N

N

The Weak (2, 2)-Labelling Problem for graphs with
forbidden induced structures

Julien Bensmail, Hervé Hocquard, Pierre-Marie Marcille

» To cite this version:

Julien Bensmail, Hervé Hocquard, Pierre-Marie Marcille. The Weak (2, 2)-Labelling Problem for
graphs with forbidden induced structures. [Research Report] Université cote-d’Azur; Université de
Bordeaux, LaBRI, UMR 5800, France. 2022. hal-03784687v1

HAL Id: hal-03784687
https://hal.science/hal-03784687v1

Submitted on 23 Sep 2022 (v1), last revised 29 Sep 2022 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03784687v1
https://hal.archives-ouvertes.fr

The Weak (2,2)-Labelling Problem for graphs
with forbidden induced structures

Julien Bensmail?, Hervé Hocquard®, Pierre-Marie MarcilleP

*Université Cote d’Azur, CNRS, Inria, 13S, France
® Univ. Bordeauz, CNRS, Bordeaur INP, LaBRI, UMR 5800, F-83400, Talence, France

Abstract

The Weak (2,2)-Conjecture is a graph labelling problem asking whether all connected
graphs of at least three vertices can have their edges assigned red labels 1 and 2 and blue
labels 1 and 2 so that any two adjacent vertices are distinguished either by their sums of
incident red labels, or by their sums of incident blue labels. This problem emerged in a
recent work aiming at proposing a general framework encapsulating several distinguishing
labelling problems and notions, such as the well-known 1-2-3 Conjecture, a few of its vari-
ants, and so-called locally irregular decompositions. One further point of interest behind
the Weak (2,2)-Conjecture is that it is weaker than the 1-2-3 Conjecture, in the sense that
the latter conjecture, if proved true, would imply the former one is true too.

In this work, we prove that the Weak (2,2)-Conjecture holds for two classes of graphs
defined in terms of forbidden induced structures, namely claw-free graphs and graphs with
no pair of independent edges. One main point of interest for focusing on such classes
of graphs is that the 1-2-3 Conjecture is not known to hold for them. Also, these two
classes of graphs have unbounded chromatic number, while the 1-2-3 Conjecture is mostly
understood for classes with bounded and low chromatic number.

Keywords: distinguishing labelling; 1-2-3 Conjecture; sum distinction.

1. Introduction

This work deals with several distinguishing labelling problems, taking part to a
wide and vast area of research, as reported in several dedicated surveys on the topic, such
as e.g. 7, 10]. More particularly, we focus on a subset of these problems revolving around
the so-called 1-2-3 Conjecture, which can all be defined through the following unified
terminology, introduced recently in [4].

Let G be a graph, and «, 5 > 1 be two positive integers. An («, 3)-labelling of G is an
assignment ¢ of labels from {1,...,a} x {1,...,3} to the edges of G, where each edge e
gets assigned a label ¢(e) = (x,y) with colour x € {1,...,a} and value y € {1,...,3}. Now,
for every vertex v of G and any i € {1,...,a}, we denote by o;(v) the sum of the values of
the labels with colour i assigned to the edges incident to v, which we call the i-sum of v.
We say that ¢ is distinguishing if for every two adjacent vertices u and v of G, there is an
i€{l,...,a} such that the i-sums of u and v differ, that is, if o;(u) # o;(v).

Regarding these notions, it can be noted that if G is K5, the complete graph of order 2,
then there are no «, 8 > 1 such that G admits distinguishing («, 3)-labellings. This peculiar
case apart, it is not too complicated to prove that, for any fixed o > 1, thereis a 8 > 1
such that distinguishing (o, 8)-labellings of any graph G exist, and vice versa. For these
reasons, in the context of distinguishing labellings, we generally focus on nice graphs, which

>

j
J
~
J

number of labels

(1,5) l l l | I | I
(2,5) (3,5) (4,5)
proved in (8]
(1,4) (2,4) H (3,4) H (4,4) b
(4,3) (2.3) H (3,3) H (4,3) E
L 1-2-3 Conj. proved in [4]
(1,2) (2.2) (3,2) H (4,2) E
NP-hard [2] Weak Conj.
(1,1) (2,1) (3,1) I | @1) I
locally irregular NP-hard [2] Multiset 1-2-3

>

number of colours

Figure 1: The current knowledge we have on whether all graphs admit distinguishing («, 3)-labellings,
for fixed a, 8 > 1. For a pair («,), the associated box is green if all graphs were proved to admit the
corresponding labellings, the associated box is red if it is known that not all graphs admit the corresponding
labellings, while the associated box is blue if the status is currently unknown. Arrows indicate existential
implications between pairs of types of labellings.

are those graphs with no connected component isomorphic to Ko. Henceforth, throughout
this work, every graph we consider is thus implicitly assumed nice.

A natural question, now, is whether, for some fixed o, > 1, every graph admits
distinguishing («, 8)-labellings. It turns out, as mentioned earlier, that the literature
actually provides answers for several values of o and 5. See Figure 1 for a figure depicting
our current knowledge on the topic, which we make more explicit below.

e Note first that if a, 8 and o', 3" are values such that o/ > «, 8’ > 8, and (a,f3) #
(a/, "), then any distinguishing («, 3)-labelling is a distinguishing (a/, 3’)-labelling.

e Distinguishing (1, 3)-labellings are labellings where all labels are of the same colour,
and all adjacent vertices should be distinguished according to their sums of incident
labels. Such labellings are exactly those behind the so-called 1-2-3 Conjecture [9]
of Kalkowski, Karonski, and Pfender, which asks whether all graphs admit distin-
guishing (1, 3)-labellings. To date, the best result towards this is that they all admit
distinguishing (1, 5)-labellings, see [§].

e Distinguishing («, 1)-labellings can be seen as (improper) edge-colourings where, for
every two adjacent vertices, there must be a colour that is not assigned the same
number to their incident edges. These labellings are those defining the multiset

version of the 1-2-3 Conjecture, introduced in [1], which asks whether all graphs admit
distinguishing (3, 1)-labellings. This conjecture was proved in [11| by Vuckovié.

e In [4], the authors noticed that, given a distinguishing (1,5)-labelling of some graph,
by modify the label colours and values in a particular fashion, we can derive a dis-
tinguishing (2, 3)-labelling of the same graph. Similarly, there is a way, from a
distinguishing (1, 5)-labelling, to derive a distinguishing (3, 2)-labelling.

e It is not too complicated to see that, in regular graphs, distinguishing (1, 2)-labellings
and distinguishing (2, 1)-labellings are equivalent notions. In [2], it was proved that
determining whether a given graph admits a distinguishing (1,2)-labellings is NP-
hard. This means there exist infinitely many graphs that admit neither distinguishing
(1, 2)-labellings nor distinguishing (2, 1)-labellings.

e Graphs admitting distinguishing (1, 1)-labellings are precisely the so-called locally
wrregular graphs, which are those graphs with no two adjacent vertices having the
same degree. These graphs have been appearing frequently in the field, and have
even been receiving dedicated attention, see e.g. [5].

From this all, we arrive at the conclusion that there are only three pairs (a,f) for
which we are still not sure whether all graphs admit distinguishing («, 3)-labellings: (1, 3),
which corresponds to the original 1-2-3 Conjecture; (1,4), which is weaker than the 1-2-3
Conjecture since more label values are available (while, similarly, all labels are of the same
colour); and (2,2), which is the only pair for which we have two label colours to deal with.
The latter pair leads to the following conjecture:

Weak (2,2)-Conjecture (Baudon et al. [4]). Every graph admits a distinguishing (2,2)-
labelling.

At first glance, the 1-2-3 Conjecture and the Weak (2,2)-Conjecture might seem a
bit distant. It is worth emphasising, however, that the former conjecture, if true, would
imply the latter [6]. For this reason, the Weak (2,2)-Conjecture can be perceived as a
weaker version of the 1-2-3 Conjecture. Also, to get progress towards these conjectures,
one can thus investigate the Weak (2,2)-Conjecture for classes of graphs for which the 1-
2-3 Conjecture is not known to hold. To date, the 1-2-3 Conjecture was mainly proved for
3-colourable graphs! [10]. The weaker conjecture was proved for 4-colourable graphs [6].

Theorem 1.1 (Bensmail [6]). The Weak (2,2)-Conjecture holds for 4-colourable graphs.

Both conjectures were also proved for other classes of graphs, but not as significant.
One reason why the chromatic number parameter appears naturally in this context is
that having a proper vertex-colouring ¢ in hands can be handy to design a distinguishing
labelling, since ¢ informs on sets of vertices that are not required to be distinguished. One
downside, however, is that making a labelling match ¢ somehow, might require lots of
labels if ¢ itself contains lots of parts.

In this work, we prove the Weak (2, 2)-Conjecture for two classes of graphs for which the
1-2-3 Conjecture is not known to hold. Furthermore, the two classes of graphs in question
have unbounded chromatic number, which is significant according to the arguments above.

'Recall that a proper k-vertez-colouring of a graph G is a partition of V(@) into k independent sets.
The chromatic number x(G) of G is the smallest k such that G admits proper k-vertex-colourings. We say
that G is k-colourable if x(G) < k, and k-chromatic if x(G) = k.

Precisely, we prove the Weak (2, 2)-Conjecture for K 3-free graphs (graphs with no induced
claw) and 2Ks-free graphs (graphs with no pair of independent edges). Both results are
proved in a similar way: we first deal with the 5-colourable graphs of the class, before
focusing on those with chromatic number at least 6.

This paper is organised as follows. In Section 2, we start off with some preliminaries,
covering the terminology we use throughout, several lemmas, and previous results of in-
terest. We then prove the Weak (2,2)-Conjecture for 2K,-graphs in Section 3, since the
proof we give serves as a good introduction to the more technical proof, in Section 4, of
the same result for K 3-free graphs. We end this work in Section 5 with concluding words.

2. Preliminaries

Let G be a graph, and ¢ be a («, 8)-labelling of G. If o = 1, then we will sometimes call
£ a B-labelling for simplicity. Also, in such cases, instead of denoting the 1-sum of a vertex
v by o1(v), we will simply denote it as o(v), or as oy(v) in case we want to emphasise that
we refer to the labels assigned by £. Now, in cases, where we are dealing with the Weak
(2,2)-Conjecture and, thus, («,) = (2,2), it will more convenient to see the labels with
colour 1 as red labels, and similarly those with colour 2 as blue labels. In this context, we
will thus refer, for any vertex v, to the red sum oy(v) of v (which is thus o;(v)), and to
the blue sum oy, (v) of v (which is thus o2(v)).

In what follows, we point out situations where, assuming a partial labelling of a graph
is given, we can extend it to some edges in such a way that some properties are preserved.

Lemma 2.1. Let G be a graph, H be a connected bipartite subgraph of G, and £ be a
partial 2-labelling of G such that only the edges of G are not labelled. For any vertex w of
H, there is a 2-labelling ' of H such that, for every two adjacent vertices u and v of H
with w ¢ {u,v}, we have

Ug(u) + Uzl(u) * Ug(’l)) + Ugr(v).

