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Abstract

The Weak (2,2)-Conjecture is a graph labelling problem asking whether all connected
graphs of at least three vertices can have their edges assigned red labels 1 and 2 and blue
labels 1 and 2 so that any two adjacent vertices are distinguished either by their sums of
incident red labels, or by their sums of incident blue labels. This problem emerged in a
recent work aiming at proposing a general framework encapsulating several distinguishing
labelling problems and notions, such as the well-known 1-2-3 Conjecture, a few of its vari-
ants, and so-called locally irregular decompositions. One further point of interest behind
the Weak (2,2)-Conjecture is that it is weaker than the 1-2-3 Conjecture, in the sense that
the latter conjecture, if proved true, would imply the former one is true too.

In this work, we prove that the Weak (2,2)-Conjecture holds for two classes of graphs
defined in terms of forbidden induced structures, namely claw-free graphs and graphs with
no pair of independent edges. One main point of interest for focusing on such classes
of graphs is that the 1-2-3 Conjecture is not known to hold for them. Also, these two
classes of graphs have unbounded chromatic number, while the 1-2-3 Conjecture is mostly
understood for classes with bounded and low chromatic number.

Keywords: distinguishing labelling; 1-2-3 Conjecture; sum distinction.

1. Introduction

This work deals with several distinguishing labelling problems, taking part to a
wide and vast area of research, as reported in several dedicated surveys on the topic, such
as e.g. [7, 10]. More particularly, we focus on a subset of these problems revolving around
the so-called 1-2-3 Conjecture, which can all be defined through the following unified
terminology, introduced recently in [4].

Let G be a graph, and α,β ≥ 1 be two positive integers. An (α,β)-labelling of G is an
assignment ℓ of labels from {1, . . . , α} × {1, . . . , β} to the edges of G, where each edge e
gets assigned a label ℓ(e) = (x, y) with colour x ∈ {1, . . . , α} and value y ∈ {1, . . . , β}. Now,
for every vertex v of G and any i ∈ {1, . . . , α}, we denote by σi(v) the sum of the values of
the labels with colour i assigned to the edges incident to v, which we call the i-sum of v.
We say that ℓ is distinguishing if for every two adjacent vertices u and v of G, there is an
i ∈ {1, . . . , α} such that the i-sums of u and v differ, that is, if σi(u) ≠ σi(v).

Regarding these notions, it can be noted that if G is K2, the complete graph of order 2,
then there are no α,β ≥ 1 such that G admits distinguishing (α,β)-labellings. This peculiar
case apart, it is not too complicated to prove that, for any fixed α ≥ 1, there is a β ≥ 1 such
that distinguishing (α,β)-labellings of any graph G exist. For these reasons, in the context
of distinguishing labellings, we generally focus on nice graphs, which are those graphs with
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Figure 1: The current knowledge we have on whether all graphs admit distinguishing (α,β)-labellings,
for fixed α,β ≥ 1. For a pair (α,β), the associated box is green if all graphs were proved to admit the
corresponding labellings, the associated box is red if it is known that not all graphs admit the corresponding
labellings, while the associated box is blue if the status is currently unknown. Arrows indicate existential
implications between pairs of types of labellings.

no connected component isomorphic to K2. Therefore, throughout this work, every graph
we consider is thus implicitly assumed nice.

A natural question, now, is whether, for some fixed α,β ≥ 1, every graph admits
distinguishing (α,β)-labellings. It turns out, as mentioned earlier, that the literature
actually provides answers for several values of α and β. See Figure 1 for a figure depicting
our current knowledge on the topic, which we make more explicit below.

• Note first that if α,β and α′, β′ are values such that α′ ≥ α, β′ ≥ β, and (α,β) ≠
(α′, β′), then any distinguishing (α,β)-labelling is a distinguishing (α′, β′)-labelling.

• Distinguishing (1, β)-labellings are labellings where all labels are of the same colour,
and all adjacent vertices should be distinguished according to their sums of incident
labels. Such labellings are exactly those behind the so-called 1-2-3 Conjecture [9]
of Karoński, Łuczak, and Thomason, which asks whether all graphs admit distin-
guishing (1,3)-labellings. To date, the best result towards this is that they all admit
distinguishing (1,5)-labellings, see [8].

• Distinguishing (α,1)-labellings can be seen as (improper) edge-colourings where, for
every two adjacent vertices, there must be a colour that is not assigned the same
number of times to their incident edges. These labellings are those defining the
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multiset version of the 1-2-3 Conjecture [1], which asks whether all graphs admit
distinguishing (3,1)-labellings. This conjecture was proved in [11] by Vučković.

• In [4], the authors noticed that, given a distinguishing (1,5)-labelling of some graph,
by modifying the label colours and values in a particular fashion, we can derive a
distinguishing (2,3)-labelling of the same graph. Similarly, there is a way, from a
distinguishing (1,5)-labelling, to derive a distinguishing (3,2)-labelling.

• It is not too complicated to see that, in regular graphs, distinguishing (1,2)-labellings
and distinguishing (2,1)-labellings are equivalent notions. In [2], it was proved that
determining whether a given cubic graph admits a distinguishing (1,2)-labelling is
NP-hard. This means there exist infinitely many graphs that admit neither distin-
guishing (1,2)-labellings nor distinguishing (2,1)-labellings.

• Graphs admitting distinguishing (1,1)-labellings are precisely the so-called locally
irregular graphs, which are those graphs with no two adjacent vertices having the
same degree. These graphs have been appearing frequently in the field, and have
even been receiving dedicated attention, see e.g. [5].

From this all, we arrive at the conclusion that there are only three pairs (α,β) for
which we are still not sure whether all graphs admit distinguishing (α,β)-labellings: (1,3),
which corresponds to the original 1-2-3 Conjecture; (1,4), which is weaker than the 1-2-3
Conjecture since more label values are available (while, similarly, all labels are of the same
colour); and (2,2), which is the only pair for which we have two label colours to deal with.
The latter pair leads to the following conjecture:

Weak (2,2)-Conjecture (Baudon et al. [4]). Every graph admits a distinguishing (2,2)-
labelling.

At first glance, the 1-2-3 Conjecture and the Weak (2,2)-Conjecture might seem a
bit distant. It is worth emphasising, however, that the former conjecture, if true, would
imply the latter [6]. For this reason, the Weak (2,2)-Conjecture can be perceived as a
weaker version of the 1-2-3 Conjecture. Also, to get progress towards these conjectures,
one can thus investigate the Weak (2,2)-Conjecture for classes of graphs for which the
1-2-3 Conjecture is not known to hold. To date, the 1-2-3 Conjecture was mainly proved
for 3-colourable graphs1 [10]. The weaker conjecture was mainly proved for 4-colourable
graphs [6].

Theorem 1.1 (Bensmail [6]). The Weak (2,2)-Conjecture holds for 4-colourable graphs.

Both conjectures were also proved for other classes of graphs, but not as significant.
One reason why the chromatic number parameter appears naturally in this context is
that having a proper vertex-colouring ϕ in hand can be helpful to design a distinguishing
labelling, since ϕ informs on sets of vertices that are not required to be distinguished. One
downside, however, is that making a labelling match ϕ somehow, might require lots of
labels if ϕ itself contains lots of parts.

In this work, we prove the Weak (2,2)-Conjecture for two classes of graphs for which the
1-2-3 Conjecture is not known to hold. Furthermore, the two classes of graphs in question

1Recall that a proper k-vertex-colouring of a graph G is a partition of V (G) into k independent sets.
The chromatic number χ(G) of G is the smallest k such that G admits proper k-vertex-colourings. We say
that G is k-colourable if χ(G) ≤ k, and k-chromatic if χ(G) = k.
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have unbounded chromatic number, which is significant according to the arguments above.
Precisely, we prove the Weak (2,2)-Conjecture for K1,3-free graphs (graphs with no induced
claw) and 2K2-free graphs (graphs with no pair of independent edges). Both results are
proved in a similar way: we first deal with the 5-colourable graphs of the class, before
focusing on those with chromatic number at least 6.

This paper is organised as follows. In Section 2, we start off with some preliminar-
ies, covering the terminology we use throughout, several lemmas, and previous results of
interest. We then start by proving the Weak (2,2)-Conjecture for 2K2-free graphs in Sec-
tion 3, since the proof we give serves as a good introduction to the more technical proof,
in Section 4, of the same result for K1,3-free graphs. We end this work in Section 5 with
concluding words.

2. Preliminaries

Let G be a graph, and ℓ be an (α,β)-labelling of G. If α = 1, then we will sometimes
call ℓ a β-labelling for simplicity. Also, in such cases, instead of denoting the 1-sum of
a vertex v by σ1(v), we will simply denote it as σ(v), or as σℓ(v) in case we want to
emphasise that we refer to the labels assigned by ℓ. Now, in cases where we are dealing
with the Weak (2,2)-Conjecture and, thus, (α,β) = (2,2), it will be more convenient to
see the labels with colour 1 as red labels, and similarly those with colour 2 as blue labels.
In this context, we will thus refer, for any vertex v, to the red sum σr(v) of v (which is
thus σ1(v)), and to the blue sum σb(v) of v (which is thus σ2(v)).

In what follows, we point out situations where, assuming a partial labelling of a graph
is given, we can extend it to some edges in such a way that some properties are preserved.

Lemma 2.1. Let G be a graph, H be a connected bipartite subgraph of G, and ℓ be a partial
2-labelling of G such that only the edges of H are not labelled. For any vertex w of H,
there is a 2-labelling ℓ′ of H such that, for every two adjacent vertices u and v of H with
w /∈ {u, v}, we have

σℓ(u) + σℓ′(u) ≠ σℓ(v) + σℓ′(v).

Proof. Let (U,V ) denote the bipartition of H. We produce a 2-labelling ℓ′ such that, for
every vertex u ≠ w of H, we have σℓ(u) + σℓ′(u) ≡ 0 mod 2 if u ∈ U , and σℓ(u) + σℓ′(u) ≡
1 mod 2 otherwise, if u ∈ V . Note that this clearly implies what we want to prove.

Start from all edges of H being assigned label 2 by ℓ′. Now, consider any vertex u
of H for which σℓ(u) + σℓ′(u) does not satisfy the required condition above. Since H is
connected, there is a path P from u to w that uses edges of H only. Now turn all 1’s
assigned by ℓ′ to the edges of P into 2’s, and conversely turn all 2’s into 1’s. As a result,
note that σℓ(v) + σℓ′(v) is not altered for every vertex v of H with v /∈ {u,w}, while both
σℓ(u) + σℓ′(u) and σℓ(w) + σℓ′(w) had their parity altered. So σℓ(u) + σℓ′(u) now verifies
the desired condition.

Repeating those arguments until all vertices u ≠ w of H have σℓ(u) + σℓ′(u) verifying
the desired condition, we end up with ℓ′ being as desired.

Building distinguishing labellings being nothing but an algebraic problem, there are
contexts in which algebraic tools come up handy naturally. Below, we recall one such
useful tool, and showcase a few ways to use it.

Theorem 2.2 (Combinatorial Nullstellensatz [3]). Let F be an arbitrary field, and P =
P (Z1, . . . , Zp) be a polynomial in F[Z1, . . . , Zp]. Suppose that the coefficient of a monomial
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Zk1
1 . . . Z

kp
p , where every ki is a non-negative integer, is non-zero in P and the degree of

P equals ∑p
i=1 ki. If S1, . . . , Sp are subsets of F with ∣Si∣ > ki for every i ∈ {1, . . . , p}, then

there are z1 ∈ S1, . . . , zp ∈ Sp so that P (z1, . . . , zp) ≠ 0.

Lemma 2.3. Let G be a graph, H be a subgraph of G, and ℓ be a partial 2-labelling of G
such that only the edges of H are not labelled. Then, there is a 2-labelling ℓ′ of H such
that, for every two adjacent vertices u and v of H, we have

σℓ(u) + σℓ′(u) ≠ σℓ(v) + σℓ′(v),

for H being any of:

• a path of length at least 2 not 3;

• a cycle with length multiple of 4.

