P (x))
2
dx

}
s.t. L(αi) = bi, i = 1, . . . ,K,

L ∈ F← ∩ Sp.

(22)

or, in other words, V = F← ∩ Sp in the initial relaxed problem. Due to the piece-wise nature of
polynomials in Sp defined on the α0 < α1 < · · · < αK < αK+1 = 1, solving (22) reduces to solve
sub-problems on each sub-interval [αi, αi+1], i = 0, . . . ,K of [0, 1]. (22) is indeed separable into K + 1
independent optimization sub-problems. Each defines an optimal component Gi of the piece-wise
polynomial G as defined in (21).

Any of these problems can be formulated generically as follows. Let [t0, t1] ⊂ [0, 1], and z0, z1 ∈ R
be interpolation values at t0 and t1 respectively. The goal is to find the solution to the optimization
sub-problem

S = argmin
L∈R[x]≤p

{∫ t1

t0

(F←P (x)− L(x))2dx

}
s.t. L(t0) = z0, L(t1) = z1,

L′(x) ≥ 0, ∀x ∈ [t0, t1].

(23)
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This optimization sub-problem is nothing more than the L2 isotonic (i.e., monotonic, in this case
non-decreasing) polynomial approximation on a compact interval [61], with interpolation constraints
at the boundaries. The interpolating polynomials have been extensively studied in the literature [37],
as well as isotonic polynomial regression and approximation [79, 91]. However, to our knowledge, this
specific optimization problem does not seem to have been particularly studied.

A strategy for solving (23) is to use the sum-of-squares (SOS) [54] representation of nonnegative
polynomials. These SOS representations can then be characterized using semi-definite positive (SDP)
matrices [67, 68, 82]. A similar characterization of isotonic polynomials has been proposed in [82]. The
following result shows that this optimization problem fits into the category of strictly convex programs:
the solution of (26) is unique [12].

Theorem 1. Let [t0, t1] ⊂ [0, 1]. Let M be the symmetric positive definite ((d+ 1)× (d+ 1)) moment
matrix of the Lebesgue measure on [t0, t1], i.e. for i, j = 1, . . . , d+ 1,

Mij =

∫ t1

t0

xi+j−2dx =
(t1)i+j−1 − (t0)i+j−1

i+ j − 1
, (24)

and denote r ∈ Rd+1 the moment vector of F→P (x), i.e., for i = 0, . . . , d

ri =

∫ t1

t0

xiF→P (x)dx. (25)

Then, the vector s∗ = (s0, . . . , sd)
> ∈ Rd+1 of coefficients characterizing the polynomial S in (23) is

the solution of the following convex constrained quadratic program

s∗ = argmin
s∈Rp+1

s>Ms− 2s>r

s.t. s ∈ K,
(26)

where K is an identifiable closed convex subset of Rp+1 (for the sake of conciseness, K is characterized
within the proof).

Remark 4. Constraining the polynomials in (23) to be strictly increasing (i.e., L′(x) > 0) would
ensure copula preservation. However, the set K in Theorem 1 would be open, and the existence of an
optimal solution would not be guaranteed.

4.2.2. Solving strategy and empirical computational cost

As solving for s∗ in (26) is a convex-constrained quadratic program, it can be addressed efficiently
using devoted solvers. The problem (22) amounts to solving K + 1 optimization problems of the form
(26). Furthermore, computations can be done in parallel. The problem (26) can be formulated and
solved using CVXR, an R package for disciplined convex programming [39]. The optimization scheme is
illustrated in Algorithm 1.

While computing the Lebesgue moment matrix M on each sub-interval of [0, 1] is straightforward,
computing strategies for r, the moment vector of F←P , can vary depending on whether P is empirical
or not. Additional computational details are given in Appendix Appendix B. The set-up of the CVXR

constraints is detailed in the accompanying GitLab repository1.
To provide a frame of reference for the practical usage of this method, the empirical computational

time of solving one element of G, w.r.t. the polynomial degree is studied. Values t0, t1 ∈ [0, 1], and
z0, z1 ∈ ΩX are randomly selected, and an isotonic interpolating piece-wise continuous polynomial
is fitted (i.e., solving (26)). Polynomials of degrees ranging from 2 to 50 are fitted for each experi-
ment, repeated 150 times. The execution time has been recorded and is displayed in Figure 4. The

1https://gitlab.com/milidris/qcWasserteinProj
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Algorithm 1 Isotonic interpolating piece-wise continuous polynomial optimization strategy

Require: α, b, F→P , p
1: for i = 0, . . . ,K do (in parallel)
2: Compute M on [αi, αi+1] (24).
3: Compute r on [αi, αi+1] (25).
4: Setup CVXR constraints.
5: s(i) ← Solve (26).

6: Gi(x)←∑p
j=0 s

(i)
j xj

7: end for
8: return G(x)←∑K

i=0Gi(x)1[αi,αi+1](x)

mean computational time seems to be linear w.r.t. the polynomial degree. However, the higher the
degree, the wider the 90% time coverage seems to be, which may be caused by the complexity of the
underlying optimization problem. In our limited testing, further numerical experiments showed that
small polynomial degrees (≤ 7) often appear sufficient to obtain good approximations. Moreover, the
approximation error tends to stabilize, w.r.t. the polynomial degree, rather rapidly.

Remark 5. The numerical solver used is SCS V3.2.1 [64]. The quantile functions have been mapped
to take values between [−1, 1] to improve numerical stability. All the figures and all obtained optimal
perturbations have been computed by performing this pre-processing step first.

5. Robustness diagnostics to distributional perturbations

The perturbation method is applied to two use cases to illustrate the robustness insights one can
gather regarding black-box models. First, the robustness to feature perturbations of a classification
model (i.e., a one-layer neural network) trained on an acoustic fire extinguisher dataset is studied.
Local and global diagnostics are showcased, leading to tangible insights. The second use case deals

10 20 30 40 50

0
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4
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8
10

Degree of the fitted polynomial

S
ec

on
ds

Mean solving time
Empirical 90% coverage

Figure 4: Computational solving time in seconds of the optimization problem (26) using CVXR, w.r.t. the chosen degree
of the polynomial.
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with a numerical hydrological model from the UQ literature. The perturbation methodology allows
going beyond classical metrics for surrogate model validation.