Proof. Let U,V denote the bipartition of H. We produce such a 2-labelling ¢’ such that,
for every vertex u + w of H, we have oy(u)+op(u) =0mod 2 if u e U, and op(u) +op(u) =
1 mod 2 otherwise, if u € V. Note that this clearly implies what we want to prove.

Start from all edges of H being assigned label 2 by ¢'. Now, consider any vertex u
of H for which o/(u) + op(u) does not satisfy the required condition above. Since H is
connected, there is a path P from u to w that uses edges of H only. Now turn all 1’s
assigned by ¢’ to the edges of P into 2’s, and conversely turn all 2’s into 1’s. As a result,
note that oy(v) + o¢(v) is not altered for every vertex v of H with v ¢ {u,w}, while both
oe(u) + op(u) and op(w) + op(w) had their parity altered. So oy(u) + op(u) now verifies
the desired condition.

Repeating those arguments until all vertices u # w of H have op(u) + oy (u) verifying
the desired condition, we end up with ¢’ being as desired.]

Building distinguishing labellings being nothing but an algebraic problem, there are
contexts in which algebraic tools come up handy naturally. Below, we recall one such
useful tool, and showcase a few ways to use it.

Theorem 2.2 (Combinatorial Nullstellensatz [3]). Let F be an arbitrary field, and P =
P(Zy,...,Z,) be a polynomial in F[Zy, ..., Zy]. Suppose that the coefficient of a monomial

Zfl ...Zg”, where every k; is a non-negative integer, is non-zero in P and the degree of
P equals Y8 | k. If Si,..., Sy, are subsets of F with |S;| > k; for every i e {1,...,p}, then
there are z1 € S1,...,2p € Sp so that P(z1,...,%,) #0.

Lemma 2.3. Let G be a graph, H be a subgraph of G, and £ be a partial 2-labelling of G
such that only the edges of H are not labelled. Then, there is a 2-labelling ¢' of H such
that, for every two adjacent vertices u and v of H, we have

oe(u) +op(u) # og(v) + o (v),
for H being any of:
e a path of length at least 2 not 3;
e a cycle with length multiple of 4.

Proof. Regarding the first case, assume H is a path vy...v, of length p—1> 2. For every
ie{l,...,p}, set n; = oy(v;). Now, for every i € {1,...,p— 1}, define ¢; as the edge v;v;11,
and let Z; be a variable belonging to {1,2} and representing any label assignment to e;.
We consider P, the polynomial defined as

p-2
P(Zl, ceey Zp_l) = (77,1 - ZQ - 77,2) . H (Zi—l +n; — Zi+1 — n“l) . (Zp_g + Np-1— np) .
=2

Note that the degree of P is p -1, and that the monomial M = Z;...Z,_; is thus of
maximum degree. Note also that, since the n;’s are fixed, the coefficient of M in the
expansion of P is the same as the coefficient of the same monomial in the expansion of

PAZy,....Zp1) = (=22) (21~ Z3) - (Z2— Z4) - (Z3 ~ Z5) (Zp-3 = Zp-1) - (Zp-2).

If p+4, then p—2 # 2. In this case, it can then be noted that there is only one way to form
M by expending P’ (due to the fact that the first factor contains Zs only, and that only the
second one contains Z1), and thus its coefficient is +1. Thus M has non-zero coefficient.
So the Combinatorial Nullstellensatz applies, and Theorem 2.2 implies we can assign labels
from {1,2} to the edges of H so that, together with the labels by ¢, the adjacent vertices
of H are distinguished as desired.

Now consider the case where H is a cycle vg...vp-1v9 of length p = 0 mod 4. Again,
for every i € {0,...,p—1}, set n; = o4(v;), define e; as the edge v;v;+1 (where the operation
over the subscript is modulo p), and let Z; be a variable belonging to {1,2} associated to
e;. We consider P, the polynomial

p-1
P(Z(), .. -yZp—l) = H (Zifl +n; — Zﬂl - 7’L1'+1) .
1=0

Since the n;’s are constant, the coefficient of M = Zy...Z,_1 in the expansion of P is the
same as in that of

P'(Zo, ..., Zp1) = (Zp-1~ Z1) - (Zo — Z2) - (Zy ~ Z3) - (Z2 ~ Za)-(Zp-2 — Zo).
Note that P’ can be seen as

[(Zi-Ziw2) [] (Zi-Zis2),

0ciZpt 14253
where the two involved products contain an even number of factors each (p/2), since p =
Omod 4. From this, it is easy to see that the coefficient of ZoZ2Z,...Z,-2 in the first
product is 2, and similarly for the coefficient of Z1Z3Z5...Z,_1 in the second product.
Thus, the coefficient of M in P is 4, hence non-zero. Since M is of maximum degree, from
the Combinatorial Nullstellensatz we get our conclusion here as well. O

Lemma 2.4. Let G be a graph, H be a subgraph of G isomorphic to a path p1papsps of
length 3, and ¢ be a partial (2,2)-labelling of G such that only the edges of H are not
labelled. Assume also that the red sum of p1 or py by £ is at most 1, while it is 0 for po
and ps. Then, there is a (2,2)-labelling ¢' of H such that every two adjacent vertices of H
are distinguished by their red sums by £ and ¢', or similarly by their blue sums by £ and ¢'.
Also, we can make sure that the red sum of any of p1, pa, p3, or ps is at most 1.

Proof. 1f the red sum of both p; and p4 by £ is 0, then we first assign red label 1 to pops
by ¢', before assigning blue label 1 to p1ps, and blue label 2 to psps. This way, p; and po,
and similarly ps and ps, are distinguished since the former vertex has red sum 0 while the
latter has red sum 1. Also, po and p3 are distinguished since py has blue sum 1 while p3
has blue sum 2. We also have red sum at most 1 for all p;’s.

If, say, p1 has red sum 1 by ¢, then note that, upon assigning blue labels by ¢’ to the
edges of H, we cannot get any conflict between p; and po, since they are distinguished by
their red sums. In this case, a similar application of the Combinatorial Nullstellensatz as
in the proof of Lemma 2.3 can be invoked to conclude that we can assign blue labels 1
and 2 by ¢’ to the edges of H to get the desired labelling. Denoting, for every i € {1,2}, by
Z; a variable in {1,2} corresponding to a blue label assigned to p;p;+1, note here that we
can indeed restrict our attention to the polynomial (Z; — Z3)(Z2), and more particularly
to the monomial Z; 75, to get our conclusion.

Now, if both p; and ps have red sum 1 by /¢, then, again, upon assigning blue labels to
the edges of H by ', we cannot get any conflict between p; and ps, and similarly between
p4 and ps, since the former vertices have red sum 1 while the latter ones have red sum 0.
So only po and p3 need to be distinguished, which can be done by assigning blue label 1
to p1p2, blue label 2 to psp4, and any blue label to paps.]

Lemma 2.5. Let G be a graph, H be a subgraph of G isomorphic to a cycle of even length,
and £ be a partial (2,2)-labelling of G such that only the edges of H are not labelled and
all the edges of E(G) N~ E(H) are assigned red labels. Then, there is a (2,2)-labelling ¢' of
H such that every two adjacent vertices of H are distinguished by their red sums by £ and
0, or similarly by their blue sums by ¢ and ¢'. Also, we can make sure that the blue sum
of every vertex of H is at most 1.

Proof. Assume H is a cycle of even length k > 4. We denote the consecutive vertices of H
by vov1 ... vg-1v9, and set e; = v;v;4q for every i € {0,...,k—1} (where all operations over
the subscripts in this proof are modulo k).

Consider B, the subset of edges of H obtained as follows. We add e; to B, and, from
here, we add every three edges of H, namely ey4, e7, and so on, to B, so that we add as
many such edges to B as possible, but every two edges added to B are at distance at
least 3 to each other in H. In particular, since e; € B, neither ey nor e;_; belongs to B.
In particular, for every e; € B, we have e;_1 ¢ B and e;+1 ¢ B, and for every e;,e; € B
with i # j, we have {e;_1,e.41} N {ej_1,€ej41} = @. Also, H — B, by how B was constructed,
consists of paths Pp,..., P,, all of which have length 2, but maybe one of them (the one
containing vy, say it is P,), which might be of length 2, 3, or 4.

By ¢', we start by assigning blue label 1 to all edges of B. In what follows, the edges of
E(H) ~\ B will all be assigned red labels. Note that these edges are precisely the edges of
the P;’s. Also, if P; = v;v;41v;42 is of length 2, then v; and v;,2 are both incident to an edge
of B, and thus are of blue sum 1, while v;;1 is of blue sum 0. Thus, when assigning red
labels to the edges of the P;’s, we only need to make sure to distinguish adjacent vertices
v; and vj41 such that v;v;11 € B, or v; and v;41 are inner vertices of P,. Last, remark that if

e; € B, then, so that v; and v;,; are distinguished by their red sums, it suffices to make sure
we assign red labels to e;_1 and e;;1 so that, when taking into account the contribution by
£, the red sums of v; and v;41 are of different parity.

We consider three distinct cases, involving the possible lengths of P:

o If P, is of length 2, we are thus done when considering every e; € B in turn, and
assigning, by ¢', a red label to e;_1 and e;;1 so that, when taking into account the
contribution by ¢, the red sums of v; and v;;1 are of different parity.

e Assume P, is of length 3, i.e., P, = v3_3Vp_2vp_1v9. In this case, we need to make
sure that the red sums of vy_s and vi_q get different. To that end, we proceed as in
the previous case, except that, when labelling ep and ez (to deal with e; € B) and
er-5 and eg_3 (to deal with eg_4), we do so so that the red sum of vy_o, when taking
into account the contribution by ¢, becomes even, while that of v;_1 becomes odd.

o Similarly, if P, = vp_4vp_3v5_2vr-1v0 is of length 4, then we need to make sure that
the red sums of vi_3 and vi_s, and similarly of vi_o and vi_1, are different. This can
be done by labelling eg_4, €r_3, ex_2, €x_1, and eq first, following that order, so that
the desired pairs of adjacent vertices are distinguished due to their red sums having
different parity. From here, we can again consider the edges in B and treat them at
previously, taking into account, when dealing with e; and e;_4, that eg and ej_4 have
already been labelled.

This concludes the proof.]

To finish off, we recall a nice tool that proved to be very useful towards proving the
multiset version of the 1-2-3 Conjecture from [1]. Let G be a graph. A balanced tripartition
of G is a partition Vp, Vi, Vs of V(G) fulfilling, for every vertex v € V; for any i € {0,1,2}
(note that all operations over the subscripts are modulo 3), that dy;,, (v) > max{1, dy, (v)}.
That is, v has at least one neighbour in the next part Vj.1, and it actually has more
neighbours in Vj;q than in V;. It turns out that graphs with sufficiently large chromatic
number admit such a balanced tripartition.

Theorem 2.6 (Addario-Berry et al. [1]). Every graph G with x(G) > 3 admits a balanced
tripartition.

3. Graphs with no induced pair of independent edges

As mentioned earlier, we prove the Weak (2,2)-Conjecture for 2K,-free graphs by
first proving it for the 5-chromatic ones, and then for those with chromatic number at
least 6. This implies the result, since the conjecture also holds for the 4-colourable ones,
by Theorem 1.1. In what follows, we thus consider the two cases separately.

Theorem 3.1. Fvery 2Ks-free graph with chromatic number 5 admits a distinguishing
(2,2)-labelling.