Proof. Regarding the first case, assume H is a path v1 . . . vp of length p − 1 ≥ 2 different
from 3. For every i ∈ {1, . . . , p}, set ni = σℓ(vi). Now, for every i ∈ {1, . . . , p − 1}, define ei
as the edge vivi+1, and let Zi be a variable belonging to {1,2} and representing any label
assignment to ei. We consider P , the polynomial defined as

P (Z1, . . . , Zp−1) = (n1 −Z2 − n2) ⋅
p−2

∏
i=2

(Zi−1 + ni −Zi+1 − ni+1) ⋅ (Zp−2 + np−1 − np) .

Note that the degree of P is p − 1, and that the monomial M = Z1 . . . Zp−1 is thus of
maximum degree. Note also that, since the ni’s are fixed, the coefficient of M in the
expansion of P is the same as the coefficient of the same monomial in the expansion of

P ′(Z1, . . . , Zp−1) = (−Z2) ⋅ (Z1 −Z3) ⋅ (Z2 −Z4) ⋅ (Z3 −Z5)⋯(Zp−3 −Zp−1) ⋅ (Zp−2).

If p ≠ 4, then p − 2 ≠ 2. In this case, it can then be noted that there is only one way to
form M by expending P ′ (due to the fact that the first factor contains Z2 only, and that
only the second one contains Z1), and thus its coefficient is ±1. Thus M has non-zero
coefficient. So the Combinatorial Nullstellensatz applies, implying we can assign labels
from {1,2} to the edges of H so that, together with the labels by ℓ, the adjacent vertices
of H are distinguished as desired.

Now consider the second case, where H is a cycle v0 . . . vp−1v0 of length p ≡ 0 mod 4.
Again, for every i ∈ {0, . . . , p − 1}, set ni = σℓ(vi), define ei as the edge vivi+1 (where,
here and further, the operations over subscripts are modulo p), and let Zi be a variable
belonging to {1,2} associated to ei. We consider P , the polynomial

P (Z0, . . . , Zp−1) =
p−1

∏
i=0

(Zi−1 + ni −Zi+1 − ni+1) .

Since the ni’s are constant, the coefficient of M = Z0 . . . Zp−1 in the expansion of P is the
same as in that of

P ′(Z0, . . . , Zp−1) = (Zp−1 −Z1) ⋅ (Z0 −Z2) ⋅ (Z1 −Z3) ⋅ (Z2 −Z4)⋯(Zp−2 −Z0).

Note that P ′ can be seen as

∏
i even
0≤i≤p−2

(Zi −Zi+2) ∏
i odd

1≤i≤p−3

(Zi −Zi+2),
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where the two involved products contain an even number of factors each (p/2), since p ≡
0 mod 4. From this, it is easy to see that the coefficient of Z0Z2Z4 . . . Zp−2 in the first
product is 2, and similarly for the coefficient of Z1Z3Z5 . . . Zp−1 in the second product.
Thus, the coefficient of M in P is 4, hence non-zero. Since M is of maximum degree, from
the Combinatorial Nullstellensatz we get our conclusion here as well.

Lemma 2.4. Let G be a graph, H be a subgraph of G isomorphic to a path p1p2p3p4 of
length 3, and ℓ be a partial (2,2)-labelling of G such that only the edges of H are not
labelled. Assume also that the red sum of p1 or p4 by ℓ is at most 1, while it is 0 for p2
and p3. Then, there is a (2,2)-labelling ℓ′ of H such that every two adjacent vertices of H
are distinguished by their red sums by ℓ and ℓ′, or similarly by their blue sums by ℓ and ℓ′.
Also, we can make sure that the red sum of any of p1, p2, p3, or p4 is at most 1.

Proof. If the red sum of both p1 and p4 by ℓ is 0, then, by ℓ′, we first assign red label 1
to p2p3 by ℓ′, before assigning blue label 1 to p1p2, and blue label 2 to p3p4. This way, p1
and p2, and similarly p4 and p3, are distinguished since the former vertex has red sum 0
while the latter has red sum 1. Also, p2 and p3 are distinguished since p2 has blue sum 1
while p3 has blue sum 2. We also have red sum at most 1 for all pi’s.

If, say, p1 has red sum 1 by ℓ while p4 has red sum 0, then note that, upon assigning
blue labels by ℓ′ to the edges of H, we cannot get any conflict between p1 and p2, since they
are distinguished by their red sums. In this case, a similar application of the Combinatorial
Nullstellensatz as in the proof of Lemma 2.3 can be invoked to conclude that we can assign
blue labels 1 and 2 by ℓ′ to the edges of H to get the desired labelling. Denoting, for every
i ∈ {1,2}, by Zi a variable in {1,2} corresponding to a blue label assigned to pipi+1, note
here that, by the previous remark, we can indeed restrict our attention to the polynomial
(Z1 −Z3)(Z2), and more particularly to the monomial Z1Z2, to get our conclusion.

Now, if both p1 and p4 have red sum 1 by ℓ, then, again, upon assigning blue labels to
the edges of H by ℓ′, we cannot get any conflict between p1 and p2, and similarly between
p4 and p3, since the former vertices have red sum 1 while the latter ones have red sum 0.
So only p2 and p3 need to be distinguished, which can be done by assigning blue label 1
to p1p2, blue label 2 to p3p4, and any blue label to p2p3.

Lemma 2.5. Let G be a graph, H be a subgraph of G isomorphic to a cycle of even length,
and ℓ be a partial (2,2)-labelling of G such that only the edges of H are not labelled and
all the edges of E(G) ∖E(H) are assigned red labels. Then, there is a (2,2)-labelling ℓ′ of
H such that every two adjacent vertices of H are distinguished by their red sums by ℓ and
ℓ′, or similarly by their blue sums by ℓ and ℓ′. Also, we can make sure that the blue sum
of every vertex of H is at most 1.

Proof. Assume H is a cycle of even length k ≥ 4. We denote the consecutive vertices of H
by v0v1 . . . vk−1v0, and set ei = vivi+1 for every i ∈ {0, . . . , k − 1} (where all operations over
the subscripts in this proof are modulo k).

Consider B, the subset of edges of H obtained as follows. We add e1 to B, and, from
here, we add every three edges of H, namely e4, e7, and so on, to B, so that we add as
many such edges to B as possible, but every two edges added to B are at distance at
least 3 from each other in H. In particular, since e1 ∈ B, neither e0 nor ek−1 belongs to
B. In particular, for every ei ∈ B, we have ei−1 /∈ B and ei+1 /∈ B, and for every ei, ej ∈ B
with i ≠ j, we have {ei−1, ei+1} ∩ {ej−1, ej+1} = ∅. Also, H −B, by how B was constructed,
consists of paths P1, . . . , Pp, all of which have length 2, but maybe one of them (the one
containing v0, say it is Pp), which might be of length 2, 3, or 4.
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By ℓ′, we start by assigning blue label 1 to all edges of B. In what follows, the edges of
E(H) ∖B will all be assigned red labels. Note that these edges are precisely the edges of
the Pi’s. Also, if Pi = vivi+1vi+2 is of length 2, then vi and vi+2 are both incident to an edge
of B, and thus are of blue sum 1, while vi+1 is of blue sum 0. Thus, when assigning red
labels to the edges of the Pi’s, we only need to make sure to distinguish adjacent vertices
vi and vi+1 such that vivi+1 ∈ B, or vi and vi+1 are inner vertices of Pp. Last, remark that if
ei ∈ B, then, so that vi and vi+1 are distinguished by their red sums, it suffices to make sure
we assign red labels to ei−1 and ei+1 so that, when taking into account the contribution by
ℓ, the red sums of vi and vi+1 are of different parity.

We consider three distinct cases, involving the possible lengths of Pp:

• If Pp is of length 2, we are thus done when considering every ei ∈ B in turn, and
assigning, by ℓ′, a red label to ei−1 and ei+1 so that, when taking into account the
contribution by ℓ, the red sums of vi and vi+1 are of different parity.

• Assume Pp is of length 3, i.e., Pp = vk−3vk−2vk−1v0. In this case, we need to make
sure that the red sums of vk−2 and vk−1 get different. To that end, we proceed as in
the previous case, except that, when labelling e0 and e2 (to deal with e1 ∈ B) and
ek−5 and ek−3 (to deal with ek−4), we do so so that the red sum of vk−2, when taking
into account the contribution by ℓ, becomes even, while that of vk−1 becomes odd.

• Similarly, if Pp = vk−4vk−3vk−2vk−1v0 is of length 4, then we need to make sure that
the red sums of vk−3 and vk−2, and similarly of vk−2 and vk−1, are different. This can
be done by labelling ek−4, ek−3, ek−2, ek−1, and e0 first, following that order, so that
the desired pairs of adjacent vertices are distinguished due to their red sums having
different parity. From here, we can then again consider the edges in B and treat
them at previously, taking into account, when dealing with e1 and ek−5, that e0 and
ek−4 have already been labelled.

This concludes the proof.

To finish off, we recall a nice tool that proved to be very useful towards proving the
multiset version of the 1-2-3 Conjecture from [1]. Let G be a graph. A balanced tripartition
of G is a partition V0, V1, V2 of V (G) fulfilling, for every vertex v ∈ Vi for any i ∈ {0,1,2},
that dVi+1(v) ≥max{1, dVi(v)} (note that all operations over the subscripts are modulo 3).
That is, v has at least one neighbour in the next part Vi+1, and it actually has more
neighbours in Vi+1 than in Vi. It turns out that graphs with sufficiently large chromatic
number admit such a balanced tripartition.

Theorem 2.6 (Addario-Berry et al. [1]). Every graph G with χ(G) > 3 admits a balanced
tripartition.

3. Graphs with no induced pair of independent edges

As mentioned earlier, we prove the Weak (2,2)-Conjecture for 2K2-free graphs by
first proving it for the 5-chromatic ones, and then for those with chromatic number at
least 6. This implies the result, since the conjecture also holds for the 4-colourable ones,
by Theorem 1.1. In what follows, we thus consider the two cases separately.

Theorem 3.1. Every 2K2-free graph with chromatic number 5 admits a distinguishing
(2,2)-labelling.
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Figure 2: Terminology used in the proof of Theorem 3.1, and the red sums and blue sums we aim at getting
for the vertices by the designed (2,2)-labelling. (a) and (b) depict the two main cases we consider.

Proof. Let G be a 2K2-free graph with chromatic number 5. We construct a distinguishing
(2,2)-labelling of G assigning red labels 1 and 2 and blue labels 1 and 2. We can assume G
is connected, since each of its 5-chromatic connected components can be handled through
the arguments below, while Theorem 1.1 applies for its 4-colourable connected components.

Let D be a maximal independent set of G, and set R = G −D. Note that every vertex
v in R is incident to at least one upward edge vu, i.e., going to D (so, u ∈ D). We say
that a connected component of R is empty if it contains no edges, while it is non-empty
otherwise. Since G is 2K2-free, note that R contains at most one non-empty connected
component. Actually, R must contain exactly one non-empty connected component R as
otherwise G would be bipartite, contradicting that its chromatic number is 5. Let now I
denote the vertices from the empty connected components of R, and let H be the subgraph
of G induced by the edges incident to the vertices of I. Then H is bipartite, and, again,
because G is 2K2-free, it must be that H consists of only one connected component.