Remark 6. The following applications apply optimal perturbations using an isotonic polynomial
smoothing with an arbitrarily high degree. The degree is chosen based on an empirical inspection
of the solutions and ensuring that the approximation error remains relatively the same w.r.t. higher
degrees.

Particular attention has been put on copula preservation. Even though the relaxed problem (18)
is solved in the following applications, the solutions are composed of strictly increasing marginally
perturbed quantile functions.

5.1. ML application: Acoustic fire extinguisher dataset

The acoustic fire extinguisher dataset comprises 15390 experiments of fire extinguishing tests of
three different liquid fire fuels. Amplified subwoofers are placed in a collimator with an opening. When
activated at different frequencies, the acoustic waves produce an air escape through the opening, which
is used to extinguish fires. Three features are set using a design of experiment (DoE), and two are
measured using appropriate equipment. One can refer to the in-depth descriptions in [53, 87] for more
details on the experiment’s settings. Table 1 gives additional details on the nature of the features.

Feature Unit Mode of measure Description

TankSize cm DoE Discrete feature (5 levels) describing the tank size contain-
ing the fuel.

Fuel DoE Fuel type used (3 levels: Gasoline, Kerosene, Thinner).

Distance cm DoE Distance of the flame to the collimator opening.

Frequency Hz DoE Sound frequency range.

Decibel dB Measured Sound pressure level.

Airflow m/s Measured Airflow created by the sound waves.

Table 1: Description of the features of the acoustic fire extinguisher dataset.

For each experiment, a binary output variable Y is measured, representing the result of the exper-
iment, i.e., , whether the fire has been put out (Y = 1) or not (Y = 0). The two output classes are
relatively balanced (i.e., 48.97% of the observations describe effectively extinguished fires). The dis-
tribution, correlation structure, and relationship between the features and the output are represented
in Figure 5. Some variables seem fairly correlated (in Spearman’s sense, i.e., the linear correlation of
the rank-transformed data), such as Frequency and Decibel, as well as Distance and Airflow.

The classification black-box model is a one-layer neural network (composed of 100 neurons), trained
on 500 epochs, with a learning rate of 10−4, similar to the study conducted in [86]. 5% of the data
has been randomly selected for validation. The model resulted in a good prediction accuracy: 95.15%
of the training data and 94.26% of the validation data are correctly classified. Figure 6 depicts the
trained black-box model’s ROC curve and confusion matrix. The model’s predictive performance can
be validated globally with an AUC of 0.992 and less than 3% of type 1 and 2 prediction errors.

However, global predictive performance only focuses on effectively observed data points. Studying
the model’s behavior on predictions outside these points is mandatory to improve confidence in its
usage. Hence, one can be interested in the robustness of the model w.r.t. perturbations on its inputs.
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Note that ground truths cannot be observed for perturbed data. However, the impact, either globally
or locally, of these perturbations on the predictive behavior of the model can still be assessed using
predictions on the perturbed data. The feature perturbation scheme is detailed and motivated in the
following, and then the model’s behavior is studied under these perturbations.

5.1.1. Perturbation strategy

A straightforward perturbation strategy is proposed for the Airflow feature. The perturbation is
composed of the K = 14 constraints:

• The application domain of the feature is preserved by setting both the 0 and 1-quantiles to the
dataset’s minimum and maximum observed value.

• The left tail of the distribution is preserved by constraining every quantile of level 0.1 to 0.6 with
a step of 0.05 to interpolate the empirical quantile function of the feature.

• A quantile shift perturbation is put on the 0.8-quantile of the feature, with an initial value of
F←P (0.8) = 12, being shifted between 9.5 (θ = −1) and 14.5 (θ = 1).

In addition to these perturbations, piece-wise continuous isotonic polynomials smoothing is enforced.
The degree of each increasing polynomial has been arbitrarily chosen to be up to 9. The constraints
and the resulting quantile-constrained Wasserstein projections are illustrated in Figure 7 for intensity
values −1, 0, and 1.

Figure 5: Histogram, cross-scatterplot, and Spearman’s correlation coefficient of the input features. Red dots represent
observations resulting in Y = 0, and blue dots for Y = 1.
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Figure 6: ROC curve (left) and confusion matrix (right) of the neural network model trained on the acoustic fire
extinguisher dataset.

The perturbed quantile level has been chosen with the model’s decision boundary in mind: no
observation in the initial dataset with an Airflow value exceeding 12.3m/s is classified by the model
as not extinguishing the fire, regardless of the values taken by the other features. Perturbing the
0.8-quantile of the Airflow variable allows for exploring the model’s behavior in regions close to this
decision boundary. More importantly, it allows for assessing the predictive robustness of the neural
network in this region under perturbations of varying magnitude. Generally, this quantile shift regime
can be understood as a perturbation on the right tail of the initial distribution, i.e., on values higher
than the 0.6-quantile.

5.1.2. Model robustness assessment

First, global robustness insights are highlighted. The left plot of Figure 8 presents the proportion
of perturbed observations with predictions of 1 w.r.t. to the intensity of the perturbation. Notice
that the proportion is increasing, along with θ. Hence, decreasing the value of the initial 0.8-quantile
tend to result in a lower number of predicted put-out fires, and increasing its value results in an
increasing number of predicted put-out fires. This interpretation is rather intuitive: all other things
being equal, a higher Airflow value entails a higher chance of predicting Y = 1. The right plot of
Figure 8 presents the proportion of prediction shift w.r.t. θ. Notice that the higher the magnitude of
the perturbation (positively or negatively), the more predictions tend to change, and the closest θ is
to 0, the fewer predictions shift. This observation informs on the predictive stability in the vicinity of
the decision boundary of the model: small perturbations tend to result in fewer prediction shifts than
bigger perturbations.