Proof. Let G be a 2Ks-free graph with chromatic number 5. We construct a distinguishing
(2,2)-labelling of G assigning red labels 1 and 2 and blue labels 1 and 2. We can assume G
is connected, since each of its 5-chromatic connected components can be handled through
the arguments below, while Theorem 1.1 applies for its 4-colourable connected components.

Let D be a maximal independent set of G, and set R = G — D. Note that every vertex
v in R is incident to at least one upward edge vu, i.e., going to D (so, u € D). We say

. o =2k+a22
v € Vot
op=2k+3>1

(a) An upward edge of R is assigned red label 1. (b) All upward edges of R are assigned blue labels.

Figure 2: Terminology used in the proof of Theorem 3.1, and the red sums and blue sums we aim at getting
for the vertices by the designed (2,2)-labelling. (a) and (b) depict the two main cases we consider.

that a connected component of R is empty if it contains no edges, while it is non-empty
otherwise. Since G is 2Ks-free, note that R contains at most one non-empty connected
component. Actually, R must contain exactly one non-empty connected component R as
otherwise G would be bipartite, contradicting that its chromatic number is 5. Let now [
denote the vertices from the empty connected components of R, and let H be the subgraph
of G induced by the edges incident to the vertices of I. Then H is bipartite, and, again,
because G is 2Ks-free, it must be that H consists of only one connected component.

Since G is 5-chromatic, note that R is 4-chromatic; let thus Vp o, Vo1, V1,0, V1,1 be parts
forming a proper 4-vertex-colouring ¢ of R. We modify ¢, if needed, so that if v is a vertex
of R with dr(v) =1, then v belongs to Vj o or Vj1 (note that this is clearly possible, since
v has exactly one neighbour in R). Now order the vertices vy, ..., v, in any way satisfying
that, for every ¢ € {1,...,n—1}, vertex v; is incident to at least one forward edge v;v; (i.e.,
with j > 4, which is a backward edge from v;’s point of view). Such an ordering can be
obtained e.g. by reversing the ordering in which vertices are encountered while performing
a breadth-first search algorithm from any vertex (standing as the last vertex vy,).

We are now ready to start labelling the edges of G. We begin with all edges incident
to the vertices of R. We consider the v;’s one by one, following the ordering above, and for
every vertex v; considered in that course, we assign a label to all upward edges (assigning
them blue labels, except in one peculiar case) and forward edges (assigning them red labels
only) incident to v; so that some desired red sum and blue sum are realised at v;. When
proceeding that way, note that, whenever considering a new vertex as v;, only its backward
edges can be assumed to be labelled, with red labels. The procedure goes as follows:

o If ¢ #+ n, then v; is incident to forward edges. We start by assigning blue label 2
to all upward edges incident to v;, and red label 2 to all forward edges incident to
v;. Assume v; € V, g. If o,(v;) # S mod 2, then we change to blue label 1 the label
assigned to any one upward edge incident to v;. Likewise, if o,(v;) # a mod 2, then
we change to red label 1 the label assigned to any one forward edge incident to v;.
This way, we get o:(v;) = @ mod 2 and o1,(v;) = S mod 2. In particular, by how we
modified ¢ earlier, note that we must have oy(v;) > 2 (either dr(v;) > 2 in which
case this condition clearly holds; or dgr(v;) = 1, in which case « = 0 and thus the only
inner edge incident to v; is assigned red label 2, implying the condition).

e If i = n, then the only edges incident to v, that remain to be labelled are upward
edges. Recall, in particular, that all backward edges incident to v, are assigned red
labels. We consider two cases, assuming v, € V, g:

— If 0,(vp) = @ mod 0, then we assign blue labels to all upward edges incident to
Up, their values being chosen so that oy,(v,) = S mod 0. In that case, we thus
have o;(v,) = amod 2 and o,(v,) = S mod 2. Again, by how ¢ was modified
earlier, we must have oy (vy,) > 2.

— If 0y (v,) # @ mod 0, then we assign red label 1 to any one upward edge incident
to vp, while we assign blue labels to the others upward edges (if any) so that
ob(vr) = fmod 2. In this case, either o, (vy,) # 0 in which case o, (vy,) = a mod 2
and oy, (vy,) = f mod 2; or o,(v,) =0 in which case all edges incident to v, are
assigned red labels (implying that o, (v,) > 2).

Note that, in all cases above, for all vertices v; € V,, g, we guarantee 2 < 0,(v;) = & mod 2.
Also, except maybe for v,, we also guarantee 0 < o1,(v;) = 8 mod 2. Regarding v,,, either
op(vy,) =0, in which case vy, is distinguished from all its neighbours in R through its blue
sum, or 0 < op(v,) = S mod 2, in which case v, is distinguished from its neighbours in
R through its red sum. Regarding the vertices of D, only one of them can currently be
incident to an edge being assigned a red label, and, if this is the case, then it is incident to
exactly one such edge, being assigned red label 1. So, for every w € D, we currently have
or(u) <1, while o.(v) > 2 for every v € R. Thus, currently, vertices of R are distinguished
from their neighbours in D. If H has no edges, then all edges of G are actually labelled,
and we end up with a distinguishing (2,2)-labelling. So, in what follows, we can assume
‘H has edges.

We are now left with labelling the edges of H, which, recall, consists of exactly one
connected component. We consider two main cases:

o Assume there is some vertex w € H with o,(w) = 1. Recall that there can be only one
such vertex, which belongs to D and must be a neighbour of v,. Recall also that the
vertices of D nV(#H) can be incident to edges being currently assigned blue labels
(being upward edges incident to vertices of R). Taking these labels into account, by
Lemma 2.1 we can assign blue labels 1 and 2 to the edges of H so that any two of
its adjacent vertices u and v with w ¢ {u,v} are distinguished by their blue sums.

Since we did not modify labels assigned to edges incident to the vertices in R, and
the edges of H are assigned blue labels only, the vertices of R remain distinguished
from their neighbours due to arguments above. Regarding adjacent vertices of H,
they are either distinguished by their blue sums (if w is not involved), or because one
of them has red sum 1 (if w is involved). So, here as well, we do not have conflicts.

e Assume no vertex of H currently has red sum at least 1. In this case, let w be any
vertex of I. By Lemma 2.1, we can assign blue labels 1 and 2 to the edges of H so
that, taking into account the other edges of G that are currently already assigned
blue labels, and omitting w, any two adjacent vertices of H are distinguished by their
blue sums. In case w has d > 2 neighbours z1, ..., 24 (which lie in D), then we further
modify the labelling by changing to red label 1 the label assigned to wzxq,...,wzq.

Again, we did not modified the red sums and blue sums of the vertices in R. Also,
the only vertex of D u I that might have red sum at least 2 is w (note that the x;’s,
if they exist, have red sum 1), which lies in I, the set of isolated vertices of R, and
thus cannot be adjacent to the vertices of R. Since the vertices of R have red sum at
least 2, they thus cannot be involved in conflicts. Now, if dg(w) = 1, then, because G
is not just an edge, the unique neighbour of w must have degree at least 2, meaning
that w is distinguished from its unique neighbour by its blue sum. Otherwise, i.e., w

INTAMAEVATATAA

oy =0mod 4
oy > 2

o, odd o, =2 mod 4
op > 2 op > 2

Figure 3: Terminology used in the proof of Theorem 3.2, and the red sums and blue sums we aim at getting
for the vertices by the designed (2,2)-labelling.

has d > 2 neighbours x1,...,x4 € D, then o.(w) = d > 2 while the x;’s have red sum 1,
and thus w cannot be involved in conflicts. Regarding the x;’s, they have red sum 1,
so they cannot be in conflict with their neighbours of H different from w, since they
have red sum 0. Finally, for every vertex of H not in {w,x1,...,24}, note that we
did not modify its blue sum when perhaps introducing red labels. Then we still have
that any two such adjacent vertices are distinguished by their blue sums, due to how
we applied Lemma 2.1. So, no conflicts exist in G.

In both cases, the resulting (2,2)-labelling of G is thus distinguishing, as desired. [

Theorem 3.2. Every 2Ks-free graph with chromatic number at least 6 admits a distin-
guishing (2,2)-labelling.

Proof. Let G be a 2Ks-free graph with chromatic number at least 6. We construct a
distinguishing labelling of G assigning red labels 1 and 2 and blue labels 1 and 2. Note
that we may assume that G is connected, due to Theorems 1.1 and 3.1.

Let D; be a maximal independent set of G. Note that every vertex of G — D; has at
least one neighbour in Dy. Now let Dy be a maximal independent set of G — D;. Similarly,
every vertex of G — D1 — Dy has at least one neighbour in Djy. Since x(G) > 6, note that
X(G-D1-D3) > 4. According to Lemma 2.6, there is thus a balanced tripartition Vy, V1, Vs
of G — Dy — Dy. Note that Dy, Dy, Vp, V4, and Vs form a partition of V(G). An upward
edge of G is an edge with one end in Vo u Vj u V5 and the other in Dy u Dy. An inner edge
of G is an edge with both ends in some V;. If u € V; and u' € V;;1 (where the operations
over the subscripts of the V;’s are modulo 3) are adjacent for some i € {0,1,2}, then wu'
is a forward edge from wu’s perspective, and a backward edge from that of u’. Because G

10

is 2K-free, note that all three of G[Vp], G[Vi1], and G[V2] contain exactly one connected
component each.

We denote by H the set of the connected components of G[DU Dz]. Since every vertex
of Dy has neighbours in Dy, note that H has edges. Actually, since G is 2Ks-free, there is
exactly one connected component H of H that is non-empty, i.e., that contains edges. H
can also contain empty connected components, which consist in a single vertex of D;.

We design the desired (2,2)-labelling of G following four steps. First, we label all
inner, upward, and forward edges incident to the vertices of Vj so that they fulfil certain
properties on o, and o},. Second and third, we then achieve the same for the vertices of V;
and Va. During a fourth and last step, we label the remaining edges of H (if any).

Step 1: Labelling the inner, upward, and forward edges incident to V;.

We start by labelling the following edges of G:
1. We first assign blue label 2 to all inner edges incident to vertices of Vj.

2. Then consider every vertex uw of Vj in turn, assign red label 2 to all upward edges
incident to u, and, if needed, eventually change to red label 1 one of these red labels
so that the red sum of u becomes odd.

3. We now distinguish two cases, through which we get to defining a special vertex
w € Do that will be useful later on, by the last step of the proof.

o [Vo| =1, i.e., G[Vp] is a single vertex u. We here assign blue label 2 to all forward
edges incident to u. We also modify the labelling further as follows. Set w as
any neighbour of u in Dy. Note that, by swapping the red labels assigned to
uw and another upward edge incident to u, we can, if necessary, assume uw is
assigned red label 2. We then change the label assigned to uw to blue label 1.

e Otherwise, i.e. |Vp| > 2. Here, let ug,...,u, be an arbitrary ordering over the
vertices of Vj, and consider the u;’s one by one in order. Since extra modifi-
cations must be made around ui, let us consider that vertex specifically before
describing the general case. Just as in the previous case, let w be any neighbour
of u1 in Dy. Again, we can swap labels assigned to upward edges, if necessary,
so that ujw is assigned red label 2. Then we change the label assigned to ujw
to blue label 1, before assigning blue label 2 to all forward edges incident to
ui. Now, for every subsequent u; with ¢ > 2, denote by u;,,...,u;, the d > 0
neighbours of u; in V4 that precede u; in the ordering. If d = 0, then assign blue
label 2 to all forward edges incident to u;. Now, if d > 1, then recall that w; is
incident to at least d forward edges. By assigning red label 2 to none, one, two,
etc., or all of these edges, and blue label 2 to all others, we can increase the red
sum of u; by any amount in {0,2,...,2d}, which set contains d + 1 elements.
There is thus a way to assign red label 2 to at most d forward edges incident to
u;, and blue label 2 to the rest, so that the red sum of u; is different from the
red sums of w;,,...,u;,.