Since G is 5-chromatic, note that R is 4-chromatic; let thus V0,0, V0,1, V1,0, V1,1 be parts
forming a proper 4-vertex-colouring ϕ of R. We modify ϕ, if needed, so that if v is a vertex
of R with dR(v) = 1, then v belongs to V0,0 or V0,1 (note that this is clearly possible, since
v has exactly one neighbour in R, thus at most one neighbour in V0,0 ∪ V0,1). Now order
the vertices v1, . . . , vn of R in any way satisfying that, for every i ∈ {1, . . . , n − 1}, vertex
vi is incident to at least one forward edge vivj (i.e., with j > i, which is a backward edge
from vj ’s point of view). Such an ordering can be obtained e.g. by reversing the ordering
in which vertices are encountered while performing a breadth-first search algorithm from
any vertex (standing as the last vertex vn).

We are now ready to start labelling the edges of G. We begin with all edges incident
to the vertices of R. We consider the vi’s one by one, following the ordering above, and for
every vertex vi considered in that course, we assign a label to all upward edges (assigning
them blue labels, except in one peculiar case) and forward edges (assigning them red labels
only) incident to vi so that some desired red sum and blue sum are realised at vi. When
proceeding that way, note that, whenever considering a new vertex as vi, only its backward
edges can be assumed to be labelled, with red labels. The procedure goes as follows:

• If i ≠ n, then vi is incident to forward edges. We start by assigning blue label 2
to all upward edges incident to vi, and red label 2 to all forward edges incident to
vi. Assume vi ∈ Vα,β . If σb(vi) /≡ β mod 2, then we change to blue label 1 the label
assigned to any one upward edge incident to vi. Likewise, if σr(vi) /≡ α mod 2, then
we change to red label 1 the label assigned to any one forward edge incident to vi.
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This way, we get σr(vi) ≡ α mod 2 and σb(vi) ≡ β mod 2. In particular, by how we
modified ϕ earlier, note that we must have σr(vi) ≥ 2 (either dR(vi) ≥ 2 in which
case this condition clearly holds; or dR(vi) = 1, in which case α = 0 and thus the only
inner edge incident to vi is assigned red label 2, implying the condition).

• If i = n, then the only edges incident to vn that remain to be labelled are upward
edges. Recall, in particular, that all backward edges incident to vn are assigned red
labels. We consider two cases, assuming vn ∈ Vα,β :

– If σr(vn) ≡ α mod 0, then we assign blue labels to all upward edges incident to
vn, their values being chosen so that σb(vn) ≡ β mod 0. In that case, we thus
have σr(vn) ≡ α mod 2 and σb(vn) ≡ β mod 2. Again, by how ϕ was modified
earlier, we must have σr(vn) ≥ 2.

– If σr(vn) /≡ α mod 0, then we assign red label 1 to any one upward edge incident
to vn, while we assign blue labels to the other upward edges (if any) so that
σb(vn) ≡ β mod 2. In this case, either σb(vn) ≠ 0 in which case σr(vn) ≡ α mod 2
and σb(vn) ≡ β mod 2; or σb(vn) = 0 in which case all edges incident to vn are
assigned red labels (implying that σr(vn) ≥ 2).

Note that, in all cases above, for all vertices vi ∈ Vα,β , we guarantee 2 ≤ σr(vi) ≡ α mod 2.
Also, except maybe for vn, we also guarantee 0 < σb(vi) ≡ β mod 2. Regarding vn, either
σb(vn) = 0, in which case vn is distinguished from all its neighbours in R through its blue
sum, or 0 < σb(vn) ≡ β mod 2, in which case vn is distinguished from its neighbours in R
through its red sum and/or blue sum. Regarding the vertices of D, only one of them can
currently be incident to an edge being assigned a red label, and, if this is the case, then
it is incident to exactly one such edge, being assigned red label 1. So, for every u ∈ D, we
currently have σr(u) ≤ 1, while σr(v) ≥ 2 for every v ∈ R. Thus, currently, vertices of R are
distinguished from their neighbours in D. If H has no edges (i.e., I = ∅), then all edges of
G are actually labelled, and we end up with a distinguishing (2,2)-labelling. So, in what
follows, we can assume H has edges.

We are now left with labelling the edges of H, which, recall, consists of exactly one
connected component. We consider two main cases (illustrated in Figure 2):

• Assume there is some vertex w ∈ H with σr(w) = 1. Recall that there can be only one
such vertex, which belongs to D and must be a neighbour of vn. Recall also that the
vertices of D ∩ V (H) can be incident to edges being currently assigned blue labels
(being upward edges incident to vertices of R). Taking these labels into account, by
Lemma 2.1 we can assign blue labels 1 and 2 to the edges of H so that any two of
its adjacent vertices u and v with w /∈ {u, v} are distinguished by their blue sums.

Since we did not modify labels assigned to edges incident to the vertices in R, and
the edges of H are assigned blue labels only, the vertices of R remain distinguished
from their neighbours due to arguments above. Regarding adjacent vertices of H,
they are either distinguished by their blue sums (if w is not involved), or because one
of them has red sum 1 (if w is involved). So, here as well, we do not have conflicts.

• Assume no vertex of H currently has red sum 1. In this case, let w be any vertex of
I. By Lemma 2.1, we can assign blue labels 1 and 2 to the edges of H so that, taking
into account the other edges of G that are currently already assigned blue labels, and
omitting w, any two adjacent vertices of H are distinguished by their blue sums. In
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V2 V0 V1

D1

D2w

σr ≡ 0 mod 4

σb ≥ 2

σr odd
σb ≥ 2

σr ≡ 2 mod 4

σb ≥ 2

σr ≥ 1

σb = 1

σr even
σb = 0

σr odd
σb = 0

Figure 3: Terminology used in the proof of Theorem 3.2, and the red sums and blue sums we aim at getting
for the vertices by the designed (2,2)-labelling.

case w has d ≥ 2 neighbours x1, . . . , xd (which lie in D), then we further modify the
labelling by changing to red label 1 the label assigned to wx1, . . . ,wxd.

Again, we did not modify the red sums and blue sums of the vertices in R. Also,
the only vertex of D ∪ I that might have red sum at least 2 is w (note that the xi’s,
if they exist, have red sum 1), which lies in I, the set of isolated vertices of R, and
thus cannot be adjacent to the vertices of R. Since the vertices of R have red sum at
least 2, they thus cannot be involved in conflicts. Now, if dG(w) = 1, then, because G
is not just an edge, the unique neighbour of w must have degree at least 2, meaning
that w is necessarily distinguished from its unique neighbour. Otherwise, i.e., w has
d ≥ 2 neighbours x1, . . . , xd ∈ D, then σr(w) = d ≥ 2 while the xi’s have red sum 1,
and thus w cannot be involved in conflicts. Regarding the xi’s, they have red sum 1,
so they cannot be in conflict with their neighbours of H different from w, since they
have red sum 0. Finally, for every vertex of H not in {w,x1, . . . , xd}, note that we
did not modify its blue sum when introducing red labels. Then we still have that
any two such adjacent vertices are distinguished by their blue sums, due to how we
applied Lemma 2.1. So, no conflicts exist in G.

In both cases, the resulting (2,2)-labelling of G is thus distinguishing, as desired.

Theorem 3.2. Every 2K2-free graph with chromatic number at least 6 admits a distin-
guishing (2,2)-labelling.

Proof. Let G be a 2K2-free graph with chromatic number at least 6. We construct a
distinguishing labelling of G assigning red labels 1 and 2 and blue labels 1 and 2. Note
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that we may assume that G is connected, due to Theorems 1.1 and 3.1, and the arguments
below.

Let D1 be a maximal independent set of G. Note that every vertex of G −D1 has at
least one neighbour in D1. Now let D2 be a maximal independent set of G−D1. Similarly,
every vertex of G −D1 −D2 has at least one neighbour in D2. Since χ(G) ≥ 6, note that
χ(G−D1−D2) ≥ 4. According to Lemma 2.6, there is thus a balanced tripartition V0, V1, V2

of G −D1 −D2. Note that D1, D2, V0, V1, and V2 form a partition of V (G). An upward
edge of G is an edge with one end in V0 ∪ V1 ∪ V2 and the other in D1 ∪D2. An inner
edge of G is an edge with both ends in some Vi. If u ∈ Vi and u′ ∈ Vi+1 (where, throughout
this proof, operations over the subscripts of the Vi’s are modulo 3) are adjacent for some
i ∈ {0,1,2}, then uu′ is a forward edge from u’s perspective, and a backward edge from that
of u′. Because G is 2K2-free, note that all three of G[V0], G[V1], and G[V2] contain at
most one connected component with edges each.

We denote by H the set of the connected components of G[D1∪D2]. Since every vertex
of D2 has neighbours in D1, note that H has edges. Actually, since G is 2K2-free, there is
exactly one connected component H of H that is non-empty, i.e., that contains edges. H
can also contain empty connected components, which consist in a single vertex of D1.

We design the desired (2,2)-labelling of G following four steps. First, we label all inner,
upward, and forward edges incident to the vertices of V0 so that they fulfil certain properties
on σr and σb. Second and third, we then achieve the same for the vertices of V1 and V2.
During a fourth and last step, we label the edges of H. The reader, throughout what
follows, can refer to Figure 3, which summarises the sum conditions we aim at reaching.

Step 1: Labelling the inner, upward, and forward edges of V0.

We start by labelling the following edges of G:

1. We first assign blue label 2 to all inner edges incident to vertices of V0.

2. We then consider every vertex u of V0 in turn, assign red label 2 to all upward edges
incident to u, and eventually change to red label 1 one of these red labels so that the
red sum of u becomes odd.

3. We now distinguish two cases, through which we get to defining a special vertex
w ∈D2 that will be useful later on, by the last step of the proof.

• ∣V0∣ = 1, i.e., G[V0] is a single vertex u. We here assign blue label 2 to all forward
edges incident to u. We also modify the labelling further as follows. Set w as
any neighbour of u in D2. Note that, by swapping the red labels assigned to
uw and another upward edge incident to u, we can, if necessary, assume uw is
assigned red label 2. We then change the label assigned to uw to blue label 1.

• Otherwise, i.e. ∣V0∣ ≥ 2. Here, let u1, . . . , un be an arbitrary ordering over the
vertices of V0, and consider the ui’s one by one in order. Since extra modifi-
cations must be made around u1, let us consider that vertex specifically before
describing the general case. Just as in the previous case, let w be any neighbour
of u1 in D2. Again, we can swap labels assigned to upward edges, if necessary,
so that u1w is assigned red label 2. Then we change the label assigned to u1w
to blue label 1, before assigning blue label 2 to all forward edges incident to
u1. Now, for every subsequent ui with i ≥ 2, denote by ui1 , . . . , uid the d ≥ 0
neighbours of ui in V0 that precede ui in the ordering. If d = 0, then assign blue
label 2 to all forward edges incident to ui. Now, if d ≥ 1, then recall that ui is
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incident to dV1(ui) ≥ d forward edges. By assigning red label 2 to none, one,
two, etc., or all of these edges, and blue label 2 to all others, we can increase
the red sum of ui by any amount in {0,2, . . . ,2dV1(ui)}, which set contains
dV1(ui)+1 ≥ d+1 elements. There is thus a way to assign red label 2 to at most
d forward edges incident to ui, and blue label 2 to the rest, so that the red sum
of ui is different from the red sums of ui1 , . . . , uid .

Once the steps above have been performed fully, note that all inner, upward, and
forward edges incident to the vertices of V0 are assigned a label. Also, for every vertex
u ∈ V0, we currently have σr(u) ≡ 1 mod 2, and it can be checked that also σb(u) ≥ 2.
Furthermore, every two adjacent vertices of V0 currently have their red sums being different.
Remark last that all upward edges incident to the vertices of V0 are assigned red labels,
except for exactly one upward edge incident to w, which is assigned blue label 1.

Step 2: Labelling the inner, upward, and forward edges of V1.

Due to the previous step, note also that all backward edges incident to the vertices
in V1 are labelled with red label 2 and blue label 2. So, one should keep in mind that,
currently, σr(u) is even for every u ∈ V1.