Figure 9 presents the target Shapley effects [48], a global SA input importance measure for binary
black-box model outputs with dependent inputs, w.r.t. the quantile shift intensity parameter θ. These
indices have been computed using the nearest-neighbor (KNN) approach proposed in [15] (with an
arbitrarily chosen number of neighbors equal to 6). Studying the behavior of importance measures
informs on the stability of this diagnostic (i.e., feature importance order) w.r.t. input perturbation,
i.e., if the importance hierarchy between the inputs changes due to perturbations around the model’s
decision boundary. The left barplot presents the initial target Shapley effects, computed on the model’s
prediction on the observed data, and the right plot presents their behavior under the airflow pertur-
bation. One can notice that the importance indices remain stable w.r.t. θ. This result indicates that
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Figure 7: Quantile functions of the optimally perturbed Airflow feature, with a chosen polynomial degree equal to 9.
The red line represents the preserved tail; meanwhile, the green, blue, and yellow lines represent various quantile shift
intensity levels (θ = −1, θ = 0, and θ = 1, respectively).

the global SA of the neural network is robust to the distributional perturbations driven by θ. Hence,
one can be confident in those diagnostics under uncertainties in the region near the model’s decision
boundary.

Finally, the robustness of the neural network can also be assessed locally. Figure 10 allow visualizing
whether a prediction has shifted w.r.t. to the effective magnitude of the perturbation. The black line
indicates no perturbation change: the airflow value of an observation has been mapped to itself. For a
fixed initial airflow datapoint, its vertical distance to the black line indicates the (signed) magnitude of
the applied perturbation. Red points indicate that the prediction has shifted w.r.t. the initial dataset,
and blue points indicate no predictive change. One can note the presence of red dots close to the black
line around the prediction boundary of the model. Small perturbations for observations with airflow
values around 12, all other features being equal, can lead to a prediction change. Hence, the confidence
in predictions on observations in this region can be questioned. However, notice the lack of red dots
near the black line for airflow values on the interval [13, 17] and on the interval [7, 10]. Hence, one can
be confident in the model’s predictions for Airflow values on these intervals, which seem robust w.r.t.
the quantile shift.

One may notice the presence of small perturbations resulting in prediction changes for Airflow
values around [0, 5]. However, since the perturbation scheme focuses on exploring the model’s behavior
around the decision boundary, their interpretation is voluntarily omitted: a different perturbation
scheme involving perturbing the left tail of the airflow distribution would be advised.
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In summary, besides its good prediction accuracy, the model is globally robust to distributional
perturbation focused around the decision boundary of its Airflow feature. Moreover, one can be
confident in the feature importance indices since they remain relatively similar under perturbation.
Locally, the model prediction seems stable w.r.t. small perturbations, except on a small interval around
its decision boundary (a behavior generally expected in ML applications). In conclusion, this robust
interpretability analysis further assesses the model’s behavior beyond classical accuracy metrics and
provides additional arguments for its validation.

5.2. SA application: Simplified hydrological model and surrogate model validation

This use case focuses on a simplified model of the water level of a river. This model has been
extensively used in the safety and reliability of industrial sites, where the occurrence of a flood can
lead to dramatic human and ecological consequences. It consists of a substantial simplification of the
one-dimensional Saint-Venant equation, with a uniform and constant flow rate, inspired from [51, 40].
The maximal annual water level from sea level is modeled as follows:

Y = Zv +

 Q

BKs

√
Zm−Zv

L

3/5

,

where the description of each input variable and their explicit marginal probabilistic structure is
detailed in Table 2.

Additionally, similarly to [18], a dependence structure is modeled using a Gaussian copula, with
the covariance matrix

RP =


1 0.5 0 0 0 0

0.5 1 0 0 0 0
0 0 1 0.3 0 0
0 0 0.3 1 0 0
0 0 0 0 1 0.3
0 0 0 0 0.3 1

 , where


Q
Ks

Zv
Zm
L
B

 ∼ P.
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Figure 8: Proportion of predictions Y = 1 (left) and proportion of classification prediction shift (right) compared to the
initial data, w.r.t. the perturbation intensity parameter θ.
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Figure 9: Initial (left) and perturbed (right) target Shapley effects, w.r.t. the intensity parameter θ, using the same
color panel.

Input Unit Distribution Application Domain Description

Q m3/sec G(1013, 558) trunc. [500, 3000] River maximum annual water flow
rate.

Ks N (35, 5) trunc. [20, 50] Strickler riverbed roughness coeffi-
cient.

Zv m T (49, 50, 51) [49, 51] Downstream river level.

Zm m T (54, 55, 56) [54, 56] Upstream river level.

L m T (4990, 5000, 5010) [4990, 5010] River length.

B m T (295, 300, 305) [295, 305] River width.

Table 2: Inputs of the simplified river water level model and their explicit marginal distributions. G,N , T denote
Gumbel, Normal and Triangular distributions, respectively (trunc means truncated).

Echoing Example 2, one is interested in uncertainties on the application domain of the Ks input,
i.e., the Strickler riverbed roughness coefficient (which is the inverse of the Manning coefficient). Its
value can range from around 3 (proliferating algae) to 90 (smooth concrete). We refer the interested
reader to the in-depth study in [40] for more details on the determination and inference of the Strickler
coefficient for realistic rivers. In this use-case, the application domain ΩX of the Strickler coefficient is
initially set between the values of 20 and 50, corresponding to situations from very cluttered riverbeds
to earthen channels. However, epistemic uncertainties are assumed to affect this application domain
to illustrate our robustness method.

23



Figure 10: Perturbed datapoints w.r.t. their initial values. The black line represents no perturbation. The red and blue
dots represent either a classification shift due to the perturbation or no classification shift.

5.2.1. Perturbation strategy

In this use case, the three following inputs are perturbed. The river’s maximum annual water
flow rate Q, the river length L, and the upstream river level Zm are subject to the following quantile
constraints:

• Quantile perturbations on Q:

– Shift of the application domain from [500, 3000] to [500, 3200];

– Preserve the median of the distribution;

– Increase the initial 0.15-quantile by 75;

– Decrease the initial 0.75-quantile by 125;

• Quantile perturbations on L:

– Shift the application domain from [4990, 5010] to [4988, 5012];

– Preserve the median of the distribution;

• Quantile perturbations on Zm:

– Preserve the application domain and the median of the initial distribution;

– Increase the 0.8 and 0.9-quantiles by 0.1;
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– Decrease the 0.25-quantile by 0.05.