Once the steps above have been performed fully, note that all inner, upward, and
forward edges incident to the vertices of Vj are assigned a label. Also, for every vertex
u € Vp, we currently have o,(u) = 1 mod 2, and it can be checked that also oy,(u) > 2.
Furthermore, every two adjacent vertices of Vj currently have their red sums being different.
Remark last that all upward edges incident to the vertices of V{ are assigned red labels,
except for w, which is incident to exactly one edge assigned blue label 1.

11

Step 2: Labelling the inner, upward, and forward edges incident to V;.

Due to the previous step, note also that all backward edges incident to the vertices
in V7 are labelled with red label 2 and blue label 2. So, one should keep in mind that,
currently, o,(u) is even for every u € Vj.

We now label more edges as follows:

1. First, we assign blue label 2 to all inner edges incident to vertices of V;.

2. Second, we consider every vertex u of V7 in turn. Recall that w is incident to at least
two upward edges. We assign red label 2 to all these edges. If necessary, we change
the label assigned to two of these edges to red label 1, so that o,(u) =2 mod 4.

3. Third, let uq,...,u, be an arbitrary ordering over the vertices of Vi, and consider
the wu;’s one by one in turn. For every u; considered that way, denote by wu;,,...,u;,
the d > 0 neighbours of w; in V; that precede u; in the ordering. If d = 0, then assign
blue label 2 to all forward edges incident to w;. Now, if d > 1, then recall that wu;
is incident to at least d forward edges. Thus, through assigning blue labels to these

edges, we can make the blue sum of u; vary by any amount in the set {d,...,2d},
which contains d+1 elements. Thus, it is possible to assign blue labels to the forward
edges incident to u; so that its resulting blue sum is different from that of w;,,. .., u;,.

After completing the previous steps, all edges incident to the vertices in V; are labelled.
For every vertex u € Vi, we get oy(u) = 2mod 4, and also o,(u) > 2, because either
dy, (u) = 0 and at least one forward edge incident to u is assigned blue label 2, or dy, (u) > 0
and at least one inner edge incident to u is assigned blue label 2. Also, every two adjacent
vertices of Vi are distinguished by their blue sums. Note last that all upward edges incident
to the vertices of Vj are assigned red labels.

Step 3: Labelling the inner, upward, and forward edges incident to V5.

Note that after performing the previous step, all backward edges incident to the vertices
of V5 are assigned blue labels, meaning that their red sum is currently 0.
We now perform the following:

1. We assign blue label 2 to all inner edges incident to vertices in V5.

2. We then consider every vertex u of V5 in turn, which, recall, is incident to at least two
upward edges. We assign red label 2 to all these edges before, if necessary, changing
the label assigned to two of these edges to red label 1, so that o,(u) = 0 mod 4.

3. We finish off this step similarly as the previous one. let wuq,...,u, be any ordering
over the vertices of Vo, and consider the u;’s one after the other. For every wu;, let
Uiy, ..., U;, be the d > 0 neighbours of u; in Vo that precede u; in the ordering. If
d =0, then assign blue label 2 to all forward edges incident to u;. Otherwise, if d > 1,
then recall that u; is incident to at least d forward edges. Via assigning blue labels to

these edges, we can thus make the blue sum of u; increase by any value in {d, ..., 2d},
which set contains d + 1 elements. Thus, we can assign blue labels to the forward
edges incident to w; so that its blue sum is different from that of w;,,...,u;,.

Once this step achieves, all edges incident to vertices in Vyu Vi u V4 are labelled. For
every vertex u € Va, we have o,(u) = 0 mod 4 and o (u) > 2. Every two adjacent vertices
of V4 are distinguished by their blue sums, while all upward edges incident to the vertices

12

in V5 are assigned red labels. It is important to emphasise also that assigning blue labels
to the edges joining vertices of V5 and Vj altered the blue sums of the vertices in V{y, which
is not an issue since the adjacent vertices of Vj are distinguished by their red sums, which
were not altered. So, any two adjacent vertices in V[remain distinguished, and similarly
for any two adjacent vertices in V;. Finally, note that any two adjacent vertices in distinct
V;’s are distinguished by their red sums having different values modulo 4.

Step 4: Labelling the edges of H.

Recall that, at this point, we have op(v) = 0 for every vertex v € D; U Dy \ {w} and
op(w) =1, while o,(u) > 2 for every vertex u € Vopu Vi u Vs, In particular, if v € D; belong
to an empty connected component of H, then all edges incident to v are already labelled,
and v is distinguished from its neighbours due to its blue sum.

Recall that H denotes the unique non-empty connected component of H, and that H
actually contains all edges of G that remain to be labelled. Recall also that H contains w,
a special vertex we defined in the first labelling step, which is the only vertex of H having
non-zero blue sum. According to Lemma 2.1, we can assign red labels 1 and 2 to the edges
of H so that, even when taking into account the red labels assigned to the upward edges
incident to the vertices in Vp u Vi u Vs, any two adjacent vertices of H different from w
are distinguished by their red sums. Since o1,(w) = 1 while o,(v) = 0 for every v e V(H),
vertex w is also distinguished from its neighbours in H. These conditions guarantee we
have not introduced any conflicts involving vertices of D; U Dy and vertices of Vou Vi u V.

All these arguments imply that the resulting (2,2)-labelling of G is distinguishing. [

4. Graphs with no induced claw

We now prove the Weak (2,2)-Conjecture for K 3-free graphs. Again, we do so by
first focusing on the 5-chromatic ones, before focusing on those with chromatic number at
least 6. Again, we consider the two cases separately.

Theorem 4.1. FEvery claw-free graph with chromatic number 5 admits a distinguishing
(2,2)-labelling.

Proof. The proof starts similarly as that of Theorem 3.1. We can assume G is a connected
5-chromatic graph. We again define D and R as previously, as well as the 4-vertex-colouring
¢ of R with parts Vp 0, Vo1, V1,0, and V4 1. The notions of empty and non-empty connected
components of R are also defined similarly, as well as the classification of the edges of G
into upward and inner edges. The set I and the subgraph H are also defined similarly.

Some differences here, however, are because G is claw-free. Note in particular that R
might contain several non-empty connected components. However, any vertex v of R has
at most two neighbours in D, and conversely any vertex u € D can have neighbours in at
most two connected components of R. Also, H can now have several connected components
containing edges. As will be pointed out, further strong assumptions on ‘H can be made.

Similarly as in the proof of Theorem 3.1, we start by considering every non-empty
connected component R of R, and defining a particular ordering over its vertices. In some
cases, we also modify the parts of ¢ by a bit.

e If R has a vertex v with dr(v) = 2, then we denote the vertices of R by v1,...,v,
in reverse order as they are encountered during a breadth-first search algorithm per-
formed from v. So, v = v,, and every v; # v, is incident to a forward edge, which is
a backward edge from the other vertex’s point of view.

13

Regarding ¢, denoting by v; and v; the two neighbours of v,, we need to make sure
that we do not have v; in Vo and v; in Vg1 (or vice versa), or v; in Vi o and v; in
Vi1 (or wice versa). That is, if v; € V, g and v; € Vi gr, we need o # o'. Assume this
is not verified, and that we have, w.l.o.g., v; in Vg and v; in V1. Then, since ¢ is
proper, v, belongs to Vi g or V; 1. Assume v, belongs to Vi g, w.l.o.g. We modify ¢
by swapping the parts Vg1 and Vi . Note that the resulting ¢ remains proper, and
that, now, v; still lies in Vo, while v; lies in V1 o, as desired.

Finally, if R has a vertex v; with dr(v;) = 1, then, keeping ¢ proper, we make sure
that v; lies in Vp o or Vp 1.

e If R has no degree-2 vertex but has a vertex v with degree 1, i.e., dg(v) = 1, then we
denote by v1, ..., v, the vertices of R as in the previous case, i.e., from a breadth-first
search algorithm performed from v = v,,. In this case as well, we also modify ¢, if
needed, so that all the degree-1 vertices of R belong to Voou Vp 1.

e [f R has minimum degree 3, then we consider any vertex v of R, and denote by
V1,...,0, the vertices of R as in the precious cases (by reversing a breadth-first
search algorithm performed from v), so that v, = v. Here, ¢ is not modified further.

We are now ready to start designing the (2,2)-labelling of G. Just as in the proof of
Theorem 3.1, we start by labelling all edges incident to vertices in the non-empty connected
components of R, so that every two of their adjacent vertices are distinguished either by
their red sums or by their blue sums. To achieve this, we will assign red labels to all inner
edges and blue labels to most upward edges, so that the red sums and blue sums obtained
for the vertices in R match ¢. By that, we mean that for every vertex v in V, g, we aim
at getting o,(v) = @mod 2 and o1,(v) = 8 mod 2, except in a few cases (such as for some
last vertices of some non-empty connected components).

Consider every non-empty connected component R € R in turn. Recall that vy,...,v,
is an ordering over the vertices of R with specific properties we described earlier. We
consider the v;’s one by one following the ordering, and, whenever considering a v; in this
way, we assign a label to all its incident inner edges and upward edges. This way, note
that, whenever starting treating a v;, only its incident backward edges are labelled.

Now, for every v; € V,, g to be considered:

e If i+ n, then v; is incident to forward edges. We first assign blue label 2 to all upward
edges incident to v;, and red label 2 to all incident forward edges. Note that all edges
incident to v; are now assigned a label. Now, if o (v;) # S mod 2, then we change
to blue label 1 the label assigned to any upward edge incident to v;. Similarly, if
or(v;) # @ mod 2, then we change to red label 1 the label assigned to any forward
edge incident to v;. As a result, o,(v;) = @ mod 2 and oy, (v;) = f mod 2. Recall also
that if dg(v;) = 1, then v = 0, and thus o,(v;) > 2. Since all inner edges incident to v;
are assigned red labels, we also have o, (v;) > 2 whenever dgr(v;) > 2. Thus, o,(v;) > 2
regardless of dr(v;). Also, o, (v;) > 1.

e [f i =n, then all inner edges incident to v,, are currently assigned red labels.

— If dg(v,) = 2, then recall that, due to how we ordered the vertices of R, the two
neighbours v; and U;- of v, in R have their red sums being of distinct parity.
Assume that, currently, ov(v,) = 0v(vj) mod 2 and ov(v,) # 0r(vj) mod 2. We
here assign blue labels to all upward edges incident to v,, their values being
chosen so that oy, (v,) # ob(v;) mod 2. For the sake of formality, we also change,

14

if needed, the part of ¢ that contains v, so that the part it belongs to matches
the resulting o, (v,) and oy, (vy,).