We now label more edges as follows:

1. First, we assign blue label 2 to all inner edges incident to vertices of V1.

2. Second, we consider every vertex u of V1 in turn. Recall that u is incident to at least
two upward edges. We assign red label 2 to all these edges. If necessary, we change
the label assigned to two of these edges to red label 1, so that σr(u) ≡ 2 mod 4.

3. Third, let u1, . . . , un be an arbitrary ordering over the vertices of V1, and consider the
ui’s one by one in turn. For every ui considered that way, denote by ui1 , . . . , uid the
d ≥ 0 neighbours of ui in V1 that precede ui in the ordering. If d = 0, then assign blue
label 2 to all forward edges incident to ui. Now, if d ≥ 1, then recall that ui is incident
to dV2(ui) ≥ d forward edges. Thus, through assigning blue labels to these edges, we
can make the blue sum of ui vary by any amount in the set {dV2(ui), . . . ,2dV2(ui)},
which contains dV2(ui) + 1 ≥ d + 1 elements. Thus, it is possible to assign blue labels
to the forward edges incident to ui so that its resulting blue sum is different from
that of ui1 , . . . , uid .

After completing the previous steps, all edges incident to the vertices in V1 are labelled.
For every vertex u ∈ V1, we get σr(u) ≡ 2 mod 4, and also σb(u) ≥ 2, because either
dV1(u) = 0 and at least one forward edge incident to u is assigned blue label 2, or dV1(u) > 0
and at least one inner edge incident to u is assigned blue label 2. Also, every two adjacent
vertices of V1 are distinguished by their blue sums. Note last that all upward edges incident
to the vertices of V1 are assigned red labels.

Step 3: Labelling the inner, upward, and forward edges of V2.

Note that after performing the previous step, all backward edges incident to the vertices
of V2 are assigned blue labels, meaning that their red sum is currently 0.

We now perform the following:

1. We assign blue label 2 to all inner edges incident to vertices in V2.
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2. We then consider every vertex u of V2 in turn, which, recall, is incident to at least two
upward edges. We assign red label 2 to all these edges before, if necessary, changing
the label assigned to two of these edges to red label 1, so that σr(u) ≡ 0 mod 4.

3. We finish off this step similarly as the previous one. let u1, . . . , un be any ordering
over the vertices of V2, and consider the ui’s one after the other. For every ui, let
ui1 , . . . , uid be the d ≥ 0 neighbours of ui in V2 that precede ui in the ordering. If
d = 0, then assign blue label 2 to all forward edges incident to ui. Otherwise, if
d ≥ 1, then recall that ui is incident to dV0(ui) ≥ d forward edges. Via assigning blue
labels to these edges, we can thus make the blue sum of ui increase by any value in
{dV0(ui), . . . ,2dV0(ui)}, which set contains dV0(ui)+1 ≥ d+1 elements. Thus, we can
assign blue labels to the forward edges incident to ui so that its blue sum is different
from that of ui1 , . . . , uid .

Once this step achieves, all edges incident to vertices in V0 ∪ V1 ∪ V2 are labelled. For
every vertex u ∈ V2, we have σr(u) ≡ 0 mod 4 and σb(u) ≥ 2. Every two adjacent vertices
of V2 are distinguished by their blue sums, while all upward edges incident to the vertices
in V2 are assigned red labels. It is important to emphasise also that assigning blue labels
to the edges joining vertices of V2 and V0 altered the blue sums of the vertices in V0, which
is not an issue since the adjacent vertices of V0 are distinguished by their red sums, which
were not altered. So, any two adjacent vertices in V0 remain distinguished, and similarly
for any two adjacent vertices in V1. Finally, note that any two adjacent vertices in distinct
Vi’s are distinguished by their red sums having different values modulo 4.

Step 4: Labelling the edges of H.

Recall that, at this point, we have σb(v) = 0 for every vertex v ∈ D1 ∪D2 ∖ {w} and
σb(w) = 1, while σb(u) ≥ 2 for every vertex u ∈ V0 ∪V1 ∪V2. In particular, if v ∈D1 belongs
to an empty connected component of H, then all edges incident to v are already labelled,
and v is distinguished from its neighbours due to its blue sum.

Recall that H denotes the unique non-empty connected component of H, and that H
actually contains all edges of G that remain to be labelled. Recall also that H contains w,
a special vertex we defined in the first labelling step, which is the only vertex of H having
non-zero blue sum. According to Lemma 2.1, we can assign red labels 1 and 2 to the edges
of H so that, even when taking into account the red labels assigned to the upward edges
incident to the vertices in V0 ∪V1 ∪V2, any two adjacent vertices of H different from w are
distinguished by their red sums. Since σb(w) = 1 while σb(v) = 0 for every v ∈ V (H)∖{w},
vertex w is also distinguished from its neighbours in H. These conditions guarantee we
have not introduced any conflicts involving vertices of D1 ∪D2 and vertices of V0 ∪V1 ∪V2.

All these arguments imply that the resulting (2,2)-labelling of G is distinguishing.

4. Graphs with no induced claw

We now prove the Weak (2,2)-Conjecture for K1,3-free graphs. Again, we do so by
first focusing on the 5-chromatic ones, before focusing on those with chromatic number at
least 6. Again, we consider the two cases separately.

Theorem 4.1. Every claw-free graph with chromatic number 5 admits a distinguishing
(2,2)-labelling.
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Proof. The proof starts similarly as that of Theorem 3.1. We can assume G is a connected
5-chromatic claw-free graph. We define D and R as previously, as well as the 4-vertex-
colouring ϕ of R with parts V0,0, V0,1, V1,0, and V1,1. The notions of empty and non-empty
connected components of R are also defined similarly, as well as the classification of the
edges of G into upward and inner edges. The set I and the subgraph H are also defined.

Some differences here, however, are because G is claw-free. Note in particular that R
might contain several non-empty connected components. However, any vertex v of R has
at most two neighbours in D, and conversely any vertex u ∈ D can have neighbours in at
most two connected components ofR. Also, H can now have several connected components
containing edges. As will be pointed out, further strong assumptions on H can be made.

Similarly as in the proof of Theorem 3.1, we start by considering every non-empty
connected component R of R, and defining a particular ordering over its vertices. In some
cases, we also modify the parts of ϕ by a bit.

• If R has a vertex v with dR(v) = 2, then we denote the vertices of R by v1, . . . , vn
in reverse order as they are encountered during a breadth-first search algorithm per-
formed from v. So, v = vn, and every vi ≠ vn is incident to a forward edge, which is
a backward edge from the other vertex’s point of view.

Regarding ϕ, denoting by vi and vj the two neighbours of vn, we need to make sure
that we do not have vi in V0,0 and vj in V0,1 (or vice versa), or vi in V1,0 and vj in
V1,1 (or vice versa). That is, if vi ∈ Vα,β and vj ∈ Vα′,β′ , we need α ≠ α′. Assume this
is not verified, and that we have, w.l.o.g., vi in V0,0 and vj in V0,1. Then, since ϕ is
proper, vn belongs to V1,0 or V1,1. Assume vn belongs to V1,0, w.l.o.g. We modify ϕ
by swapping the parts V0,1 and V1,0. Note that the resulting ϕ remains proper, and
that, now, vi still lies in V0,0, while vj lies in V1,0, as desired.

Finally, if R has a vertex vi with dR(vi) = 1, then, keeping ϕ proper, we make sure
that vi lies in V0,0 or V0,1. This is clearly possible, since vi has exactly one neighbour
in R, and thus at most one neighbour in V0,0 ∪ V0,1. So we can freely guarantee this
for all the degree-1 vertices of R.

• If R has no degree-2 vertex but has a vertex v with degree 1, i.e., dR(v) = 1, then we
denote by v1, . . . , vn the vertices of R as in the previous case, i.e., from a breadth-first
search algorithm performed from v = vn. In this case as well, we also modify ϕ, if
needed, so that all the degree-1 vertices of R belong to V0,0 ∪ V0,1.

• If R has minimum degree 3, then we consider any vertex v of R, and denote by
v1, . . . , vn the vertices of R as in the precious cases (by reversing a breadth-first
search algorithm performed from v), so that vn = v. Here, ϕ is not modified further.

We are now ready to start designing the (2,2)-labelling of G. Just as in the proof of
Theorem 3.1, we start by labelling all edges incident to vertices in the non-empty connected
components of R, so that every two of their adjacent vertices are distinguished either by
their red sums or by their blue sums. To achieve this, we will assign red labels to all inner
edges and blue labels to most upward edges, so that the red sums and blue sums obtained
for the vertices in R match ϕ. By that, we mean that for every vertex v in Vα,β , we aim
at getting σr(v) ≡ α mod 2 and σb(v) ≡ β mod 2, except in a few cases (such as for some
last vertices of some non-empty connected components).

Consider every non-empty connected component R ∈ R in turn. Recall that v1, . . . , vn
is an ordering over the vertices of R with specific properties we described earlier. We
consider the vi’s one by one following the ordering, and, whenever considering a vi in this
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way, we assign a label to all its incident inner edges and upward edges. This way, note
that, whenever starting treating a vi, only its incident backward edges are labelled.

Now, for every vi ∈ Vα,β to be considered:

• If i ≠ n, then vi is incident to forward edges. We first assign blue label 2 to all upward
edges incident to vi, and red label 2 to all incident forward edges. Note that all edges
incident to vi are now assigned a label. Now, if σb(vi) /≡ β mod 2, then we change
to blue label 1 the label assigned to any upward edge incident to vi. Similarly, if
σr(vi) /≡ α mod 2, then we change to red label 1 the label assigned to any forward
edge incident to vi. As a result, σr(vi) ≡ α mod 2 and σb(vi) ≡ β mod 2. Recall also
that if dR(vi) = 1, then α = 0, and thus σr(vi) ≥ 2. Since all inner edges incident to vi
are assigned red labels, we also have σr(vi) ≥ 2 whenever dR(vi) ≥ 2. Thus, σr(vi) ≥ 2
regardless of dR(vi). Also, σb(vi) ≥ 1.

• If i = n, then all inner edges incident to vn are currently assigned red labels.

– If dR(vn) = 2, then recall that, due to how we ordered the vertices of R, the two
neighbours vj and v′j of vn in R have their red sums being of distinct parity.
Assume that, currently, σr(vn) ≡ σr(vj)mod 2 and σr(vn) /≡ σr(v′j)mod 2. We
here assign blue labels to all upward edges incident to vn, their values being
chosen so that σb(vn) /≡ σb(vj)mod 2. For the sake of formality, we also change,
if needed, the part of ϕ that contains vn, so that the part it belongs to matches
the resulting σr(vn) and σb(vn).

– If dR(vn) = 1 and R is just an edge v1v2 (thus with v2 = vn), then, by how ϕ
was modified earlier (v1 and v2 belong to V0,0 ∪ V0,1), recall that v1v2 must be
assigned red label 2. We here assign blue labels to the upward edges incident to
vn so that σb(v1) /≡ σb(v2)mod 2.

– Otherwise, i.e., dR(vn) = 1 and R is not just an edge, or dR(vn) ≥ 3, then we
assign red label 1 to all upward edges incident to vn.

Once the process above is led for all vi’s, all edges incident to the vi’s are labelled. Also,
if vi ∈ Vα,β for some i < n, then σr(vi) ≡ α mod 2 and σb(vi) ≡ β mod 2 with σr(vi), σb(vi) ≥
1 (actually, even σr(vi) ≥ 2 in this case). Since ϕ is a proper vertex-colouring, for every two
adjacent vertices vi and vj of R with i, j ≠ n, we thus have σr(vi) ≠ σr(vj) or σb(vi) ≠ σb(vj).
Regarding vn, either vn is not in conflict with any of its neighbours in R (with respect to
σr or σb) and none of its incident upward edges is assigned a red label (when dR(vn) = 2,
or dR(vn) = 1 with R being an edge), or all its incident edges are assigned red labels and
thus σb(vn) = 0 (while all neighbours vj of vn in R have σb(vj) ≥ 1). Also, σr(vn) ≥ 2.