The initial input distributions, their application domain, and the optimally perturbed results are
illustrated in Figure 11. These constraints are mainly enforced to illustrate that multiple inputs can
be perturbed simultaneously while preserving their dependence structure. They can be interpreted, for
instance, as domain experts’ knowledge injection into the initial probabilistic structure of the inputs
(e.g., to study a specific river arm).

In addition to these constraints, the Strickler coefficient Ks is subject to an application domain
dilatation perturbation, with a scaling parameter η = 2. Each perturbation intensity represents a
degree of uncertainty on the type of riverbed roughness. When θ = −1, the width of the initial
application domain is halved, i.e., from [20, 50] to [27.5, 42.5], which can be interpreted in a situation
where the epistemic uncertainty on the riverbed roughness is narrower, between a slow winding natural
river, up to a plain river without shrub vegetation. When θ = 1, the epistemic uncertainty on the
riverbed is much wider. The application domain equals [5, 65], depicting a range of riverbed roughness
from proliferating algae to smooth concrete. Figure 12 illustrates the initial Ks distribution and the
optimally perturbed quantile functions for θ equal to −1 and 1. Hence θ can be interpreted as a proxy
for the “amount” of epistemic uncertainty on the riverbed roughness.

Additionally, the perturbations’ smoothness is enforced using piece-wise continuous isotonic poly-
nomials of degree up to 12, chosen arbitrarily.

5.2.2. Robustness of the sensitivity analysis

From a global standpoint, one can be interested in the impact of the distributional perturbations
on key statistics of the random output of the river water level model. Figure 13 presents estimated
values for the mean, standard deviation, 0.025 and 0.975-quantiles (shown by the 95% coverage),
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Figure 11: Initial quantile functions, application domains, and corresponding optimally perturbed quantile functions of
the Q, L, and Zm inputs.
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and minimum and maximum values of the random output, computed on 105 Monte Carlo samples,
w.r.t. the dilatation intensity θ. These values are compared to the reference ones according to the
initial distribution of the inputs, estimated on a 2× 105 Monte Carlo sample.

Notice that the expectation, standard deviation, 95% coverage quantiles, and minimum value of
the model output remain stable under the distributional perturbations on the application domain
of the Strickler coefficient. However, the estimated upper bound of the output support increases
exponentially for positive values of θ. Widening the uncertainty on the riverbed type allows for
relatively rare events of high river water levels since the 0.975-quantile does not seem dramatically
affected by the distributional perturbations.

Figure 14 presents the Shapley effects [65], which are global SA importance measures for real-
valued model outputs with dependent inputs. These indices have been computed using a double Monte
Carlo scheme as depicted in [83], with fixed simulated sample sizes, for each perturbed distribution
Q driven by a value of θ, Nv = 104 for estimating VarQ(Y ), as well as No = 103 and Ni = 100
to estimate EQ [VarQ (Y | XA)] for every subset XA, A ⊆ {1, . . . , d} of variables. Additionally, the
reference Shapley effects have been computed under the initial distribution with sample sizes Nv = 105,
No = 3× 103, and Ni = 300.

Note that the distributional perturbations have an impact on the importance measures. More
precisely, increasing the range of the uncertainty of the riverbed roughness increases its importance
for positive values of θ. Conversely, the importance of both Q and Zv decreases accordingly. However,
the variable importance hierarchy induced by the Shapley effects is preserved. It is also essential to
notice that Q and Zv are considered equally important as θ gets large. Hence, this SA does not seem
robust to distributional perturbations and, more precisely, to a widening of the support of the Strickler
coefficient in combination with the quantile perturbations put on Q, L, and Zm.
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Figure 12: Initial quantile function, application domain and corresponding optimally perturbed quantile functions for
Ks, for θ being equal to −1 (left) and 1 (right), for a scaling parameter η = 2.
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Figure 14: Reference Shapley effects (left) and Shapley effects of the river water level model under optimally dilated
application domain w.r.t. θ (right), using the same color panel.
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Figure 15: Expectation, standard deviation, 95% coverage, minimum and maximum estimators of the surrogate model,
w.r.t. the application domain dilatation intensity θ.

5.2.3. Surrogate model validation

A surrogate model is trained on an input-output sample of size 5× 105 of the initial probabilistic
structure and validated on a validation dataset of size 5×104. The surrogate model is a neural network
comprised of 3 hidden layers, 64 neurons each, and ReLu as an activation function. The R2 of the
model is 99.5% R2 on the training data and 99.5% on the validation data. Despite the model’s good
results on the validation data, it does not behave the same way as the initial model when perturbed
similarly. Echoing Figure 13, Figure 15 illustrates the model’s behavior when subject to the previously
introduced perturbations.

One can notice that the surrogate model does not behave as the numerical model w.r.t. the epistemic
uncertainty of the riverbed roughness. Even though, on the surface, the surrogate model generalizes
well on validation data, its behavior on the perturbed data differs from the initial numerical model.
More precisely, the maximal value of the river water level does not seem to be impacted by the
epistemic uncertainty of the riverbed roughness. However, the other statistics (mean, variance, and
95% coverage) align with the numerical model. Hence, despite its good fit, using this surrogate model
would not be advised if the goal of the sensitivity analysis is to study rare events.

5.3. Conclusions

These two use cases illustrate the different insights the perturbation methodology can offer in UQ
and ML studies. On the ML side, for classification tasks, it allows assessing the global behavior of
black-box models under input perturbations. This assessment is quantified either through studying
the prediction shifts due to the perturbation or through the behavior of feature importance metrics.
Locally, it allows the detection of low-stability regions of interest (regions where small perturbations
induce a classification change). In addition to classical accuracy metrics, our method can be used
to assess confidence in a predictive model. On the UQ side, it allows for studying the impact of
distributional perturbations (whose intensity can be tuned to represent epistemic uncertainties) on
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the model output, even in situations where inputs are correlated. Furthermore, in a SA context,
the behavior of classical sensitivity indices under those perturbations can also be studied, and their
robustness (for instance, the preservation of the input importance hierarchy) w.r.t. the probabilistic
modeling on the inputs can be assessed. In both cases, meaningful perturbations allow for a complete
picture, beyond classical validation metrics, of a black-box model’s behavior outside of the initial
distribution.