— If dg(v,) =1 and R is just an edge vivy (thus with ve = v,), then, by how ¢
was modified earlier (v; and vy belong to Voo u Vo 1), recall that vive must be
assigned red label 2. We here assign blue labels to the upward edges incident to
v, o that op(v1) # op(v2) mod 2.

— Otherwise, i.e., dg(v,) =1 and R is not just an edge, or dr(v,) > 3, then we
assign red label 1 to all upward edges incident to v,,.

Once the process above is led for all v;’s, all edges incident to the v;’s are labelled. Also,
if v; € V,, g for some i < n, then o,(v;) = @ mod 2 and oy, (v;) = 5 mod 2 with oy (v;), op(v;) >
1. Since ¢ is a proper vertex-colouring, for every two adjacent vertices v; and v; of R with
i,j # n, we thus have o.(v;) # 0x(v;) or op(v;) # o,(vj). Regarding vy, either v, is not
in conflict with any of its neighbours in R (with respect to either o, or o},) and none of
its incident upward edges is assigned a red label (when dgr(v,) =2, or dr(v,) =1 with R
being an edge), or all its incident edges are assigned red labels and thus oy, (v,) = 0 (while
all neighbours v; of vy, in R have op,(v;) > 1).

At this point, only edges incident to the vertices in I remain to be labelled. Later on,
these edges will be assigned blue labels only. This means that, through labelling these
edges, the red sums of the vertices in D will not be modified. Recall that the vertices in
D might be incident to edges assigned red labels. We need to make sure that such vertices
will not be in conflict with the vertices from the non-empty connected components of R.

Let w be any vertex in D. Note that, by how we labelled the upward edges earlier,
if v;u is an edge assigned a red label, then v;u is assigned red label 1, and ¢ = n, i.e., v;
is the last vertex of its non-empty connected component of R. Since G is claw-free, this
means v must be incident to at most two edges assigned a red label. Thus, currently,
or(u) < 2. Meanwhile, for every vertex v in a non-empty connected component of R, we
have o,(v) > 2. Hence, if o(u) = 0,(v), then oy (u) = 2.

In what follows, we modify the current labelling, if needed, so that there are no two
adjacent vertices u € D and v € V(R) with o.(u) = oy(v) = 2, without introducing new
conflicts between adjacent vertices of R. To achieve this, we perform label modifications
to make the number of such conflicts decrease, until no such conflict remains. We perform
this so that, for every v € V(R), we preserve, except in very peculiar cases, oy(v) > 2 while,
for every u € D, we have o,(u) < 2. This way, no conflicts between the vertices of D and
V(R) will remain.

Assume there is a u € D with o,(u) = 2. As mentioned earlier, there are thus exactly
two edges uv,, and uv), incident to u assigned red label 1, where v, is the last vertex of
some non-empty connected component R of R, and v}, is the last vertex of another non-
empty connected component R’ # R of R. Assume that u is adjacent to a vertex v; from
a non-empty connected component of R with the same red sum (possibly, v; € {vy,v],}).
Then o,(v;) = 2, and, since all edges of R are assigned red labels, dr(v;) < 2.

e Assume o, (u) = oy (v;) for some v; ¢ {v,, v, }. Recall that v;u is assigned a blue label.
Also, because G is claw-free, v; must belong to the same (non-empty) connected
component of R as one of v, and v,. Assume v; belongs to R. Then, v;v, is an edge.

— If dg(v;) = 1, then, by how the vertices of R were ordered, dg(v,) < 2.

x If dg(vy) = 1, then R is actually just the edge v;v, = v1ve. By how we
treated v,, earlier, recall that all upward edges incident to v, are assigned
blue labels. So, this case cannot occur.

15

« If dr(v,) = 2, then, by how we treated v,, earlier, it cannot be that v,u is
assigned a red label. Thus, this case cannot occur as well.

— Assume now that dgr(v;) = 2. Then, again, by how the vertices of R were
ordered, it must be that dr(v,) = 2, and no upward edge incident to vy, is
actually assigned a red label. So, again, this case cannot occur.

e Assume now that o,(u) = or(v,), w.l.o.g., and that there is no v; e V(R)uV(R') \
{vn,v),} such that op(u) = oy(v;) (that is, the previous case does not apply). Since
vpu is assigned red label 1, note that, in order to have o;(v,) = 2 with upward edges
incident to v, being assigned red labels, it must be that v,, is incident to exactly one
inner edge vjvy, (that is, dr(vy,) = 1) and to the one upward edge v,u. So, dg(vy) = 2.
Furthermore, v;v, is assigned red label 1, while we also assigned red label 1 to v, u.
Also, by our choice of v, and by how we treated R, we have dr(v;) >3

— If dg(u) > 3, then note that, regardless of how the edges incident to u that are
not the two assigned red label 1 are labelled, we will eventually not have any
conflict between u and v, and can thus leave things as is.

— Assume now dg(u) = 2. Regarding v),, the fact that we had to assign red label 1
to v),u means (by previous arguments) that dr/(v),) # 2, and that if dr:(v]) =1
then R’ is not just an edge. Actually, all edges incident to v), are assigned red
labels. If o, (v),) # or(u) (that is, if 0.(v],) > ov(u)), then we change the label
assigned to v/ u to red label 2. This way, we get oy(u) = 3 > 2 = o,(vy,), and
we thus got rid of the conflict between v, and u. Meanwhile, we still have
o (v))) > o (u) while oy (v],) > 3 and o, (v),) = 0, while all neighbours of v, in R’
have blue sum at least 1. So, v, cannot be involved in a conflict.

The last case is thus when also o,(v],) = o:(u) = 2, which, for similar reasons as
for vy,, occurs when dg/(v),) = 1, the only inner edge incident to v/, is assigned
red label 1, and v),u is the only upward edge incident to v],, which is assigned
red label 1. So, dg(v),) = 2. In this case, we are done when changing the label
assigned to vy,u and v} u to red label 2. As a result, o,(v,) = oy (v),) = 3 while
oy(u) = 4. Meanwhile, we still have oy (v,) = op(v),) = 0, while u is the only
neighbour of v, and v;, with blue sum 0.

It now remains to label edges incident to the vertices in I. Recall that H is the subgraph
of GG induced by these edges. Then H is bipartite. In particular, since G is claw-free, in
every connected component H of H, every vertex must be of degree at most 2. So H must
be a path, or an even-length cycle. Actually, if H is an even-length cycle ujvy ... ugvguy
(where the wu;’s belong to D and the v;’s belong to I), then note that every u; cannot have
another neighbour in G, i.e., in a non-empty connected component of R, because, since
G is claw-free, this would imply that one of its neighbours in H must be adjacent to a
vertex from a non-empty connected component of R, a contradiction. So, all connected
components of H must be paths. Besides, if H is a path of H, then, due to the claw-freeness
of G, every degree-2 vertex of H must also be a degree-2 vertex in G.

Now let H be a connected component of H, i.e., a path. If H has length 1, then
H = uqv; where uy € D and vy € I, meaning that dg(v1) = 1, and, because G is connected
and is not a one-edge graph, whatever labelling we consider, it must be that u; and v
are distinguished either by their red sums or by their blue sums. So assume now H has
length more than 1. Set H = wy ... wy with k> 3. Now, for every i € {1,...,k}, denote by
n; the current value of o, (w;). Possibly, n; = 0. Actually, recall that only ny and nj can

16

be non-zero. According to Lemma 2.3 or 2.4, it is possible to assign blue labels 1 and 2 to
the edges of H so that its adjacent vertices are distinguished by their blue sums.

Since we have not altered the red sums of the vertices of R, every two adjacent vertices
of R remain distinguished, and similarly for any two adjacent vertices from R and D (in
particular, the only vertices of D which had their red sums modified have red sum 1, while
the vertices of R still have red sum at least 2). Regarding the adjacent vertices of H, the
application of Lemma 2.3 or 2.4 guarantees that they are distinguished by their blue sums,
or by their red sums in certain cases. So, the resulting labelling of G is distinguishing. [

Theorem 4.2. Fvery claw-free graph with chromatic number at least 6 admits a distin-
guishing (2,2)-labelling.

Proof. The proof starts similarly as that of Theorem 3.2. Again, we can assume G is
a claw-free graph with chromatic number at least 6. We again start from two maximal
independent sets Dj and Ds, chosen consecutively, and define H as G[D; U Dy]. For the
current proof, we classify the connected components of H into three groups. That is, a
connected component H € H is empty if it contains no edges, bad if it consists of one
edge only, and nice otherwise, i.e., if it contains at least two edges. Since all vertices in
V(G) \ D1 have at least one neighbour in D1, note that if H is empty, then its only vertex
belongs to Di. Meanwhile, if H is bad, then it consists of one vertex in Dy and one in Ds.
Before going on, we need to add a last constraint on the choice of D; and Dy. Namely,
among all possible choices as Dy and D, we choose one that minimises the number of empty
connected components in H. Under this hypothesis, we derive the following property:

Claim 4.3. Ifu e V(G)\ (D1UD3) is adjacent to an isolated vertex vy € Dy, then u must
be adjacent to two vertices v{ € Dy and vy € Dy such that ’Ui?)g is an edge of H.

Proof of the claim. Assume u € V(G) ~ (D1 U Dy) is adjacent to some vy € Dy that forms
an empty connected component of H. Let v € Dy be any neighbour of u. If v; is the only
neighbour of u in D1, then note that, due to the edge uvs, by removing v; from D; and
adding u to D, we would end up with two new independent sets as D; and Dy inducing
one less empty connected component in H, a contradiction to our choice of Dy and Ds.
So, v1 cannot be the only neighbour of u in D;y. Let thus v] € D be another neighbour
of u. Now, since D; is independent, and v; is isolated in H, the fact that G is claw-free
implies that vjve must be an edge of H. o

As in the proof of Theorem 3.2, we also partition V(G) \ (D1 u D3) into Vy, V4, and V;
forming a balanced tripartition of G—D; —Ds. We also reuse the notions of inner, upward,
forward, and backward edges.

The distinguishing (2,2)-labelling of G we construct below will again be obtained
through four main labelling steps, followed to produce a labelling which is very reminis-
cent to that we aimed a producing in the proof of Theorem 3.2. The structure of claw-free
graphs is less permissive than that of 2Ks-free graphs however, so, in several occasions,
our distinguishing and labelling rules will have to be tweaked by a bit.

In particular, the most troublesome point is the possible presence, in H, of bad con-
nected components. Note indeed that if viv9 is a bad connected component, then the fact
that v; and v9 are eventually distinguished does not rely at all on the choice of the label
assigned to vivs. This means that, throughout the proof, whenever labelling an upward
edge uv; (with u e VpuViuVs and i € {1,2}), we have to wonder whether assigning a certain
label to wv; might result in v; and vy being impossible to distinguish later on. To guaran-
tee v1 and vy can be distinguished, we will, here, sometimes have to assign blue labels to
upward edges. One problem, however, is that blue sums, in the proof of Theorem 3.2, were

17

the main way to guarantee that vertices in D; U Dy can be distinguished from vertices in
Vo u Vi u Vs, To counter this, we will need to guarantee that vertices in Vp u V3 U Vs have
“large” blue sums, while those in D; u Dy have “small’ blue sums.