At this point, only edges incident to the vertices in I remain to be labelled. Later on,
these edges will be assigned blue labels only. This means that, through labelling these
edges, the red sums of the vertices in D will not be modified. Recall that the vertices in
D might be incident to edges assigned red labels. We need to make sure that such vertices
will not be in conflict with the vertices from the non-empty connected components of R.

Let u be any vertex in D. Note that, by how we labelled the upward edges earlier,
if viu is an edge assigned a red label, then viu is assigned red label 1, and i = n, i.e., vi
is the last vertex of its non-empty connected component of R. Since G is claw-free, this
means u must be incident to at most two edges assigned a red label. Thus, currently,
σr(u) ≤ 2. Meanwhile, for every vertex v in a non-empty connected component of R, we
have σr(v) ≥ 2. Hence, if σr(u) = σr(v), then σr(u) = 2.
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Figure 4: Local adjustments made in the proof of Theorem 4.1.

In what follows, we modify the current labelling, if needed, so that there are no two
adjacent vertices u ∈ D and v ∈ V (R) with σr(u) = σr(v) = 2, without introducing new
conflicts between adjacent vertices of R. To achieve this, we perform label modifications
to make the number of such conflicts decrease, until no such conflict remains. We perform
this so that, for every v ∈ V (R), we preserve, except in very peculiar cases, σr(v) ≥ 2 while,
for every u ∈ D, we have σr(u) ≤ 2. This way, no conflicts between the vertices of D and
V (R) will remain.

Assume there is a u ∈ D with σr(u) = 2. As mentioned earlier, there are thus exactly
two edges uvn and uv′n incident to u assigned red label 1, where vn is the last vertex of
some non-empty connected component R of R, and v′n is the last vertex of another non-
empty connected component R′ ≠ R of R. Assume that u is adjacent to a vertex vi from
a non-empty connected component of R with the same red sum (possibly, vi ∈ {vn, v′n}).
Then σr(vi) = 2, and, since all edges of R are assigned red labels, dR(vi) ≤ 2.

• Assume σr(u) = σr(vi) for some vi /∈ {vn, v′n}. Recall that viu is assigned a blue label.
Also, because G is claw-free, vi must belong to the same (non-empty) connected
component of R as one of vn and v′n. Assume vi belongs to R. Then, vivn is an edge.

– If dR(vi) = 1, then, by how the vertices of R were ordered, dR(vn) ≤ 2.
∗ If dR(vn) = 1, then R is actually just the edge vivn = v1v2. By how we

treated vn earlier, recall that all upward edges incident to vn are assigned
blue labels. So, this case cannot occur.

∗ If dR(vn) = 2, then, by how we treated vn earlier, it cannot be that vnu is
assigned a red label. Thus, this case cannot occur as well.

– Assume now that dR(vi) = 2. Then, again, by how the vertices of R were
ordered, it must be that dR(vn) = 2, and no upward edge incident to vn is
actually assigned a red label. So, again, this case cannot occur.

• Assume now that σr(u) = σr(vn), w.l.o.g., and that there is no vi ∈ V (R) ∪ V (R′) ∖
{vn, v′n} such that σr(u) = σr(vi) (that is, the previous case does not apply). Since
vnu is assigned red label 1, note that, in order to have σr(vn) = 2 with upward edges
incident to vn being assigned red labels, it must be that vn is incident to exactly one
inner edge vjvn (that is, dR(vn) = 1) and to the one upward edge vnu. So, dG(vn) = 2.
Furthermore, vjvn is assigned red label 1, while we also assigned red label 1 to vnu.
Also, by our choice of vn and by how we treated R, we have dR(vj) ≥ 3

– If dG(u) ≥ 3, then note that, regardless of how the edges incident to u that are
not the two assigned red label 1 are labelled, we will eventually not have any
conflict between u and vn, and can thus leave things as is.
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– Assume now dG(u) = 2. Regarding v′n, the fact that we had to assign red
label 1 to v′nu means (by previous arguments) that dR′(v′n) ≠ 2, and that if
dR′(v′n) = 1 then R′ is not just an edge. Actually, all edges incident to v′n
are assigned red labels. If σr(v′n) ≠ σr(u) (that is, if σr(v′n) > σr(u)), then we
change the label assigned to v′nu to red label 2 (see Figure 4(a)). This way, we
get σr(u) = 3 > 2 = σr(vn), and we thus got rid of the conflict between vn and u.
Meanwhile, we still have σr(v′n) > σr(u) while σr(v′n) ≥ 3 and σb(v′n) = 0, while
all neighbours of v′n in R′ have blue sum at least 1. So, v′n cannot be involved
in a conflict.
The last case is thus when also σr(v′n) = σr(u) = 2, which, for similar reasons as
for vn, occurs when dR′(v′n) = 1, the only inner edge incident to v′n is assigned
red label 1, and v′nu is the only upward edge incident to v′n, which is assigned
red label 1. So, dG(v′n) = 2. In this case, we are done when changing the label
assigned to vnu and v′nu to red label 2 (see Figure 4(b)). As a result, σr(vn) =
σr(v′n) = 3 while σr(u) = 4. Meanwhile, we still have σb(vn) = σb(v′n) = 0, while
u is the only neighbour of vn and v′n with blue sum 0.

It now remains to label edges incident to the vertices in I. Recall thatH is the subgraph
of G induced by these edges. Then H is bipartite. In particular, since G is claw-free, in
every connected component H of H, every vertex must be of degree at most 2. So H must
be a path, or an even-length cycle. Actually, if H is an even-length cycle u1v1 . . . ukvku1
(where the ui’s belong to D and the vi’s belong to I), then note that every ui cannot have
another neighbour in G, i.e., in a non-empty connected component of R, because, since
G is claw-free, this would imply that one of its neighbours in H must be adjacent to a
vertex from a non-empty connected component of R, a contradiction. So, all connected
components ofH must be paths. Besides, if H is a path ofH, then, due to the claw-freeness
of G, every degree-2 vertex of H must also be a degree-2 vertex in G.

Now let H be a connected component of H, i.e., a path. If H has length 1, then
H = u1v1 where u1 ∈ D and v1 ∈ I, meaning that dG(v1) = 1, and, because G is connected
and is not a one-edge graph, whatever labelling we consider, it must be that u1 and v1 are
distinguished either by their red sums or by their blue sums. So assume now H has length
more than 1. Set H = w1 . . .wk with k ≥ 3. Now, for every i ∈ {1, . . . , k}, denote by ni

the current value of σb(wi). Possibly, ni = 0. Actually, recall that only n1 and nk can be
non-zero. According to Lemma 2.3 or 2.4, it is possible to assign blue labels 1 and 2 (and,
if needed, red label 1 to independent edges) to the edges of H so that its adjacent vertices
are distinguished, even with the blue contribution from the upward edges.

Since we have not altered the red sums of the vertices of R, every two adjacent vertices
of R remain distinguished, and similarly for any two adjacent vertices from R and D (in
particular, the only vertices of D which had their red sums modified have red sum 1, while
the vertices of R still have red sum at least 2). Regarding the adjacent vertices of H, the
application of Lemma 2.3 or 2.4 guarantees that they are distinguished by their blue sums,
or by their red sums in certain cases. So, the resulting labelling of G is distinguishing.

Theorem 4.2. Every claw-free graph with chromatic number at least 6 admits a distin-
guishing (2,2)-labelling.

Proof. The proof starts similarly as that of Theorem 3.2. Again, we can assume G is a
connected claw-free graph with chromatic number at least 6. We again start from two
maximal independent sets D1 and D2, chosen consecutively, and define H as G[D1 ∪D2].
For the current proof, we classify the connected components of H into three groups. That
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is, a connected component H ∈ H is empty if it contains no edges, bad if it consists of one
edge only, and nice otherwise, i.e., if it contains at least two edges. Since all vertices in
V (G)∖D1 have at least one neighbour in D1, note that if H is empty, then its only vertex
belongs to D1. Meanwhile, if H is bad, then it consists of one vertex in D1 and one in D2.

Before going on, we need to add a last constraint on the choice of D1 and D2. Namely,
among all possible choices as D1 and D2, we choose one that minimises the number of empty
connected components in H. Under this hypothesis, we derive the following property:

Claim 4.3. If u ∈ V (G) ∖ (D1 ∪D2) is adjacent to an isolated vertex v1 ∈D1, then u must
be adjacent to two vertices v′1 ∈D1 and v2 ∈D2 such that v′1v2 is an edge of H.

Proof of the claim. Assume u ∈ V (G) ∖ (D1 ∪D2) is adjacent to some v1 ∈ D1 that forms
an empty connected component of H. Let v2 ∈D2 be any neighbour of u. If v1 is the only
neighbour of u in D1, then note that, due to the edge uv2, by removing v1 from D1 and
adding u to D1, we would end up with two new independent sets as D1 and D2 inducing
one less empty connected component in H, a contradiction to our choice of D1 and D2.
So, v1 cannot be the only neighbour of u in D1. Let thus v′1 ∈ D1 be another neighbour
of u. Now, since D1 is independent, and v1 is isolated in H, the fact that G is claw-free
implies that v′1v2 must be an edge of H. ◇

As in the proof of Theorem 3.2, we also partition V (G)∖(D1 ∪D2) into V0, V1, and V2

forming a balanced tripartition of G−D1−D2. We also reuse the notions of inner, upward,
forward, and backward edges.

The distinguishing (2,2)-labelling of G we construct below will again be obtained
through four main labelling steps, followed to produce a labelling which is very remi-
niscent2 to that we aimed to produce in the proof of Theorem 3.2. However, the structure
of claw-free graphs is less permissive than that of 2K2-free graphs, so, in several occasions,
our distinguishing and labelling rules will have to be tweaked a bit.

In particular, the most troublesome point is the possible presence, in H, of bad con-
nected components. Note indeed that if v1v2 is a bad connected component, then the fact
that v1 and v2 are eventually distinguished does not rely at all on the choice of the label
assigned to v1v2. This means that, throughout the proof, whenever labelling an upward
edge uvi (with u ∈ V0∪V1∪V2 and i ∈ {1,2}), we have to wonder whether assigning a certain
label to uvi might result in v1 and v2 being impossible to distinguish later on. To guaran-
tee v1 and v2 can be distinguished, we will, here, sometimes have to assign blue labels to
upward edges. One problem, however, is that blue sums, in the proof of Theorem 3.2, were
the main way to guarantee that vertices in D1 ∪D2 can be distinguished from vertices in
V0 ∪ V1 ∪ V2. To counter this, we will need to guarantee that vertices in V0 ∪ V1 ∪ V2 have
“large” blue sums, while those in D1 ∪D2 have “small’ blue sums.

With respect to these considerations, we introduce a bit more terminology for the bad
connected components. Let H = v1v2 be a bad connected component of H. At any time
of our labelling steps below, we say that H is tamed if exactly one of v1 and v2 is incident
to an edge assigned blue label 1, while it is wild otherwise. The point is that, once H
gets tamed, then v1 and v2 will necessarily be distinguishable at any time as long as all of
their other incident edges (different from v1v2) are assigned red labels. Now, if H is a wild
connected component of H, then H is said dangerous if, omitting v1v2, all edges incident
to v1 and v2 that remain to be labelled are incident to the same vertex u ∈ V0 ∪ V1 ∪ V2.

2An important difference we should highlight, is that, for technical reasons, we will here require the
vertices in V1 to have red sum 0 modulo 4, and the vertices in V2 to have red sum 2 modulo 4. Note that
we required the contrary in the proof of Theorem 3.2.

18



V0

u

2
2

2

H
v1

v2

1

1

(a) Wild H.
V0

u

2
2

2

H1

wild

H2

nice/tamed

1
1

22

(b) Wild H1, nice/tamed H2.