6. Discussion and perspective

Obtaining robustness diagnoses on the influence of input variables and the behavior of a model
considered a black box is essential for its acceptance and use. This paper provides a tool to answer this
problem by modifying the distributions of the input variables. These perturbations modify the quantile
of marginal distributions while, in some instances, preserving the dependence structure. This method
revolves around probability measure projection under a 2-Wasserstein cost, leading to interpretable,
generic, and close solutions, allowing for data exploration. Regularity conditions can be enforced,
and the case of piece-wise interpolating isotonic polynomials is studied. The robustness analyses
conducted on real case studies illustrate its potential flexibility and adequate computational cost,
which are essential for high-dimensional cases. These studies highlighted validation insights beyond
classical tools, allowing for a more complete understanding of the black-box model’s behavior.

Several avenues of improvement can be considered. First, concerning the piece-wise interpolating
isotonic polynomials. An enlightened polynomial degree selection is required. An idea would be to
use prior information on the order of differentiability of the sought-after perturbed gqf. In an ML
framework, nonparametric approaches to isotonic regression of the marginal gqfs of P can provide
answers through statistical testing [32, 25] or criteria enforcing a trade-off between approximation
error and sparsity (e.g., inspired from AIC or BIC). Moreover, while the proposed methodology allows
for continuous results, differentiability is not guaranteed. However, inspiration from the literature on
isotonic splines [46, 79, 37, 91] can be leveraged to offer the practitioner a better range of smooth
solutions. Additionally, other spaces of functions can also be used for smoothing purposes. Following
the work of [7], abstract reproducing kernel Hilbert space of nonnegative functions can be reached
through particular kernels. Hence, it would allow accessing different sets of nonnegative functions
whose regularities can be assessed through a thorough study of these kernels.

Second, the proposed methodology only focuses on marginal perturbation preserving the depen-
dence structure of the inputs. As pointed out by the reviewers of this article, one may wish to perturb
the dependence structure as well. However, it is argued that copula perturbation should be done inde-
pendently of marginal perturbations for the sake of the final interpretation of the robustness analyses.
It allows separating the effects in the marginal perturbation of the effects of the stochastic dependence
perturbation. Association and concordance measures appear as the most interpretable tools for cop-
ula manipulation (and are frequently used to incorporate expert opinion) [21, 92, 10]. An alternative
approach to perturb the stochastic dependence structure and the marginal would be to consider mul-
tivariate quantile functions. However, defining multivariate quantile functions is not trivial and not
as natural as in the univariate case. Among the many approaches to defining such a notion, the most
theoretically accomplished today is the one resulting from the concept of center-outward distribution
function [19, 45, 11]. Perturbing these quantile contours can be leveraged to go beyond marginal
consideration and will be the subject of future work.

Finally, one of the primary motivations for using the 2-Wasserstein distance as a projection metric
is that it metricizes weak convergence on a broad set of probability measures. Other distances between
probability measures are endowed with similar properties, such as the Prokhorov-Levy distance. Lever-
aging the different relationships between such distances (see [42]) could be beneficial for generalizing
the proposed approach.

29



Acknowledgements

Support from the ANR-3IA Artificial and Natural Intelligence Toulouse Institute is gratefully
acknowledged.

The authors warmly thank the Editor In-Chief and the two anonymous reviewers from their helpful
remarks, as well as Jean-Bernard Lasserre (Institut de Mathématique de Toulouse) and Guillaume
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[43] U. Grömping. Variable importance in regression models. Wiley Interdisciplinary Reviews: Com-
putational Statistics, 7:137–152, 2015.

[44] Shimodaira; H. Improving predictive inference under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference, 90(2):227–244, 2000.

[45] M. Hallin, E. del Barrio, J. Cuesta-Albertos, and C. Matrán. Distribution and quantile functions,
ranks and signs in dimension d: A measure transportation approach. The Annals of Statistics,
49(2):1139–1165, April 2021. Publisher: Institute of Mathematical Statistics.

[46] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series
in Statistics. Springer: New York, 2009.

[47] M. Il Idrissi, N. Bousquet, F. Gamboa, B. Iooss, and J-M Loubes. On the coalitional decomposition
of parameters of interest, 2023.

[48] M. Il Idrissi, V. Chabridon, and B. Iooss. Developments and applications of Shapley effects
to reliability-oriented sensitivity analysis with correlated inputs. Environmental Modelling and
Software, 143:105115, 2021.

[49] B. Iooss, V. Chabridon, and V. Thouvenot. Variance-based importance measures for machine
learning model interpretability. In Actes du 23ème Congrès de Mâıtrise des Risques et de Sûreté
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Appendix A. Proofs

Proof of Lemma 1. Notice that if (9) is respected, then the constraints are non-decreasing. Then,
there exists at least a function F← in F← such that the constraints are respected (e.g., the linear
interpolant of the constraints). So, there exists a probability measure with F← as a generalized
quantile function.

Proof of Lemma 2. Since [η0, η1] is bounded, one can define a standardized intensity parameter θ ∈
Θ = [−1, 1] as:

θ(b) =
pα − b
pα − η1

1{b>pα}(b) +
b− pα
pα − η0

1{b<pα}(b).

Equivalently, one can express b in terms of θ, which directly provides the expression of bα(η, θ).

Proof of Lemma 3. Preserving the midpoint of ΩX while perturbing its width requires that, for any
couple (b0, b1) ∈ R2, that

b0 + b1
2

=
ω0 + ω1

2
b1 − b0 = κ(ω1 − ω0)

⇐⇒


b1 =

ω1(κ+ 1)− ω0(κ− 1)

2

b0 =
ω0(κ+ 1)− ω1(κ− 1)

2
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where κ ∈ [ 1η , η]. Using the transformation

θ(κ) =


−κ− 1

1
η − 1

if
1

η
≤ κ < 1

0 if κ = 1
κ− 1

η − 1
if 1 < κ < η

allows defining the formulas for b0 and b1 provided in the result’s statement.