With respect to these considerations, we introduce a bit more terminology for the bad
connected components. Let H = vivs be a bad connected component of H. At any time
of our labelling steps below, we say that H is tamed if exactly one of v; and wvs is incident
to an edge assigned blue label 1, while it is wild otherwise. The point is that, once H
gets tamed, then v; and ve will necessarily be distinguishable at any time as long as all
of their other incident edges are assigned red labels. Now, if H is an untamed connected
component of H, then H is said dangerous if, omitting vyve, all edges incident to vy and vy
that remain to be labelled are incident to the same vertex u € Vou Vi uVs. Those conditions
mean that all upward edges incident to vy and ve have been labelled, except for at most
two of them, being incident to u. So, the task of making sure v; and wve are distinguished
will need to be handled when labelling the upward edges incident to wu.

Step 1: Labelling the inner, upward, and forward edges incident to V.

In this step, we perform the following steps:

1. We start by assigning blue label 2 to all inner edges incident to vertices of V.

2. We next consider every vertex u € Vj in turn, and assign a label to all its incident
upward edges in the following way. Recall that, because G is claw-free, the upward
edges incident to u go to at most two connected components of H.

e Assume all upward edges incident to w go to only one connected component
H e H. Since u is incident to at least two upward edges, H cannot be empty.

— Assume H is bad and wild. Then w is incident to exactly two upward edges
uvy and uve, where H = vivg. Here, we assign red label 1 to uv; and blue
label 1 to uvg, thereby taming H.

— Assume H is nice or tamed. Let uv be any upward edge incident to H.
We here assign red label 1 to uv, and red label 2 to all other upward edges
incident to u.

e Assume now all upward edges incident to v go to two connected components

Hy,Hy eH.

— If, say, Hy is empty, then, by Claim 4.3, it cannot be that Hs is also empty.
Denote by v the unique vertex of Hy. If Hs is nice or tamed, then we assign
red label 1 to uv and red label 2 to all upward edges incident to u going to
Hjy. Otherwise, Hs is wild, in which case we assign red label 1 to uv, blue
label 1 to any one upward edge incident to u going to Hy (taming Hs), and
red label 2 to the other upward edge to Hs (which exists by Claim 4.3).

— If Hy; and Hs are both nice or tamed, then we assign red label 1 to any one
upward edge incident to u going to H; or Ho, and red label 2 to all others.

— If Hy is wild and Hs is nice or tamed, then we assign blue label 1 to any
upward edge incident to u going to H; (thereby taming Hy), red label 1 to
any upward edge going to Hs, and red label 2 to all other upward edges.

— If H; and Hy are both wild, then we claim they cannot be both dangerous.
Indeed, let z € V1 be any neighbour of u. Since G is claw-free, note that a
neighbour of w in Hy, one in Hy, and x must be joined by an edge, which

18

would contradict the fact that H; and Hy are bad and dangerous. Thus, we
may assume, w.l.o.g., that Hy is not dangerous. Then we assign red label 1
to an upward edge incident to u going to Hi, blue label 1 to any upward
edge going to Hs (taming Hs), and red label 2 to all other upward edges.

As a result, note that, after any of the cases above, o,(u) is necessarily odd. Also,
the only situations where a wild connected component adjacent to u was not tamed,
are when that connected component is not dangerous, because it is adjacent to a
vertex in V7. For every tamed connected component of H, note that only one of its
two vertices is incident to an upward edge assigned a blue label, with value 1.

3. Last, let uq,...,u, be an ordering over the vertices of V{ in increasing order over their
degrees (in V), and consider the u;’s one by one in order. For every u; considered
that way, denote by w;,,...,u;, the d > 0 neighbours of u; in Vy that precede u; in
the ordering. If d = 0, then assign blue label 2 to all edges incident to w; going to
V1. Now, if d > 1, then recall that w; is incident to dy, (u;) > d edges going to V;. By
assign red label 2 to none, one, two, etc., or all of these edges, and blue label 2 to
all others, we can increase the red sum of u; by any amount in {0,2,...,2dy, (u;)},
which is a set of at least d + 1 elements. There is thus a way to assign red label 2 to
at most d edges incident to u; going to Vi, and blue label 2 to the rest, so that the
red sum of w; is different from the red sums of w;,,...,u;,.

Once the labelling process above is achieved, note that all vertices of Vj have their red
sum being odd, while every two adjacent vertices of V{y are distinguished by their red sums.
Also, every vertex of V) has blue sum at least 2, due either to an incident inner edge, or
to an incident forward edge. The only edges incident to the vertices of Vf that are not
labelled yet are backward edges, which will be assigned blue labels during a later step.
Also, all forward edges incident to the vertices in Vy were labelled, assigned red label 2 or
blue label 2. Finally, recall that we tamed the bad connected components of H whenever
possible (as described above).

In later Step 3, the forward edges incident to the vertices in V5 (thus going to Vp) will
all be assigned blue labels. Thus, already at this point, we can predict that, in most cases,
actually the vertices of V{; will have blue sum at least 3. There are a few peculiar cases,
however, where this could not be the case, which might cause eventual problems. For this
reason, we need, right away, to possibly modify the current labelling a bit, to guarantee
the vertices of V| will eventually either have odd red sum and blue sum at least 3, or verify
other colour conditions.

Since we have assigned blue label 2 to all inner edges incident to the vertices in Vj,
any vertex of Vy has blue sum at least 4 provided it is incident to at least two inner edges.
Likewise, since, in Step 3, all backward edges incident to the vertices of V4 will be assigned
blue labels, any vertex of V4 will have blue sum at least 3 provided it is incident to at least
one inner edge and at least one backward edge. Furthermore:

o If a vertex u € Vj is incident to no inner edge (so, dy;, (u) = 0), then, since we assigned
blue label 2 to all forward edges incident to u, eventually we will have o},(u) > 3 as
soon as u is incident to at least two forward edges, or to only one forward edge and
at least one backward edge. Similarly, we will have oy, (u) > 3 if we assigned a blue
label to any upward edge incident to wu.

e Consider now the case of a vertex u € Vp incident to a single inner edge (so, dy, (u) =
1). Again, eventually oy, (u) will be achieved, provided w is incident to at least

19

one backward edge. Recall also that, in the third step above (when we labelled all
forward edges), we considered the vertices with the lowest degrees first, and, through
the procedure, we did our best to assign blue label 2 to the forward edges as much
as possible. In particular, the only reason why we were perhaps not able to assign
blue label 2 to any of the forward edges incident to wu, is because w is incident to only
one forward edge, and the only neighbour u' € Vj of u in Vj was treated earlier in
the process, and thus also verifies dy; (u’) = 1. In that case, however, a forward edge
incident to u' must have been assigned blue label 2, and thus eventually we will have
Jb(u,) >4.

So, the vertices u of V{ for which we might end up with o1,(u) = 2 are those with:
o dy,(u) =dy,(u) =0 and dy; (u) = 1.

e dy,(u) =0 and dy,(u) = dy, (u) = 1, and the unique neighbour ' of u in Vj verifies
dy,(u") =1 and op(u') > 4.

We now perform label modifications around any such u. So, u is incident to no backward
edge, to exactly one forward edge, and to at most one inner edge (which is assigned blue
label 2). We unlabel all upward and forward edges incident to u. Then, the red sum of u
becomes precisely 0. We relabel all these edges in the following way:

e Assume the upward edges incident to u go to only one connected component H of
‘H. Then, H is not empty. If H is nice or tamed, then we assign red label 2 to all
but at most two upward edges incident to u, assign red label 1 or red label 2 to the
remaining two edges so that the red sum of u becomes congruent to 2 modulo 4, and
finally assign blue label 2 to the only forward edge incident to u. Now, if H is wild,
then we assign blue label 1 to any upward edge incident to u (so that we tame H),
red label 2 to the second upward edge going to H, and blue label 2 to the forward
edge incident to u.

e Now assume the upward edges go to two connected components Hy, Ho € H.

— If Hy is empty, then Hs is not empty, and w is incident to at least two upward
edges going to Hy. If Hy is wild, then we start by assigning blue label 1 to any
upward edge incident to u going to Hy (so that Hj is tamed). There now remain
at least two upward edges to be labelled. By assigning red labels to them, we
can make sure the red sum of v becomes congruent to 2 modulo 4. Eventually,
we assign blue label 2 to the forward edge incident to u. Now, if Hs is nice, then
we assign red labels to the at least three upward edges incident to u so that its
red sum, again, becomes congruent to 2 modulo 4, before assigning blue label 2
to the forward edge incident to wu.

— If Hy and H, are both nice, then we assign red labels to the upward edges
incident to u so that its red sum becomes congruent to 2 modulo 4, before
assigning blue label 2 to its incident forward edge.

— If, say, Hy is wild while H» is nice or tamed, then we assign blue label 1 to any
upward edge going to Hjp, so that H; is tamed. There now remains at least
one upward edge to be labelled. Since, currently, the red sum of u is 0, we can
assign red labels to these edges so that the red sum of u becomes congruent to
2 modulo 4. Lastly, we assign blue label 2 to the forward edge incident to wu.

20

— If Hy and Hs are both wild, then, because u has a neighbour in Vi, it cannot
be, since G is claw-free, that they are actually dangerous. Assume w.l.o.g. that
H; is not dangerous. We assign blue label 1 to any upward edge incident to u
going to Hs, thereby taming Hs. Now, we assign red labels to the other upward
edges so that the red sum of u becomes congruent to 2 modulo 4. Then, we
assign blue label 2 to the forward edge incident to wu.

In all cases, note that we end up with o,(u) =2 mod 4 and op(u) > 2. Meanwhile, the
other vertices of V[, to which the extra care above was not applied, still have odd red sum
and blue sum at least 3. Furthermore, we still have that all edges joining vertices of Vj
and V] are assigned red label 2 or blue label 2.

Step 2: Labelling the inner, upward, and forward edges incident to V;.

We now deal with the vertices in Vi, which we do as follows. Consider every connected
component C' of G[V;] in turn. Let r be a vertex of maximum degree in C, i.e., with de(r)
as large as possible. Now let T be any spanning tree of C having r as its root. This define
a natural orientation of 7', from which we can infer notions of vertices being more or less
deep in T, w.r.t. r. In particular, any edge uu' € T, assuming u is closer to r than u’ is,
is a parent edge incident to u’, and a child edge incident to u. Note that r is incident to
no parent edge, the leaves of T' are incident to no child edges, while every other vertex is
incident to exactly one parent edge and at least one child edge.

We now label edges incident to the vertices in C as follows:

1. We start by assigning blue label 2 to all edges of E(C) ~ E(T).

2. We now consider the vertices of C' one by one, considering them according to their
decreasing distance to r in T. Whenever considering a vertex w this way, we will label
its incident parent edge (if it exists) and its incident upward edges. This way, note
that, whenever considering a new u € V' (C'), all its child edges can be assumed to be
labelled. Also, through what follows we will always assign a blue label or red label 2
to any incident parent edge. Since all edges joining vertices in Vg and V; have been
assigned blue labels and red label 2, this implies that, when starting considering a
new u € V(C), currently its red sum can be assumed to be even.