Figure 5: Two cases from the proof of Theorem 4.2, when labelling upward edges of V0.

Those conditions mean that all upward edges incident to v1 and v2 have been labelled,
except for at most two of them, being incident to u. So, the task of making sure v1 and v2
are distinguished will need to be handled when labelling the upward edges incident to u.

Step 1: Labelling the inner, upward, and forward edges of V0.

During this step, we perform the following three substeps:

1. We start by assigning blue label 2 to all inner edges incident to vertices of V0.

2. We next consider every vertex u ∈ V0 in turn, and assign a label to all its incident
upward edges in the following way. Note that, because G is claw-free, the upward
edges incident to u go to at most two connected components of H.

• Assume all upward edges incident to u go to only one connected component
H ∈ H. Since u is incident to at least two upward edges, H cannot be empty.

– Assume H is bad and wild (see Figure 5(a)). Then u is incident to exactly
two upward edges uv1 and uv2, where H = v1v2. Here, we assign red label 1
to uv1 and blue label 1 to uv2, thereby taming H.

– Assume H is nice or tamed. Let uv be any upward edge incident to H.
We here assign red label 1 to uv, and red label 2 to all other upward edges
incident to u.

• Assume now all upward edges incident to u go to two connected components
H1,H2 ∈ H.

– If, say, H1 is empty, then, by Claim 4.3, it cannot be that H2 is also empty.
Denote by v the unique vertex of H1. If H2 is nice or tamed, then we assign
red label 1 to uv and red label 2 to all upward edges incident to u going to
H2. Otherwise, H2 is wild, in which case we assign red label 1 to uv, blue
label 1 to any one upward edge incident to u going to H2 (taming H2), and
red label 2 to the other upward edge to H2 (which exists by Claim 4.3).

– If H1 and H2 are both nice or tamed, then we assign red label 1 to any one
upward edge incident to u going to H1 or H2, and red label 2 to all others.
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– If, say, H1 is wild and H2 is nice or tamed (see Figure 5(b)), then we assign
blue label 1 to any upward edge incident to u going to H1 (thereby taming
H1), red label 1 to any upward edge going to H2, and red label 2 to all
other upward edges.

– If H1 and H2 are both wild, then we claim they cannot be both dangerous.
Indeed, let x ∈ V1 be any neighbour of u. Since G is claw-free, note that
a neighbour of u in H1, one in H2, and x must induce at least one edge,
contradicting the fact that H1 and H2 are bad and dangerous. Thus, we
may assume, w.l.o.g., that H1 is not dangerous. Then we assign red label 1
to an upward edge incident to u going to H1, blue label 1 to any upward
edge going to H2 (taming H2), and red label 2 to all other upward edges
(except if u is also adjacent to the second vertex of H1, in which case we
take this opportunity to tame H1, by assigning blue label 1 to the edge).

As a result, note that, after any of the cases above, σr(u) is necessarily odd. Also,
the only situations where a wild connected component adjacent to u was not tamed,
are when that connected component is not dangerous, because it is adjacent to a
vertex in V1. For every tamed connected component of H, note that only one of its
two vertices is incident to an upward edge assigned a blue label, with value 1.

3. Last, let u1, . . . , un be the vertices of V0 ordered in increasing order over their degrees
(in V0), and consider the ui’s one by one in order. For every ui considered that way,
denote by ui1 , . . . , uid the d ≥ 0 neighbours of ui in V0 that precede ui in the ordering.
If d = 0, then assign blue label 2 to all edges incident to ui going to V1. Now, if d ≥ 1,
then recall that ui is incident to dV1(ui) ≥ d edges going to V1. By assigning red
label 2 to none, one, two, etc., or all of these edges, and blue label 2 to all others, we
can increase the red sum of ui by any amount in {0,2, . . . ,2dV1(ui)}, which is a set
of 2dV1(ui) + 1 ≥ d + 1 elements. There is thus a way to assign red label 2 to at most
d edges incident to ui going to V1, and blue label 2 to the rest, so that the red sum
of ui is different from the red sums of ui1 , . . . , uid . We assign such labels so that we
maximise the number of forward edges incident to ui assigned blue label 2.

Once the labelling process above is achieved, note that all vertices of V0 have their red
sum being odd, while every two adjacent vertices of V0 are distinguished by their red sums.
Also, every vertex of V0 has blue sum at least 2, due either to an incident inner edge, or
to an incident forward edge. The only edges incident to the vertices of V0 that are not
labelled yet are backward edges, which will be assigned blue labels during later Step 3.
Also, all forward edges incident to the vertices in V0 were labelled, assigned red label 2 or
blue label 2. Finally, recall that we tamed the bad connected components of H adjacent
to vertices in V0 whenever possible (as described above).

In later Step 3, the forward edges incident to the vertices in V2 (thus going to V0) will
all be assigned blue labels. Thus, already at this point, we can predict that, in most cases,
actually the vertices of V0 will have blue sum at least 3. There are a few peculiar cases,
however, where this could not be the case, which might cause eventual problems. For this
reason, we need, right away, to possibly modify the current labelling a bit, to guarantee
the vertices of V0 will eventually either have odd red sum and blue sum at least 3, or verify
other sum conditions.

Since we have assigned blue label 2 to all inner edges incident to the vertices in V0,
any vertex of V0 has blue sum at least 4 provided it is incident to at least two inner edges.
Likewise, since, in Step 3, all backward edges incident to the vertices of V0 will be assigned
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Figure 6: Cases, in the proof of Theorem 4.2, where a vertex of V0 does not get red sum at least 3. Dashed
edges indicate that u has no incident edges to certain sets.

blue labels, any vertex of V0 will have blue sum at least 3 provided it is incident to at least
one inner edge and at least one backward edge. Furthermore:

• If a vertex u ∈ V0 is incident to no inner edge (so, dV0(u) = 0), then, since we assigned
blue label 2 to all forward edges incident to u, eventually we will have σb(u) ≥ 3
as soon as u is incident to at least two forward edges, or to only one forward edge
and at least one backward edge. Similarly, in that case, we will have σb(u) ≥ 3 if we
assigned a blue label to any upward edge incident to u.

• Consider now the case of a vertex u ∈ V0 incident to a single inner edge (so, dV0(u) =
1). Again, eventually σb(u) ≥ 3 will be achieved, provided u is incident to at least
one backward edge. Recall also that, in the third substep above (when we labelled all
forward edges), we considered the vertices with the lowest degrees first, and, through
the procedure, we did our best to assign blue label 2 to the forward edges as much
as possible. In particular, the only reason why we were perhaps not able to assign
blue label 2 to any of the forward edges incident to u, is because u is incident to only
one forward edge, and the only neighbour u′ ∈ V0 of u in V0 was treated earlier in
the process, and thus also verifies dV0(u′) = 1. In that case, however, a forward edge
incident to u′ must have been assigned blue label 2, and thus eventually we will have
σb(u′) ≥ 4.

So, the vertices u of V0 for which we might end up with σb(u) = 2 are those depicted
in Figure 6, that is:

• dV2(u) = dV0(u) = 0 and dV1(u) = 1.

• dV2(u) = 0 and dV0(u) = dV1(u) = 1, and the unique neighbour u′ of u in V0 verifies
dV0(u′) = 1 and σb(u′) ≥ 4.

We now perform label modifications around any such u. So, u is incident to no backward
edge, to exactly one forward edge, and to at most one inner edge (which is assigned blue
label 2). We unlabel all upward and forward edges incident to u. Then, the red sum of u
becomes precisely 0. We relabel all these edges in the following way:

• Assume the upward edges incident to u go to only one connected component H of
H. Then, H is not empty. If H is nice or tamed, then we assign red label 2 to all
but at most two upward edges incident to u, assign red label 1 or red label 2 to the
remaining two edges so that the red sum of u becomes congruent to 2 modulo 4, and
finally assign blue label 2 to the only forward edge incident to u. Now, if H is wild,
then we assign blue label 1 to any upward edge incident to u (so that we tame H),
red label 2 to the second upward edge going to H, and blue label 2 to the forward
edge incident to u.
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• Now assume the upward edges go to two connected components H1,H2 ∈ H.

– If, say, H1 is empty, then H2 is not empty, and u is incident to at least two
upward edges going to H2 (by Claim 4.3). If H2 is wild, then we start by
assigning blue label 1 to any upward edge incident to u going to H2 (so that
H2 is tamed). There now remain at least two upward edges to be labelled.
By assigning red labels to them, we can make sure the red sum of u becomes
congruent to 2 modulo 4. Eventually, we assign blue label 2 to the forward edge
incident to u. Now, if H2 is nice, then we assign red labels to the at least three
upward edges incident to u so that its red sum, again, becomes congruent to 2
modulo 4, before assigning blue label 2 to the forward edge incident to u.

– If H1 and H2 are both nice, then we assign red labels to the upward edges
incident to u so that its red sum becomes congruent to 2 modulo 4, before
assigning blue label 2 to its incident forward edge.

– If, say, H1 is wild while H2 is nice or tamed, then we assign blue label 1 to any
upward edge going to H1, so that H1 is tamed. There now remains at least
one upward edge to be labelled. Since, currently, the red sum of u is 0, we can
assign red labels to these edges so that the red sum of u becomes congruent to
2 modulo 4. Lastly, we assign blue label 2 to the forward edge incident to u.

– If H1 and H2 are both wild, then, because u has a neighbour in V1, since G
is claw-free, they cannot be both dangerous. Assume w.l.o.g. that H1 is not
dangerous. We assign blue label 1 to any upward edge incident to u going to
H2, thereby taming H2. Now, we assign red labels to the other upward edges
so that the red sum of u becomes congruent to 2 modulo 4 (where, again, if u
is adjacent to the two vertices of H1, then we can also assign blue label 1 to
another upward edge to tame H1, without preventing u from getting red sum 2
modulo 4). Then, we assign blue label 2 to the forward edge incident to u.

In all cases, note that we end up with σr(u) ≡ 2 mod 4 and σb(u) ≥ 2. Meanwhile, the
other vertices of V0, to which the extra care above was not applied, still have odd red sum
and blue sum at least 3. Furthermore, we still have that all edges joining vertices of V0

and V1 are assigned red label 2 or blue label 2.

Step 2: Labelling the inner, upward, and forward edges of V1.

We now deal with the vertices in V1, for which we need some additional terminology.
For every connected component C of G[V1], choose r a vertex of maximum degree in C,
i.e., with dC(r) as large as possible. Now let T be any spanning tree of C having r as its
root. This defines a natural orientation of T , from which we can infer notions of vertices
being more or less deep in T , w.r.t. r. In particular, any edge uu′ ∈ T , assuming u is closer
to r than u′ is, is a parent edge incident to u′, and a child edge incident to u. Note that
r is incident to no parent edge, the leaves of T are incident to no child edges, while every
other vertex is incident to exactly one parent edge and at least one child edge.

We now label edges incident to the vertices in V1 as follows:

1. We start by assigning blue label 2 to all edges of E(C) ∖E(T ), for every connected
component C of G[V1] (where T is the spanning tree of C described earlier).

2. We now consider every connected component C of G[V1] in turn, and treat the
vertices of C one by one, considering them according to their decreasing distance

22



to r in T (where T is the spanning tree of C chosen earlier, w.r.t. C). Whenever
considering a vertex u this way, we will label its incident parent edge (if it exists)
and its incident upward edges. This way, note that, whenever considering a new
u ∈ V (C), all its child edges can be assumed to be labelled. Also, through what
follows we will always assign a blue label or red label 2 to any incident parent edge.
Since all edges joining vertices in V0 and V1 have been assigned blue labels and red
label 2, this implies that, when starting considering a new u ∈ V (C), currently its
red sum can be assumed to be even.