Proof of Lemma 4. (i) Suppose that P is empirical. Notice that the empirical copula (see Section 2.2.2)
only depends on the ranks of the observed data points. Since each F←i is strictly monotone increasing,
the ranks between the initial and perturbed data points are preserved. Hence, the empirical copula
between X and X̃ is the same.
(ii) Let F ∈ F , and recall that if F← is strictly increasing then from [31], for all u ∈ [0, 1]

(F ◦ F←)(u) = u

Now let F1, . . . , Fd ∈ F , such that F←i is strictly increasing, and denote:

F : R → [0, 1]d

(u1, . . . , ud)
> 7→ (F1(u1), . . . , Fd(ud))

>

One then has that:
F (T (X)) = FP (X) a.s.

and hence, X and T (X) have the same copula.

Proof of Lemma 5. Notice that, from Lemma 4, every probability measure in Z̃(P, θ) has the same
copula as P . Leveraging the work in [1] (Proposition 1.1), if P and Q share the same copula, one can
rewrite their 2-Wasserstein distance as:

W 2
2 (P,Q) =

d∑
i=1

W 2
2 (Pi, Qi) =

d∑
i=1

∫ 1

0

(
F→Pi (x)− F→Qi(x)

)2
dx (A.1)

Moreover, noticing that each marginal perturbation class Qi(θ) can be written as constraints on the
generalized inverses of the cdf of Qi. Hence, minimizing (A.1) entails minimizing each univariate
transportation problem under marginal constraints. Finally, the perturbation map T is thus optimal
between P and Q.

Proof of Proposition 1. First, note that the intervals Ai, i = 1, . . . ,K are disjoint. Moreover for any
i = 1, . . . ,K − 1, consider the four cases:

1. If αi < βi < αi+1 and, then Ai = (αi, βi];

2. If βi < αi < βi+1 and, then Ai = (βi, αi];

3. If αi < βi and assume that αi+j < βi+j−1 for j = 1, . . . ,m where m ≤ K−i is some non-negative
integer, then Ai = (αi, αi+1], additionally for j = i+ 1, . . . , i+m−1, Aj = (αj , αj+1] and finally
Ai+m = (αi+m, βi+m];

4. If βi < αi and assume that αi+j < βi+j+1 for j = 1, . . . ,m where m ≤ K − i − 1 is some
non-negative integer, then Ai = (βi, αi] and for j = i+ 1, . . . , i+m, Aj = (αj−1, αj ].

The integral can be decomposed as follows:∫ 1

0

(L(x)− F→P (x))
2
dx =

∫
A

(L(x)− F→P (x))
2
dx+

K∑
i=1

∫
Ai

(L(x)− F→P (x))
2
dx
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where ∫
A

(L(x)− F→P (x))
2
dx ≥ 0.

Since the quantile constraints are of the form:

L(αi) ≤ bi ≤ L
(
α+
i

)
.

one can always write L(y) = bi + h(y) for y ∈ Ai, and where h is an non-decreasing, left-continuous
function. Moreover, note that:

• h(y) is non-negative, and F→P (y)− bi ≤ 0 if Ai falls in cases 2. and 4.

• h(y) is non-positive, and F→P (y)− bi ≥ 0 if Ai falls in cases 1. and 3.

Then one has: ∫
Ai

(L(x)− F→P (x))
2
dx =

∫
Ai

(L(x)− bi − h(y))
2
dx

=

∫
Ai

(F→P (x)− bi)2 dx+

∫
Ai

h(x)2dx

− 2

∫
Ai

h(x) (F→P (x)− bi) dx

≥
∫
Ai

(F→P (x)− bi)2 dx

since h(x) and F→P (x) − bi have different sign. Due to the constraint and the left-continuous non-
decreasing nature of L, this bound is tight and is attained if and only if h(y) = 0 for all y ∈ Ai.
Globally, this entails that∫ 1

0

(L(x)− F→P (x))
2
dx ≥

K∑
i=1

∫
Ai

(F→P (x)− bi)2 dx

and this tight bound is uniquely attained by the left-continuous non-decreasing function defined as

F←Q (y) =

{
F→P (y) if y ∈ A
bi if y ∈ Ai, i = 1, . . . ,K.

Proof of Theorem 1 (ingredients). This proof relies on the following results from [67, 68, 54], and
further recalled in [82]. They involve sum-of-squares (SOS) polynomials, which can be defined as
follows.

Definition 5 (SOS polynomials). A polynomial S of even degree p is said to be a SOS polynomial if,
for m ∈ N∗, there exists s1, . . . , sm polynomials of degree at most equal to d

2 , and such that, ∀x ∈ R:

S(x) =

m∑
i=1

(
si(x)

)2
.

Theorem 2. Let t0, t1 ∈ R such that t0 < t1, and let p ∈ N∗.
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(i) A univariate polynomial S of even degree d = 2p is non-negative on [t0, t1] if and only if it can be
written as, ∀x ∈ [t0, t1]

S(x) = Z(x) + (x− t0)(t1 − x)W (x)

where Z is a SOS polynomial of degree at most equal to d, and W is an SOS polynomial of degree
at most equal to d− 2.

(i) An univariate polynomial S of odd degree d = 2p+ 1 is non-negative on [t0, t1] if and only if it can
be written as, ∀x ∈ [t0, t1]

S(x) = (x− t0)Z(x) + (t1 − x)W (x)

where Z,W are SOS polynomials of degree at most equal to d.

It is important to note that Theorem 2 is quite general in the sense that it allows for extensions
to multivariate polynomials (i.e., polynomials taking values from Rd). As pointed out in [29] (Thm.
1.4.2), nonnegative polynomials on compact intervals can also be defined as a linear combination of
squared polynomials. It may facilitate the identification of the nonnegative polynomials’ coefficients,
as done in [61] in the context of statistical learning. However, for the sake of potential future genericity,
the direct powerful link between SOS polynomials and semi-definite positive matrices is leveraged, as
expressed in the following theorem.

Theorem 3. Let S be a univariate polynomial of even degree d = 2p, with coefficients s = (s0, . . . , sd),
and denote xp the usual monomial basis of polynomials of degree at most equal to p, i.e., xp =
(1, x, x2, . . . , xp−1, xp)>. S is an SOS polynomial if and only if there exists a (p × p) symmetric
semi-definite positive (SDP) matrix

Γ =
[
Γij
]
i,j=1,...,p

that satisfies, ∀x ∈ R,
S(x) = x>p Γxp.