We consider two main cases, treating r in a particular way. Note that it is possible
that C consists of r only, and thus that r is a root with no neighbours.

e Assume we are currently considering a non-root vertex u € V(C'). As mentioned
earlier, the only edge of C incident to u that remains to be labelled it the parent
edge uu’. Also, currently, oy (u) =0 mod 2. Since G is claw-free, recall that the
upward edges incident to u go to at most two connected components of H.

— Assume first all upward edges incident to u go to a single connected com-
ponent H of H. Then H cannot be empty, since u is incident to at least
two upward edges.

x If H is bad and wild, then H = v1vy with uv; and uwve being the exact
two upward edges incident to u. If o, (u) = 0 mod 4, then we assign red 2
to uvy and wu', and blue label 1 to uvy (thereby taming H). Otherwise,
i.e., if oy(u) =2 mod 4, then we assign blue label 1 to uv, (taming H),
red label 2 to uwvs, and blue label 2 to uu/'.

21

x Otherwise, H is nice or tamed. Here, we assign red label 2 to all upward
edges incident to u but at most two of them, to which we both assign
either red label 1 or red label 2, so that the red sum of u becomes a
multiple of 4. We then assign blue label 2 to uu'.

— Now assume the upward edges incident to u go to two connected components
H 1, H 92 € H.

x Again, if, say, Hy is empty, then Hs cannot be empty by Claim 4.3.
If Hs is nice or tamed, then we assign red label 2 to all upward edges
incident to u but at most two of them, to which we both assign either
red label 1 or red label 2 so that the red sum of u becomes a multiple
of 4, before assigning blue label 2 to uu'. Otherwise, if H is wild, then
we assign blue label 1 to any upward edges incident to u going to Ha,
so that Hs is tamed. Now, recall that, by Claim 4.3, there must remain
at least two upward edges incident to u to be labelled, and thus we can
proceed as previously to reach the same conclusions.

x If H; and Hs are both nice or tamed, then we assign red label 2 to all
upward edges incident to u but at most two of them, to which we both
assign either red label 1 or red label 2 so that the red sum of u becomes
a multiple of 4. We then assign blue label 2 to uu’.

x If, say, Hy is wild while Hj is nice or tamed, then we assign blue label 1
to any upward edge incident to u going to H; (so that Hj is currently
tamed). If there remain at least two upward edges incident to u to be
labelled, then, as previously, we assign red label 1 or 2 to these edges
so that the red sum of u becomes a multiple of 4, before assigning blue
label 2 to wu'. Otherwise, only one upward edge uv (with v € V(Hy))
remains to be labelled, which means that H; is actually dangerous, and
that there is only one upward edge uv’ incident to u going to Hp. If,
currently, we have o,(u) = 2 mod 4, then we assign red label 2 to uv,
and blue label 2 to uu’. Otherwise, o,(u) =0 mod 4. If changing to red
label 2 the label assigned to uv’ does not create any conflict between
the two vertices of Hi, then we also assign red label 2 to uwv, and blue
label 2 to uu’. Otherwise, if changing to red label 2 the label assigned
to uv’ creates a conflict between the two vertices of Hy, then we assign
red label 1 to wv’ and wv, and red label 2 to uu'.

x If Hi and Ho are both wild, then, just as in the previous case, due to
the existence of a forward edge incident to u, we deduce that at least
one of Hy and Hs must be not dangerous. Assume w.l.o.g. that H;
is not dangerous. We start by assigning blue label 1 to any upward
edge incident to u going to Hs, so that Hs is tamed. Again, if there
remain at least two upward edges incident to u to be labelled, then, by
assigning red labels to these edges, we can make sure the red sum of
u becomes a multiple of 4, before eventually assigning blue label 2 to
wu’. Otherwise, u is incident to exactly two upward edges uv and uv’,
with v € V(H;) and v’ € V(Hy) and thus Hs is dangerous). Depending
on whether o,(u) =0 mod 4 or o;(u) =2 mod 4, just as in the previous
case, we can, if needed, change the label assigned to uv’, before labelling
wv and wu’, so that the red sum of u becomes a multiple of 4, there is
no conflict between the vertices of Hs, and uu’ is assigned either blue
label 2 or red label 2.

22

In all cases above, note that we, after treating u, we get o.(u) = 0 mod 4, and
also op(u) > 1. Also, the parent edge incident to u is always assigned blue
label 2 or red label 2. Finally, the only situation where we did not tame a bad
component adjacent to u, is when that bad component was not dangerous yet
(because it is adjacent to a vertex in V), or because it was dangerous but we
managed to assign a red label to an incident upward edge without creating any
conflict between its two vertices.

Now consider the case where u = r. Due to the order in which we considered the
vertices of C, we have that all edges incident to u in C' are currently labelled,
with blue label 2 or red label 2, which is also the case for the edges joining
vertices of Vy and V7. So, o,(u) is currently even.

So, we focus on labelling the upward edges incident to u. Recall that they go to
at most two connected components of H. Note that, below, we mark with some
W ”

*” symbols two technical places of the proof for which extra explanations are
needed. These places are discussed right after the case distinction.

— Assume first all upward edges incident to u go to exactly one connected
component H of H. Then, H cannot be empty by Claim 4.3.

x If H is bad and wild, then H = v1ve and uwv; and wwve are the exact
two upward edges incident to u. If H is not dangerous, then we assign
red label 1 or red label 2 to both uwvy and uwvs, so that the red sum of
u becomes a multiple of 4. Now assume H is dangerous. If o,(u) =
2 mod 4, then we assign blue label 1 to uv; (thereby taming H) and red
label 2 to uvy. Now, if oy(u) = 0 mod 4, then we assign blue label 1 to
uv1 and blue label 2 to uwvg.*

*x Otherwise, H is tamed or nice. Here, we assign red label 2 to all but at
most two upward edges incident to u, to both of which we either assign
red label 1, or assign red label 2, so that the red sum of u becomes a
multiple of 4.

— Assume second that the upward edges incident to u go to two connected
components Hy, Hy € H.

x If Hy is empty, then, by Claim 4.3, Hs cannot be empty and w is incident
to at least two upward edges going to Hs. If Ho is nice or tamed, then we
first assign red label 2 to all but at most two upward edges incident to u.
To the remaining two upward edges, we then either assign red label 1,
or assign red label 2, so that the red sum of u becomes a multiple of 4.
Now, consider the case where Hs is wild. Here, we assign blue label 1
to an upward edge going to Hs (so that Hs is tamed), before assigning
red labels to the remaining ones so that the red sum of u becomes a
multiple of 4. This is indeed possible, since there are two such edges.

x If Hy and Hs are both nice or tamed, then we assign red label 2 to all
upward edges incident to u but at most two of them, to which both we
assign red label 1 or red label 2 so that o,(u) becomes a multiple of 4.

* Assume here that, say, H; is wild and Hs is nice or tamed. If w is
incident to at least three upward edges, then we assign blue label 1 to
any edge going to H; (thereby taming H;), before assigning red labels to
the remaining upward edges so that the red sum of u becomes a multiple
of 4. Now, assume w is incident to only one upward edge uv;, going to
Hi, and only one upward edge uve going to Hy. If op(u) = 2 mod 4,

23

then we assign blue label 1 to uv; (so that H; is tamed) and red label 2
to uvy. Lastly, suppose o,(u) = 0 mod 4. If we cannot assign red label 2
to uvy (which would allow us to also assign red label 2 to uvs), then it
means that H; is dangerous. Regarding vo, since G is claw-free and Hy
is thus a path or a cycle, it must be that dg,(v2) = 1 (as otherwise u
would be adjacent to another vertex of Hs, and there would be at least
three upward edges incident to u, a case we handled earlier). In this
case, we assign blue label 1 to both wv; (taming Hj) and uvge.x*

x If H; and Hs are both wild, then, again, because G is claw-free and u
has at least one neighbour in V5, we deduce that H; and H, cannot both
be dangerous. Assume H; is not dangerous. We start by assigning blue
label 1 to an upward edge uv’ incident to u going to Hs, so that Hs is
tamed. If there remain at least two upward edges to be labelled, then,
once more, by assigning red labels to these edges we can make sure the
red sum of u becomes a multiple of 4. Otherwise, there remains only
one such edge uv, going to Hy. If o,(u) =2 mod 4, then we assign red
label 2 to uv. Otherwise, we have o.(u) = 0 mod 4, in which case we
assign blue label 1 to uwv, thereby taming Hj.

In all these cases, we, again, always end up with o.(u) = 0 mod 4. Note that, this
time, there are cases where we end up with o,(u) = 0. We also need to discuss
technical points related to the places we marked with stars.

*

**

This place of the proof is the only one where we label an upward edge with blue
label 2. This upward edge assigned label 2 goes to a wild connected component
H = vive of H that is dangerous. This means that, later on in the process, no
further upward edge going to H can be considered, and thus that the blue sums
of v1 and v, provided we eventually assign a red label to vive, will remain 1
and 2 (thus distinguishing these two vertices).

This place of the proof is the only one where an upward edge uv going to a nice
or tamed connected component H is assigned a blue label (with value 1). Recall
that we must have dg(v) = 1.

— If H is nice, then note that this place of the proof is actually the only
one where an upward edge incident to v can be assigned a blue label, with
value 1. More precisely, an upward edge uv is assigned blue label 1 only if u
is the root we have chosen for some connected component of G[V;], and v is
the only neighbour of u in H. This means that v cannot be incident to two
such edges, as otherwise there would be two vertices u and v’ belonging to
distinct connected components of G[V;] sharing v as a common neighbour,
which is not possible as, because G is claw-free, we would deduce either that
uw and u’ are adjacent (thereby being part of a single connected component
of G[V1]), or that one of u and u' is also adjacent to the unique neighbour
of v in H. This means that v, throughout Step 2, must remain of blue sum
at most 1.

— If H is tamed, then a technical point is that v might be incident to the
edge assigned a blue label that permitted to tame H in the first place. In
particular, note that it is possible that H was tamed during Step 1. In such
a case, by the same arguments as above, we deduce that, during Step 2, at
most one root vertex can be incident to an upward edge going to v to which

24

we assigned blue label 1. This means that, all along Step 2, v must remain
of blue sum at most 2.

3. Last, we consider the vertices of C' one by one, following any ordering u1, . .., u, where
uy =r (that is, we consider r first). For every u; considered that way, let w;,, ..., u;,
denote the d > 0 neighbours of u; in C that have already been treated. If d = 0, then
we assign label 2 to all forward edges (going to V5) incident to u;. Otherwise, u; is
incident to dy, (u;) > d forward edges, and by assigning blue labels to these edges we
can increase the blue sum of u; by any amount in {dy,(w;),...,2dy,(u;)}, a set of
dy,(u;) +1>d+1 values. So we can assign blue labels to the forward edges incident
to u; so that its eventual blue sum is different from those of u;,,...,u;,. We do this
so that the blue sum of u; is always as large as possible.