We consider two main cases, treating r in a particular way. Note that it is possible
that C consists of r only, and thus that r is a root with no neighbours.

• Assume we are currently considering a non-root vertex u ∈ V (C). As mentioned
earlier, the only edge of C incident to u that remains to be labelled is the parent
edge uu′. Also, as will be apparent later on, even though we might have already
labelled several child edges incident to u (when treating deeper vertices), we can
assume that, currently, σr(u) ≡ 0 mod 2 . Since G is claw-free, recall that the
upward edges incident to u go to at most two connected components of H.

– Assume first all upward edges incident to u go to a single connected com-
ponent H of H. Then H cannot be empty, since u is incident to at least
two upward edges.

∗ If H is bad and wild, then H = v1v2 with uv1 and uv2 being the exact
two upward edges incident to u. If σr(u) ≡ 0 mod 4, then we assign red 2
to uv1 and uu′, and blue label 1 to uv2 (thereby taming H). Otherwise,
i.e., if σr(u) ≡ 2 mod 4, then we assign blue label 1 to uv1 (taming H),
red label 2 to uv2, and blue label 2 to uu′.

∗ Otherwise, H is nice or tamed. Here, we assign red label 2 to all upward
edges incident to u but at most two of them, to which we both assign
either red label 1 or red label 2, so that the red sum of u becomes a
multiple of 4. We then assign blue label 2 to uu′.

– Now assume the upward edges incident to u go to two connected components
H1,H2 ∈ H.

∗ Again, if, say, H1 is empty, then H2 cannot be empty by Claim 4.3.
If H2 is nice or tamed, then we assign red label 2 to all upward edges
incident to u but at most two of them, to which we both assign either
red label 1 or red label 2 so that the red sum of u becomes a multiple
of 4, before assigning blue label 2 to uu′. Otherwise, if H2 is wild, then
we assign blue label 1 to any upward edge incident to u going to H2, so
that H2 is tamed. Now, recall that, by Claim 4.3, there must remain
two upward edges incident to u to be labelled, and thus we can proceed
as previously to reach the same conclusions.

∗ If H1 and H2 are both nice or tamed, then we assign red label 2 to all
upward edges incident to u but at most two of them, to which we both
assign either red label 1 or red label 2 so that the red sum of u becomes
a multiple of 4. We then assign blue label 2 to uu′.

∗ If, say, H1 is wild while H2 is nice or tamed, then we assign blue label 1
to any upward edge incident to u going to H1 (so that H1 is currently
tamed). If there remain at least two upward edges incident to u to be
labelled, then, as previously, we assign red label 1 or 2 to these edges
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so that the red sum of u becomes a multiple of 4, before assigning blue
label 2 to uu′. Otherwise, only one upward edge uv (with v ∈ V (H2))
remains to be labelled, which means that there is only one upward edge
uv′ incident to u going to H1. If, currently, we have σr(u) ≡ 2 mod 4,
then we assign red label 2 to uv, and blue label 2 to uu′. Otherwise, if
σr(u) ≡ 0 mod 4, then we assign red label 2 to both uv and uu′.

∗ If H1 and H2 are both wild, then, just as in the similar case in Step 1,
due to the existence of a forward edge incident to u, we deduce that at
least one of H1 and H2 must be not dangerous. Assume w.l.o.g. that
H1 is not dangerous. We start by assigning blue label 1 to any upward
edge incident to u going to H2, so that H2 is tamed. Again, if there
remain at least two upward edges incident to u to be labelled, then, by
assigning red labels to these edges, we can make sure the red sum of u
becomes a multiple of 4, before eventually assigning blue label 2 to uu′.
Otherwise, u is incident to exactly two upward edges uv and uv′, with
v ∈ V (H1) and v′ ∈ V (H2). Depending on whether σr(u) ≡ 0 mod 4 or
σr(u) ≡ 2 mod 4, we can either assign blue label 1 or red label 2 to uv
(taming H1 in the former case), so that, together with assigning blue
label 2 to uu′, the red sum of u becomes a multiple of 4.

In all cases above, note that, after treating u, we get σr(u) ≡ 0 mod 4, and also
σb(u) ≥ 1. Also, the parent edge incident to u is always assigned blue label 2 or
red label 2, as desired. Finally, the only situation where we did not tame a bad
component adjacent to u, is when that bad component was not dangerous yet
(because it is adjacent to a vertex in V2).

• Now consider the case where u = r. Due to the order in which we considered the
vertices of C, we have that all edges incident to u in C are currently labelled,
with blue label 2 or red label 2, which is also the case for the edges joining
vertices of V0 and V1. So, σr(u) is currently even.
So, we focus on labelling the upward edges incident to u. Recall that they go to
at most two connected components of H. Note that, below, we mark with some
“★” symbols two technical places of the proof for which extra explanations and
care are needed. These places are discussed right after the case distinction.

– Assume first all upward edges incident to u go to exactly one connected
component H of H. Then, again, H cannot be empty.

∗ If H is bad and wild, then H = v1v2 and uv1 and uv2 are the exact
two upward edges incident to u. If H is not dangerous, then we assign
red label 1 or red label 2 to both uv1 and uv2, so that the red sum of
u becomes a multiple of 4. Now assume H is dangerous. If σr(u) ≡
2 mod 4, then we assign blue label 1 to uv1 (thereby taming H) and red
label 2 to uv2. Now, if σr(u) ≡ 0 mod 4, then we assign blue label 1 to
uv1 and blue label 2 to uv2.★

∗ Otherwise, H is tamed or nice. Here, we assign red label 2 to all but at
most two upward edges incident to u, to both of which we either assign
red label 1, or assign red label 2, so that the red sum of u becomes a
multiple of 4.

– Assume second that the upward edges incident to u go to two connected
components H1,H2 ∈ H.

24



∗ If, say, H1 is empty, then, by Claim 4.3, H2 cannot be empty and u
is incident to at least two upward edges going to H2. If H2 is nice or
tamed, then we first assign red label 2 to all but at most two upward
edges incident to u. To the remaining two upward edges, we then either
assign red label 1, or assign red label 2, so that the red sum of u becomes
a multiple of 4. Now, consider the case where H2 is wild. Here, we assign
blue label 1 to an upward edge going to H2 (so that H2 is tamed),
before assigning red labels to the remaining ones so that the red sum
of u becomes a multiple of 4. This is indeed possible, since there are
exactly two such edges.

∗ If H1 and H2 are both nice or tamed, then we assign red label 2 to all
upward edges incident to u but at most two of them, to which both we
assign red label 1 or red label 2 so that σr(u) becomes a multiple of 4.

∗ Assume here that, say, H1 is wild and H2 is nice or tamed. If u is
incident to at least three upward edges, then we assign blue label 1 to
any edge going to H1 (thereby taming H1), before assigning red labels to
the remaining upward edges so that the red sum of u becomes a multiple
of 4. Now, assume u is incident to only one upward edge uv1 going to
H1, and only one upward edge uv2 going to H2. If σr(u) ≡ 2 mod 4,
then we assign blue label 1 to uv1 (so that H1 is tamed) and red label 2
to uv2. Lastly, suppose σr(u) ≡ 0 mod 4. If we cannot assign red label 2
to uv1 (which would allow us to also assign red label 2 to uv2, to make
the red sum of u become a multiple of 4), then it means that H1 is
dangerous. Regarding v2, since G is claw-free and H2 is thus a path
or a cycle (for reasons we mentioned in the proof of Theorem 4.1), it
must be that dH2(v2) = 1 (as otherwise u would be adjacent to another
vertex of H2, and there would be at least three upward edges incident
to u, a case we handled earlier). In this case, we assign blue label 1 to
both uv1 (taming H1) and uv2, which preserves σr(u) ≡ 0 mod 4.★★

∗ If H1 and H2 are both wild, then, again, because G is claw-free and u
has at least one neighbour in V2, we deduce that H1 and H2 cannot both
be dangerous. Assume H1 is not dangerous. We start by assigning blue
label 1 to an upward edge uv′ incident to u going to H2, so that H2 is
tamed. If there remain at least two upward edges to be labelled, then,
once more, by assigning red labels to these edges we can make sure the
red sum of u becomes a multiple of 4. Otherwise, there remains only
one such edge uv, going to H1. If σr(u) ≡ 2 mod 4, then we assign red
label 2 to uv. Otherwise, we have σr(u) ≡ 0 mod 4, in which case we
assign blue label 1 to uv, thereby taming H1.

In all these cases, we, again, always end up with σr(u) ≡ 0 mod 4. Note that, this
time, there are also cases where we end up with σb(u) = 0. We also need to discuss
technical points related to the places we marked with “★” symbols.

★ This place of the proof is the only one (up to this point) where we label an
upward edge with blue label 2. This upward edge assigned label 2 goes to a
wild connected component H = v1v2 of H that is dangerous. This means that,
later on in the process, no further upward edge going to H can be considered,
and thus that the blue sums of v1 and v2, provided we eventually assign a red
label to v1v2, will remain 1 and 2 (thus distinguishing these two vertices).
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(c) Wild H1, nice H2 (case 2).

Figure 7: Some problematic cases when dealing with the vertices of V1, in the proof of Theorem 4.2. In
(a), the orange circle highlights an induced claw.

★★ This place of the proof is the only one where an upward edge uv going to a nice
or tamed connected component H is assigned a blue label (with value 1). Recall
that we must have dH(v) = 1.

– If H is nice, then note that this place of the proof is actually the only
one where an upward edge incident to v can be assigned a blue label, with
value 1. More precisely, an upward edge uv is assigned blue label 1 only if u
is the root we have chosen for some connected component of G[V1], and v
is the only neighbour of u in H. This means, see Figure 7(a), that v cannot
be incident to two such edges, as otherwise there would be two vertices
u and u′ belonging to distinct connected components of G[V1] sharing v
as a common neighbour, which is not possible as, because G is claw-free,
we would deduce either that u and u′ are adjacent (thereby being part of
a single connected component of G[V1]), or that one of u and u′ is also
adjacent to the unique neighbour of v in H (leading to a different, non-
exceptional case when treating u or u′). This means that v, throughout
Step 2, must remain of blue sum 1.

– If H = v1v2 (where v ∈ {v1, v2}) is tamed, then a technical point is that,
although one of v1 and v2, say v1, was already incident to an upward edge
assigned blue label 1 (which earlier led to H being tamed), we are here
creating another upward edge uv incident to v1 or v2 assigned blue label 1.
This can lead to two peculiar situations:

∗ If v = v2, then note that this makes v1 and v2 both have blue sum 1 (see

26



Figure 7(b)), which makes them not distinguishable through their blue
sums. In this case, we instead assign blue label 2 to uv2.

∗ If v = v1, then note that this makes the blue sum of v1 be equal to 2
(see Figure 7(c)).

A problem is that, when dealing with a later connected component C ′ ≠ C
of G[V1], this exact situation can occur again, with the root r′ of C ′ also
requiring to have an incident upward edge going to H to be assigned blue
label 1. Fortunately, this exact situation with H cannot occur for three
different roots r, r′, and r′′ being in different connected components C, C ′,
and C ′′ of G[V1], as we would have at least two of r, r′, and r′′, say r and
r′, sharing a neighbour in {v1, v2}, say v1, which because of the claw with
center v1 and leaves r, r′, and v2, would imply, since G is claw-free, that
either r and r′ are adjacent (and thus C and C ′ should be part of the same
connected component), or that r or r′ neighbours both v1 and v2 (and thus
we would fall into a different case of the case distinction).
In case, say, r and r′ both need to assign a blue label to an incident upward
edge going to H, by these arguments we must have, say, that r neighbours
v1 only, while r′ neighbours v2 only. In that case, we assign blue label 1 to
these two edges, rv1 and r′v2, to make sure {σb(v1), σb(v2)} = {1,2}. In
particular, v1 and v2 remain distinguished by their blue sums.