Moreover, for k = 0, . . . , d, let Ipk be the (p× p) matrix defined by, for i, j = 1, . . . , p:[
Ipk
]
i,j

= 1{i+j=k+2}(i, j).

Then one additionally has that, for i = 0, . . . , d

si = 〈Ipi ,Γ〉F =
∑

j+k=i+2

Γj,k (A.2)

where, 〈., .〉F denotes the Frobenius norm on matrices.

Theorem 4. Let Sn the subspace of real-valued symmetric matrices, in the vector space of square
matrices. The set of symmetric SDP matrices ΣN is a proper cone in Sn, and thus is a closed convex
set.

A few results on the preservation of convexity of sets under transformations are also required.
These lemmas can be found in [12].

Lemma 6 (Linear maps preserve convexity). Let V,W be two vector spaces over the same field F .
Let T : V →W be a linear map, and let C ⊂ V be a convex set. Then the image of C under T , i.e., :

T (C) = {T (x) ∈W | x ∈ C ⊂ V }

is also a convex set.

Lemma 7 (Cartesian product of convex sets is a convex set). Let C1 be a subset of Rm and C2 be a
convex subset of Rn. Then, the Cartesian product C1 × C2 is a convex subset of Rm × Rn.

38



Two additional results, proven beneath, are required before proceeding to the proof of Theorem 1.

Lemma 8. The mapping in (A.2), V : Sp → R2p, defined, for any Γ ∈ Sp, as:

V (Γ) =

 ∑
j+k=i+2

Γj,k


i=0,...,2p

is linear.

Proof of Lemma 8. We need to show that:

• For A,B ∈ Sp, T (A+B) = T (A) + T (B);

• For α ∈ R, Γ ∈ Sp, T (αΓ) = αT (Γ).

First, one has, for i = 0, . . . , 2p:[
T (A+B)

]
i

=
∑

j+k=2p−i

[
A+B

]
jk

=
∑

j+k=i+2

Ajk +Bjk

=
∑

j+k=i+2

Ajk +
∑

j+k=i+2

Bjk

=
[
T (A)

]
i
+
[
T (B)

]
i

since it holds for i = 0, . . . , 2p, it entails:

T (A+B) = T (A) + T (B).

Moreover, one has, for i = 0, . . . , 2p: [
T (αΓ)

]
i

=
∑

j+k=i+2

αΓjk

= α
[
T (Γ)

]
i

and since it holds for i = 0, . . . , 2p, it entails:

T (αΓ) = αT (Γ).

Hence T is a linear map between Sp and R2p.

Lemma 9. Let S be a univariate polynomial of degree d and s = (s0, . . . , sd)
> ∈ Rd+1 its coefficients.

Let S′ be its derivative, i.e., a polynomial of degree d− 1, with coefficients s̆ = (s1, . . . , sd)
> ∈ Rd. Let

Z and W be SOS polynomials, with coefficients z and w, and assume that S′ is non-negative on [t0, t1]
as a combination of Z and W as in Theorem 2. Moreover, let

D = diag(1, 2, . . . , d)

be the (d× d) diagonal matrix with (1, . . . , d) as a diagonal elements and denote the bloc-matrices

Ii,d =

(
Id

0i,d

)
, Ii,d =

(
0i,d
Id

)
, Ii,d =

0i,d
Id

0i,d
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where 0i,d denotes the (i× d) matrix of zeros, and Id be the (d× d) identity matrix. If d is odd, then
z ∈ Rd and w ∈ Rd−2 and furthermore

s̆ = Az +Bw

where A and B are (d× d) and (d× d− 2) matrices, respectively. If the degree d of S is even, one has
that z, w ∈ Rd−1 and furthermore:

s̆ = Cz +Dw.

where C and D are (d× d− 1) matrices. More specifically,

A = D−1d , B = D−1d
(
(t0 + t1)I1,d−2 − I2,d−2 − t0t1I2,d−2

)
,

C = D−1d
(
I1,d−1 − t0I1,d−1

)
, D = D−1d

(
t1I1,d−1 − I1,d−1

)
.

Proof of Lemma 9. First, assume that S is a polynomial of odd degree d = 2p + 1, meaning that its
derivative, S′, is a polynomial of even degree 2p. From Theorem 2, one has that S′(x) is positive on
an interval [t0, t1] if and only if it can be expressed as :

S′(x) = Z(x) + (x− t0)(t1 − x)W (x)

where Z is an SOS polynomial of degree at most equal to d− 1 and W is an SOS polynomial of degree
at most equal to d − 3. Denote s̆ = (s1, . . . , sd) ∈ Rd the coefficients of S′ and z = (z1, . . . , zd) ∈ Rd
and w = (w1, . . . , wd−2) ∈ Rd−2 the coefficients of Z and W respectively. One has that :

S′(x) =

d∑
i=1

isix
i−1

=

d−1∑
j=0

(j + 1)si+1x
i

and if S′ is assumed to be non-negative on [t0, t1]

S′(x) = Z(x) + (x− t0)(t1 − x)W (x)

=

d−1∑
j=0

zj+1x
j + (−x2 + (t0 + t1)x− t0t1)

d−3∑
j=0

wj+1x
j

leading to the following identification :

s1 = z1 − t0t1w1

s2 = 1
2 (z2 − t0t1w2 + (t0 + t1)w1)

si = 1
i (zi − t0t1wi + (t0 + t1)wi−1 − wi−2) , for i = 3, . . . , d− 2

sd−1 = 1
d−1 (zd−1 + (t0 + t1)wd−2 − wd−3)

sd = 1
d (zd−1 − wd−2) ,

or, written in a matrix form:

s̆ = D−1d
(
z +

(
(t0 + t1)I1,d−2 − I2,d−2 − t0t1I2,d−2

)
w
)
.