Once every vertex u of V7 has been treated that way, note that it must verify o (u) =
0 mod 4. We claim it must also verify oy,(u) > 2. Indeed, if dy, (u) = 0, then all forward
edges of u are assigned blue label 2, and the claim holds. Otherwise, if dy, (u) > 1, then
either u is not the root of C, in which case, as mentioned earlier, at least one upward
edge or inner edge incident to u is assigned a blue label, which, together with an incident
forward edge, yields op,(u) > 2; or u is the root of C, in which case we treated r first in
the third step above, which means, since we maximised the resulting blue sums, that all
its incident forward edges are assigned blue label 2, yielding oy,(u) > 2.

Note also that all edges joining vertices of Vi and V5 have been assigned blue labels.
Also, as pointed out earlier, the only vertices v of H that currently have non-zero blue sum
verify op(v) < 2. Also, denoting H € H, we have dy(v) = 1.

Step 3: Labelling the inner, upward, and forward edges incident to V5.

Now, we deal with the vertices of V5. Recall that only the backward edges incident
to these vertices have been labelled at this point, and they were assigned blue labels. We
label their remaining incident edges in the following way.

1. We first assign blue label 2 to all inner edges incident to the vertices of V5.

2. Next, we consider every vertex u € Vo in turn, and label its incident upward edges.
Again, since G is claw-free, the upward edges incident to u go to at most two con-
nected components of H. Also, currently o,(u) = 0.

e Assume first all upward edges incident to u go to a single connected component
H of H. Again, H cannot be empty.

— If H is bad and wild, then w is incident to exactly two upward edges uwv;
and uve with H = v1vo. In this case, we assign blue label 1 to uv; and red
label 2 to uwvg, so that we get oy(u) =2 mod 4, and we tame H.

— Otherwise, i.e., H is nice or tamed, then we assign red label 2 to all upward
edges incident to uw but at most two of them, to both of which we assign
either red label 1 or red label 2 so that we get o,(u) =2 mod 4.

e Second, assume all upward edges incident to u go to two connected components
Hl, HQ eH.

— If Hy is empty, then, by Claim 4.3, Hs is not empty, and u is incident to
at least two upward edges going to Hs. If Ho is wild, then we assign blue
label 1 to any upward edge incident to u going to Hs, so that Hs is tamed;

25

there then remain at least two upward edges to be labelled, to which we
assign red labels so that we get o,(u) =2 mod 4. Otherwise, Hs is nice and
tamed, in which case we assign red label 2 to all but at most two upward
edges incident to u, to both of which we either assign red label 1 or red
label 2 so that we get oy(u) =2 mod 4.

— If Hy and H, are both nice or tamed, then we assign red label 2 to all but
at most two upward edges incident to u, to both of which we assign either
red label 1 or red label 2 so that we obtain o(u) =2 mod 4.

— If Hy is wild and Hs is nice or tamed, then we first assign blue label 1 to
any upward edge incident to u going to Hj (thereby taming Hp). There
then remain at least one upward edge to be labelled. If there is only one
such edge, then we assign red label 2 to it. Otherwise, we assign red label 2
to all but at most two remaining upward edges incident to u, to both of
which we either assign red label 1 or red label 2. In all cases, we obtain
or(u) =2 mod 4.

— Now assume both H; and Hs are wild, and let v be any vertex of H; adjacent
to u, and v’ be any vertex of Hy adjacent to u. We start by assigning blue
label 1 to both wv and wv’, thereby taming Hy; and Hs. If there remain
at least one upward edge incident to u to be labelled, then we assign red
labels to those edges so that we get o,(u) =2 mod 4. Otherwise, it means
that uv and wv’ are the only two upward edges incident to u, and thus that
H; and Hy are both dangerous. In that case, let us relabel both uv and
wv’ with red label 1. If this raises no conflicts, then we leave things as is,
and we get o,(u) =2 mod 4. Otherwise, if both v and v’ get in conflict with
their unique neighbour in H; and Hs, respectively, then we relabel uv with
blue label 1 and uv” with red label 2. This way, note that o,(u) =2 mod 4,
while v and v" are not involved in conflicts. Last, if, when having uv and
uv’ being assigned red label 1, only, say, v is in conflict with its neighbour
in Hy, then we relabel uv with red label 2 and wv” with blue label 1. We
then reach the same conclusions as in the previous case.

After performing this labelling step, we get oy(u) = 2mod 4 in all cases. All bad
connected components adjacent to w have been either tamed, or their incident edges
have been labelled so that its two adjacent vertices cannot be in conflict. Also, when
taming a wild connected component, we did so by assigning blue label 1 to an incident
edge.

3. Now, as previously, let ui,...,u, be an arbitrary ordering over the vertices of Vs,
and consider the u;’s one by one in any order. For every u; considered like this, let
Uiy, ..., Ui, be the d >0 neighbours of u; in V5 preceding u; in the ordering. If d = 0,
then assign blue label 2 to all forward edges incident to wu;, going to V3. Now, if
d > 1, then recall that wu; is incident to dy; (u;) > d forward edges. By assigning blue
labels to these edges, we can thus make the blue sum of u; increase by any amount
in {dy,(u),...,2dy,(u)}, thus in dy, +1 > d+ 1 possible ways. So we can assign blue
labels to the forward edges incident to u; so that the blue sum of u; is different from
the blue sums of u;,,...,u;,.

At this point of the proof, note that all edges incident to the vertices in Vj, Vi, and Vs
have been labelled. For all vertices u € Vj, we either have o;(u) = 1 mod 2 and op(u) > 3,
or oy(u) = 2mod4, op(u) > 2, and u is not adjacent to any vertex in Vo and has no

26

neighbour in Vy having its red sum verifying the same property. For all vertices u € V1, we
have oy(u) = 0mod 4 and oy,(u) > 2. For all vertices u € Va, we have o,(u) =2 mod 4 and
op(u) > 2. Furthermore, forward edges were labelled so that adjacent vertices with odd red
sum in V{ are distinguished w.r.t. their red sums, adjacent vertices in V; are distinguished
w.r.t. their blue sums, and similarly for adjacent vertices in V5. So, any two adjacent
vertices in Vyu Vq U Vy are distinguished by the current partial labelling.

Now, regarding any connected component H € H, in general its vertices should have
blue sum zero. Precisely, the only vertices v € V(H) with oy, (v) > 0 verify o (v) < 2. Those
with oy, (v) = 2 verify di(v) = 1. The typical cases in which this occurs, is when H is bad,
in which case its only two vertices have blue sum 1 and 2. Otherwise, if op(v) = 1, then
most of the times H is bad, in which case only one blue edge incident to the two vertices
of H is assigned blue label 1 (in order to tame H). It is also possible to have o,(v) = 1
when H is a path of length at least 2, in which cases v must be an end of that path.

Step 4: Labelling the edges of H.

We now consider the edges of every connected component H € H. Recall that H can
be of three main types, which we treat as follows:

e If H is bad, then H has only one edge vive. By how we labelled the upward edges
through Steps 1 to 3, recall that vive are already distinguished, by either their red
sums or by their blue sums. In particular, if we do not have oy,(v1) = o,(v2) = 0, then
vy and vg cannot have the same blue sum. Also, we have o1,(v1), 01 (v2) < 2, while,
in Vj, all vertices u with o,(u) =1 mod 2 verify op(u) > 3. Also, all other vertices u
in VouVyuVs verify op(u) > 2.

By all these arguments, it can be noted that, by assigning a red label to vivs so that,
assuming op,(v1) > o, (v2), we get or(v1) = 1 mod 2, then we cannot get any conflict
involving a vertex of H and one of Vyu Vj u V5.

e If H is a path py...p, of length k-1 at least 2, then recall that oy (p1),0n(pr) <1
while oy,(p2) = op(pg-1) = 0, while op(u) > 2 for every u € Vo u Vi u Vs, So, upon
assigning only red labels to the edges of H, we cannot get a conflict between vertices
of H and vertices in Vyu V3 u Vs, Now, by Lemma 2.3 or 2.4, we can assign red labels
to the edges of H so that its adjacent vertices, when taking into account how we
labelled the upward edges, are distinguished by their red sums.

o If H is a cycle vy...v,v; of even length, then recall that oy,(v;) = 0 for every i €
{1,...,k}, while, again, o},(u) > 2 for every u € Vy uVj uVs. So, provided we assign
blue label 1 to edges forming a matching of H and red labels to the red, we cannot
get conflicts involving vertices of H and vertices of Vo u V3 uV,. Here, Lemma 2.5
tells us we can label the edges of H this way, so that any two of its adjacent vertices
are distinguished.

By all these arguments, we end up with a distinguishing (2, 2)-labelling of G. O

5. Conclusion

In this work, we proved the Weak (2,2)-Conjecture for 2Ks-free graphs and K 3-free
graphs, two classes of graphs for which the 1-2-3 Conjecture is not known to hold. Another
source of interest for those graphs is that they have unbounded chromatic number.

27

Proving the Weak (2,2)-Conjecture in full, or even the 1-2-3 Conjecture itself, would
of course be the main achievement that one could hope for in this field. Towards this,
one could also, for similar reasons as the ones which motivated us, first focus on proving
the Weak (2,2)-Conjecture for more classes of graphs, such as other graph classes defined
in terms of forbidden induced structures. As such, we believe it could be interesting to
wonder about triangle-free graphs, or only graphs with large girth in general. Conversely,
one could wonder about graphs in which many short cycles are present, such as chordal
graphs. Another class of graphs could be e.g. that of P-free graphs (a.k.a. cographs).

References

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal, B.A. Reed. Vertex colouring edge parti-
tions. Journal of Combinatorial Theory, Series B, 94(2):237-244, 2005.

[2] A. Ahadi, A. Dehghan, M.-R. Sadeghi. Algorithmic complexity of proper labeling
problems. Theoretical Computer Science, 495:25-36, 2013.

[3] N. Alon. Combinatorial Nullstellensatz. Combinatorics, Probability and Computing,
8:7-29, 1999.

[4] O. Baudon, J. Bensmail, T. Davot, H. Hocquard, J. Przybylo, M. Senhaji, E. Sopena,
M. Wozniak. A general decomposition theory for the 1-2-3 Conjecture and locally

irregular decompositions. Discrete Mathematics and Theoretical Computer Science,
21(1), 2019, #2.

[5] O. Baudon, J. Bensmail, J. Przybylo, M. Wozniak. On decomposing regular graphs
into locally irregular subgraphs. Furopean Journal of Combinatorics, 49:90-104, 2015.

[6] J. Bensmail. On a graph labelling conjecture involving coloured labels. Discussiones
Mathematicae Graph Theory, in press.

[7] J.A. Gallian. A dynamic survey of graph labeling. Electronic Journal of Combinatorics,
#DS6, 2021.

[8] M. Kalkowski, M. Karoriski, F. Pfender. Vertex-coloring edge-weightings: towards the
1-2-3 Conjecture. Journal of Combinatorial Theory, Series B, 100:347-349, 2010.

[9] M. Karonski, T. Luczak, A. Thomason. Edge weights and vertex colours. Journal of
Combinatorial Theory, Series B, 91:151-157, 2004.

[10] B. Seamone. The 1-2-3 Conjecture and related problems: a survey. Preprint, 2012.
Available online at http://arxiv.org/abs/1211.5122.

[11] B. Vuckovi¢. Multi-set neighbor distinguishing 3-edge coloring. Discrete Mathematics,
341:820-824, 2018.

28