By these arguments, in this place of the proof, in cases where roots need to
have an incident upward edge going to a nice or tamed connected component H
being assigned a blue label, this can be done in such a way that both vertices
of H are distinguished by their blue sums, and that these blue sums have value
at most 2. In particular, recall that the situation we marked with ★ deals with
a dangerous connected component, which, thus, cannot be considered in the
present case as H.

3. Last, we consider the vertices of V1 one by one, following any ordering u1, . . . , un
where the roots of the connected components of G[V1] appear first (in any order).
For every ui considered that way, let ui1 , . . . , uid denote the d ≥ 0 neighbours of ui
in V1 that have already been treated during this step. If d = 0, then we assign blue
label 2 to all forward edges (going to V2) incident to ui. Otherwise, ui is incident to
dV2(ui) ≥ d forward edges, and by assigning blue labels to these edges we can increase
the blue sum of ui by any amount in {dV2(ui), . . . ,2dV2(ui)}, a set of dV2(ui)+1 ≥ d+1
values. So we can assign blue labels to the forward edges incident to ui so that its
eventual blue sum is different from those of ui1 , . . . , uid . We do this so that the blue
sum of ui is always as large as possible.

Once every vertex u of V1 has been treated that way, note that it must verify σr(u) ≡
0 mod 4. We claim it must also verify σb(u) ≥ 2. Indeed, if dV1(u) = 0, then all forward
edges incident to u are assigned blue label 2, and the claim holds. Otherwise, if dV1(u) ≥ 1,
then either u is not the root of its connected component C of G[V1], in which case, as
mentioned earlier, at least one upward edge or inner edge incident to u is assigned a blue
label, which, together with an incident forward edge, yields σb(u) ≥ 2; or u is the root
of C, in which case we treated r early in the third step above, which means, since we
maximised the resulting blue sums, that all its incident forward edges are assigned blue
label 2, yielding σb(u) ≥ 2.

Note also that all edges joining vertices of V1 and V2 have been assigned blue labels.
Also, as pointed out earlier, the only vertices v of some H ∈ H that currently have non-zero
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blue sum verify σb(v) ≤ 2. Also, for such vertices v, we have dH(v) = 1. Last, as pointed
out above in the remarks marked with “★” symbols, if H is bad and some of its vertices
have non-zero blue sum, then its two vertices are distinguished by their blue sums.

Step 3: Labelling the inner, upward, and forward edges of V2.

Now, we deal with the vertices of V2. Recall that only the backward edges incident
to these vertices have been labelled at this point, and they were assigned blue labels. We
label their remaining incident edges in the following way.

1. We first assign blue label 2 to all inner edges incident to the vertices of V2.

2. Next, we consider every vertex u ∈ V2 in turn, and label its incident upward edges.
Again, since G is claw-free, the upward edges incident to u go to at most two con-
nected components of H. Also, currently σr(u) = 0.

• Assume first all upward edges incident to u go to a single connected component
H of H. Again, H cannot be empty.

– If H is bad and wild, then u is incident to exactly two upward edges uv1
and uv2 with H = v1v2. In this case, we assign blue label 1 to uv1 and red
label 2 to uv2, so that we get σr(u) ≡ 2 mod 4, and we tame H.

– Otherwise, i.e., H is nice or tamed, then we assign red label 2 to all upward
edges incident to u but at most two of them, to both of which we assign
either red label 1 or red label 2 so that we get σr(u) ≡ 2 mod 4.

• Second, assume all upward edges incident to u go to two connected components
H1,H2 ∈ H.

– If, say, H1 is empty, then, by Claim 4.3, H2 is not empty, and u is incident
to at least two upward edges going to H2. If H2 is wild, then we assign blue
label 1 to any upward edge incident to u going to H2, so that H2 is tamed;
there then remain at least two upward edges to be labelled, to which we
assign red labels so that we get σr(u) ≡ 2 mod 4. Otherwise, H2 is nice or
tamed, in which case we assign red label 2 to all but at most two upward
edges incident to u, to both of which we either assign red label 1 or red
label 2 so that we get σr(u) ≡ 2 mod 4.

– If H1 and H2 are both nice or tamed, then we assign red label 2 to all but
at most two upward edges incident to u, to both of which we assign either
red label 1 or red label 2 so that we obtain σr(u) ≡ 2 mod 4.

– If H1 is wild and H2 is nice or tamed, then we first assign blue label 1 to
any upward edge incident to u going to H1 (thereby taming H1). There
then remain at least one upward edge to be labelled. If there is only one
such edge, then we assign red label 2 to it. Otherwise, we assign red label 2
to all but at most two remaining upward edges incident to u, to both of
which we either assign red label 1 or red label 2. In both cases, we obtain
σr(u) ≡ 2 mod 4.

– Now assume both H1 and H2 are wild, and let v be any vertex of H1 adjacent
to u, and v′ be any vertex of H2 adjacent to u. We start by assigning blue
label 1 to both uv and uv′, thereby taming H1 and H2. If there remain
at least one upward edge incident to u to be labelled, then we assign red
labels to those edges so that we get σr(u) ≡ 2 mod 4. Otherwise, it means
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that uv and uv′ are the only two upward edges incident to u. If, say, H1

is not dangerous, then we assign red label 2 to uv and blue label 1 to uv′

(thereby taming H2). Now, assume both H1 and H2 are dangerous.
∗ If assigning red label 1 to both uv and uv′ guarantees that both vertices

of H1, and similarly both vertices of H2, are not in conflict, then we do
assign labels this way. Note that we get σr(u) ≡ 2 mod 4 as a result.

∗ If both v and v′ get in conflict with their unique neighbour in H1 and
H2, respectively, upon assigning red label 1 to uv and uv′, then we
label uv with blue label 1 and uv′ with red label 2. This way, note that
σr(u) ≡ 2 mod 4, while v and v′ are not in conflict with their respective
neighbour in H1 and H2.

∗ Last, if, when having uv and uv′ being assigned red label 1, only, say, v
is in conflict with its neighbour in H1 (while v′ is not with its neighbour
in H2), then we label uv with red label 2 and uv′ with blue label 1. We
then reach the same conclusions as in the previous case.

After performing this labelling substep, we get σr(u) ≡ 2 mod 4 in all cases. All bad
connected components adjacent to u have been either tamed, or their incident edges
have been labelled so that its two adjacent vertices cannot be in conflict. Also, when
taming a wild connected component, we did so, in this case, by assigning blue label 1
to an incident edge.

3. Now, as previously, let u1, . . . , un be an arbitrary ordering over the vertices of V2,
and consider the ui’s one by one in any order. For every ui considered like this, let
ui1 , . . . , uid be the d ≥ 0 neighbours of ui in V2 preceding ui in the ordering. If d = 0,
then assign blue label 2 to all forward edges incident to ui, going to V0. Now, if
d ≥ 1, then recall that ui is incident to dV0(ui) ≥ d forward edges. By assigning blue
labels to these edges, we can thus make the blue sum of ui increase by any amount
in {dV0(u), . . . ,2dV0(u)}, thus in dV0 + 1 ≥ d+ 1 possible ways. So we can assign blue
labels to the forward edges incident to ui so that the blue sum of ui is different from
the blue sums of ui1 , . . . , uid .

At this point of the proof, note that all edges incident to the vertices in V0, V1, and V2

have been labelled. For all vertices u ∈ V0, we either have σr(u) ≡ 1 mod 2 and σb(u) ≥ 3, or
σr(u) ≡ 2 mod 4, σb(u) ≥ 2, and u is not adjacent to any vertex in V2 and has no neighbour
in V0 having its red sum verifying the same properties. For all vertices u ∈ V1, we have
σr(u) ≡ 0 mod 4 and σb(u) ≥ 2. For all vertices u ∈ V2, we have σr(u) ≡ 2 mod 4 and
σb(u) ≥ 2. Furthermore, forward edges were labelled so that adjacent vertices with odd red
sum in V0 are distinguished w.r.t. their red sums, adjacent vertices in V1 are distinguished
w.r.t. their blue sums, and similarly for adjacent vertices in V2. So, any two adjacent
vertices in V0 ∪ V1 ∪ V2 are distinguished by the current partial labelling.

Now, regarding any connected component H ∈ H, in general its vertices should have
blue sum 0. Precisely, the only vertices v ∈ V (H) with σb(v) > 0 verify σb(v) ≤ 2. Those
with σb(v) = 2 verify dH(v) = 1. The typical cases in which this occurs, is when H is bad,
in which case its only two vertices have blue sum 1 and 2. Otherwise, if σb(v) = 1, then
most of the times H is bad, in which case only one edge incident to the two vertices of H
was assigned blue label 1 (in order to tame H). It is also possible to have σb(v) = 1 when
H is a path of length at least 2, in which cases v must be an end of that path.

Step 4: Labelling the edges of H.
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We now consider the edges of every connected component H ∈ H. Recall that H can
be of three main types, which we treat as follows:

• If H is bad, then H has only one edge v1v2. By how we labelled the upward edges
through Steps 1 to 3, recall that v1 and v2 are already distinguished, by either their
red sums or their blue sums. In particular, if we do not have σb(v1) = σb(v2) = 0,
then v1 and v2 cannot have the same blue sum. Also, we have σb(v1), σb(v2) ≤ 2,
while, in V0, all vertices u with σr(u) ≡ 1 mod 2 verify σb(u) ≥ 3. Also, all other
vertices u in V0 ∪ V1 ∪ V2 verify σb(u) ≥ 2.
By all these arguments, it can be noted that, by assigning a red label to v1v2 so that,
assuming σb(v1) ≥ σb(v2), we get σr(v1) ≡ 1 mod 2, then we cannot get any conflict
involving a vertex of H and one of V0 ∪ V1 ∪ V2.

• If H is a path p1 . . . pk of length k − 1 at least 2, then recall that σb(p1), σb(pk) ≤ 1
while σb(p2) = σb(pk−1) = 0, while σb(u) ≥ 2 for every u ∈ V0 ∪ V1 ∪ V2. So, upon
assigning only red labels to the edges of H, we cannot get a conflict between vertices
of H and vertices in V0 ∪ V1 ∪ V2. Now, by Lemma 2.3 or 2.4, we can assign red and
blue labels to the edges of H so that its adjacent vertices, when taking into account
how we labelled the upward edges, are distinguished by their red sums or blue sums,
while maintaining σb(p1), σb(pk) ≤ 1.

• If H is a cycle v1 . . . vkv1 of even length, then recall that σb(vi) = 0 for every i ∈
{1, . . . , k}, while, again, σb(u) ≥ 2 for every u ∈ V0 ∪ V1 ∪ V2. So, provided we assign
blue label 1 to edges forming a matching of H and red labels to the rest, we cannot
get conflicts involving vertices of H and vertices of V0 ∪ V1 ∪ V2. Here, Lemma 2.5
tells us we can label the edges of H this way, so that any two of its adjacent vertices
are distinguished.

By all these arguments, we end up with a distinguishing (2,2)-labelling of G.

5. Conclusion

In this work, we proved the Weak (2,2)-Conjecture for 2K2-free graphs and K1,3-free
graphs, two classes of graphs for which the 1-2-3 Conjecture is not known to hold. Another
source of interest for those graphs is that they have unbounded chromatic number.

Proving the Weak (2,2)-Conjecture in all cases, or even the 1-2-3 Conjecture itself,
would of course be the main achievement that one could hope for in this field. Towards
this, one could also, for similar reasons as the ones that motivated us, first focus on proving
the Weak (2,2)-Conjecture for more classes of graphs, such as other graph classes defined
in terms of forbidden induced structures. As such, we believe it would be interesting to
wonder about triangle-free graphs, or only graphs with large girth in general. Conversely,
one could wonder about graphs in which many short cycles are present, such as chordal
graphs. Another class of graphs could be e.g. that of P4-free graphs (a.k.a. cographs).
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