If S is assumed to be a polynomial of even degree d = 2p, S′ is necessarily odd degree. From
Theorem 2, one has that S′(x) is positive on an interval [t0, t1] if and only if it can be expressed as :

S′(x) = (x− t0)Z(x) + (t1 − x)W (x)
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where Z and W are SOS polynomials of degree at most equal to d− 2 with z = (z1, . . . , zd−1) ∈ Rd−1
and w = (w1, . . . , wd−1) ∈ Rd−1 as coefficients, respectively. It leads to the following identification:

s1 = −t0z1 + t1w1

si = 1
i (zi−1 − t0zi + t1wi − wi−1) for i = 2, . . . , d− 1

sd = 1
d (zd−1 − wd−1) ,

which can be written in matrix form as

s̆ = D−1d
((
I1,d−1 − t0I1,d−1

)
z +

(
t1I1,d−1 − I1,d−1

)
w
)
.

We can now proceed to prove Theorem 1.

Proof of Theorem 1 (rationale). This rationale can be broken down in two steps: (a) proving
that the objective function (23) can indeed be written in a quadratic form, and:(b) proving that the
problem constraints form a feasible set in Rd+1 which is closed and convex.

(a) Notice first that the initial objective function∫ t1

t0

(L(x)− F→P (x))2dx

where L ∈ R[x]≤d with coefficients s ∈ Rd+1, can be rewritten as:∫ t1

t0

(F→P (x)− L(x))2dx =

∫ t1

t0

(

d∑
i=0

six
i − F→P (x))2dx

=

∫ t1

t0

( d∑
i=0

six
i

)2

+ (F→P (x))
2 − 2

d∑
i=0

six
iF→P (x)

 dx

=

∫ t1

t0

(
d∑
i=0

six
i

)2

dx− 2

d∑
i=0

si

∫ t1

t0

xiF→P (x)dx

+

∫ t1

t0

(F→P (x))
2
dx.

Note that ∫ t1

t0

(
d∑
i=0

six
i

)2

dx =

d∑
i=0

d∑
j=0

sisj

∫ t1

t0

xi+jdx

= s>Ms

where M is the moment matrix of the Lebesgue measure on [t0, t1], i.e., defined entry-wise, for i, j =
1, . . . , d+ 1 as

Mij =

∫ t1

t0

xi+j−2dx =
(t1)i+j−1 − (t0)i+j−1

i+ j − 1
.

and further notice that M is thus positive definite since, for any u ∈ Rd+1,

u>Mu =

∫ t1

t0

(
d∑
i=0

ui+1x
i

)2

dx ≥ 0
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is always non-negative, and equal to 0 if and only if ui = 0, i = 1, . . . , d+ 1. Moreover, note that:

d∑
i=0

si

∫ t1

t0

xiF→P (x)dx = s>r

where r ∈ Rd+1 is the moment vector of G with respect to the Lebesgue measure on [t0, t1], defined
for i = 0, . . . , d as:

ri =

∫ t1

t0

xiF→P (x)dx

Since a polynomial is completely characterized by its coefficients, searching for:

S∗ = argmin
L∈R[x]≤d

∫ t1

t0

(L(x)− F→P (x))2dx

is equivalent to finding the coefficients s∗ of S∗, i.e.,

s∗ = argmin
s∈Rp+1

s>Ms− 2s>r

and thus proving the first part of the proposition.

(b) Notice that the interpolation constraints{
S(t0) = b0

S(t1) = b1

can be written as {
s>t0

d = b0

s>t1
d = b1

where, for a ∈ R, one denote ad the vector of powers of a up to d, i.e., ad = (1, a, . . . , ad−1, ad) ∈ Rd+1.
Moreover, by letting:

T =

(
t0
d

t1
d

)
, b =

(
b0
b1

)
,

where T is a (2× d+ 1) bloc-matrix, the constraint can be written as:

Ts = b.

Furthermore, notice that
C0 = {s ∈ Rd+1 | Ts = b}

is a convex subset of Rd+1, since the equality constraints are linear. Concerning the monotonicity
constraint

S′(x) ≥ 0, ∀x ∈ [t0, t1],

from Lemma 9 one can quite generically writesd...
s1

 = T0(z, w) := Az +Bw

where z and w are the coefficient of SOS polynomials of degrees depending on d. Additionally, notice
that the mapping T0 : Rd × Rd−2 → Rd is linear. Next, let V1 : Sp → R2p, and V2 : Sq → R2q be
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defined as in (A.2), where p = d− 1/2 and q = d− 3/2 if d is odd, or p = d− 2/2 and q = d− 2/2 if
d is even, and note that both mappings are linear thanks to Lemma 8.

Moreover, denote the following sets:

Z = {V1(E) | E ∈ Σp}, W = {V2(E) | E ∈ Σp−1}

and notice the polynomial Z (resp. W ) is SOS if and only its coefficients z (resp. w) are in Z (resp.
W) thanks to Theorem 4. In addition again, notice that, thanks to Lemma 6, and due to the fact
that Σp is a closed convex set in Sp as per Theorem 4, both Z and W are convex subsets of R2p and
R2q respectively. Besides, thanks to Lemma 7, the set Z ×W is a convex subset of R2p ×R2q as well.
Moreover, let

C1 =

{(
T0(w, z)

x

)
∈ Rd+1 | x ∈ R, (z, w) ∈ Z ×W

}
and note that it is a convex subset of Rd+1 due to the fact that T0 is a linear map.

Finally, since both C0 and C1 are convex sets, their intersection:

K = C0 ∩ C1

is as well, and note that any element s ∈ K are the coefficients of a polynomial respecting both
equality and monotonicity constraints. In other words, K is the feasible set of coefficients of the initial
optimization problem.

Appendix B. Computing moment vector of arbitrary quantile functions

One wishes here at computing the vector described in (25). In the case where P is an empirical
measure built on a n-sample, one has that for [t0, t1] ∈ [0, 1], i = 0, . . . , p:

ri =
1

i+ 1

[∑
j∈J

X(j)

ni+1

(
(j + 1)

i+1 − ji+1
)

+X(j)

(
ti+1
1 −

(
j

n

)i+1
)

+X(j−1)

((
j

n

)i+1

− ti+1
0

)]

where J = {i ∈ N | bnt0c < i < bnt1c}, j = bt1nc, j = bt0nc + 1, and where X(j) denotes the j-th
order statistic of the observe sample. In cases where F←P is continuous, it is possible to use numerical
quadrature methods in order to evaluate each integral composing the elements ri of r.
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