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Abstract. In this study, a reconstruction procedure to infer full 3D instantaneous

velocity and pressure fields from sparse velocity measurements is proposed, here

focusing on the case of scattered data as provided by Particle Tracking Velocimetry

(PTV). A key characteristic of the present approach is that it only relies on single-

instant velocity measurements, and does not require any time-resolved or acceleration

information. It is based on a strong enforcement of the Navier-Stokes equations

where the partial time derivative of the velocity field, namely Eulerian acceleration, is

considered as a control vector to minimize the discrepancies between the single-instant

measurements and the reconstructed flow. Eulerian acceleration is thus a byproduct

of the present methodology in addition to the identification of the full velocity and

pressure fields. The reconstruction performances of the proposed Navier-Stokes-based

data-assimilation approach for single-instant velocity measurements (NS-DA-SIM) are

assessed using a numerical dataset for the 3D flow past a cylinder. Comparisons with

existing data assimilation methodologies allow to further illustrate the merits of the

present approach. The latter is finally applied to the instantaneous reconstruction of

an experimental air jet flow from volumetric PTV data, confirming its robustness and

high efficacy.

1. Introduction

Given the potential high complexity of flows in engineering applications, especially

in turbulent regimes, a large majority of the current well-established measurement

techniques in fluid mechanics are still characterized by the necessity of a trade-off

between spatial (and/or temporal) resolution, sampling, and accuracy. Emblematic

examples are volumetric particle-based velocimetry techniques, which have been the

subject of important research efforts in the past fifteen years. While tomographic

Particle Image Velocimetry (PIV) [1] can provide 3D velocity fields on Cartesian grids,

allowing a straightforward evaluation of velocity gradients and flow statistics, it is now



Dense flow reconstruction from single-instant velocity data 2

well-known that these fields oftentimes suffer a strong spatial filtering. This is due to

the seeding density that is lower in tomographic PIV than in planar PIV. On the other

hand, 3D Particle Tracking Velocimetry (PTV) can provide much more accurate velocity

estimations, with maximum reachable seeding densities that are comparable to that of

tomographic PIV (see, e.g., [2, 3]). This comes at the cost of obtaining a scattered

vector field that coincides with the particles’ positions; besides, the maximum possible

seeding density may still be too low for satisfactorily characterizing high-Reynolds-

number turbulent flows. It therefore appears difficult to obtain accurate, dense and

regularly sampled (in the spatial sense) instantaneous velocity fields from volumetric

optical velocimetry alone, not to mention the inference of other flow quantities such as

pressure [4].

In the present study, we are interested in obtaining a dense and full description of

the instantaneous flow observed here with 3D PTV, namely accurate but sparse velocity

measurements. While this aim may be achieved through many approaches, including

the use of advanced interpolation schemes or that of model-reduction techniques [5, 6],

or even recent machine learning methodologies [7, 8], we here investigate the use of

physical constraints/conservation laws to perform the reconstruction of the full flow.

Such an approach may thus be referred to as data assimilation [9]. Furthermore, we aim

to perform data assimilation relying on single-instant velocity measurements only, i.e.

without requiring the acquisition of time-resolved data. The proposed method is thus

suited to a large range of experiments, as it might be applied on PTV data obtained

with high as well as low frame rate laser and camera systems. Besides, although we

here demonstrate it in the context of volumetric PTV measurements, it could be as well

directly employed with other multi-point measurements.

In this context and in the case of incompressible flows, as will be considered here, a

first physical constraint to take into account may be the divergence-free character of the

velocity field. This flow property was exploited in many previous studies. Among others,

it was included in interpolation schemes (based on radial basis functions [10] or Kriging

[11]) so that the outcome is automatically divergence-free. This condition was also used

in variational approaches, where the flow reconstruction problem is formulated as the

minimization of a cost function that evaluates the discrepancies between measurements

and the reconstructed velocity field, the divergence-free condition being considered as

an equality constraint (see, e.g., [12]). Beyond velocity, methodologies to infer pressure

from single-instant PIV fields were proposed in [13, 14], where a Poisson problem for the

pressure field is solved. This problem is forced by the Lagrangian acceleration (velocity

material derivative) [4], which is determined in these studies through the advancement

over a short time interval of a vorticity field that is directly evaluated from the measured

velocity field, relying on the vorticity transport equation.

In order to further enhance the fidelity of the regularized flow and favor super-

resolution, one may consider the imposition of more sophisticated conservation laws,

namely the full (and coupled) unsteady Navier-Stokes equations. Based on the argument

that such a regularization could be implemented most straightforwardly in conjunction
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with time-resolved measurements, the use of the Navier-Stokes equations was mainly

investigated in this context. Among other approaches, they were employed in [15]

to fill gaps in PIV measurements, the measurements serving as unsteady boundary

conditions in this procedure. Various data assimilation techniques were also developed

to inject PTV measurements into Navier-Stokes simulations through a feedback term

in the momentum equation, ranging from simple state-observer/nudging schemes to

Kalman filter techniques [16]. Furthermore, variational methodologies were extended to

the use of the Navier-Stokes equations, either in their standard form or considering

variants of the vorticity equation. This was notably performed for PTV in the

approaches proposed in [17, 18, 19], which rely on both velocity and Lagrangian

acceleration data, therefore requiring time-resolved measurements. Furthermore, while

the latter techniques may provide satisfactory estimations of velocity and pressure

fields, they involve cost functions that include multiple data and penalization terms,

whose respective weights may not be straightforward to prescribe. This may be at

least partially alleviated through a strong enforcement of the unsteady Navier-Stokes

equations, generally relying on measurement data at multiple instants within a given

time horizon, as performed in [20, 21, 22, 12, 23] for PIV measurements and in [24] in

the case of PTV. This approach possibly corresponds to the most elaborate and rigorous

variational data assimilation methodology for unsteady measurements, the consideration

of single-instant measurements only in this framework having been investigated in [25],

and will be here revisited for comparisons with the proposed methodology in this

study. However, unsteady variational data assimilation is challenging to implement,

as it requires solving the adjoint of the unsteady linearized Navier-Stokes equations,

which needs the storage or recomputation of the full history of the estimated flow

over the considered time window. Besides, maintaining the computational cost of

such an approach tractable would impose to consider a limited time-horizon, making it

then necessary to consider high frame rate measurements, which are not always easily

accessible in practice (hardware available, experimental conditions compatible with a

lower signal-to-noise ratio, sufficiently low flow frequencies, for example).

We here present a novel variational data assimilation methodology for instantaneous

3D flow reconstruction from single-instant scattered velocity measurements, as in PTV,

that does not require additional time-resolved information or Lagrangian acceleration

data. To avoid the difficulties and limitations in considering fully unsteady variational

data assimilation, we propose to use the time-independent (instead of unsteady) Navier-

Stokes equations as a numerical model. We will show that this somehow surprising choice

for the numerical operator does not prevent from reconstructing a flow snapshot since

the Eulerian acceleration, i.e. the partial time derivative of the velocity field, is treated

in the method as an unknown forcing in the momentum equation. It is then identified

to minimize a cost function that quantifies the discrepancies between the single-instant

velocity measurements and the reconstructed flow. While the proposed numerical model

is similar to that used in previous works on mean flow reconstruction [26, 27], the output

solution and the input forcing have different physical meanings in both methods. As
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stated above, they here represent the instantaneous flow and the Eulerian acceleration,

respectively, rather than the time-averaged flow and the Reynolds stresses in [26, 27].

Interestingly, we will show that, as Eulerian acceleration is a divergence-free quantity,

the proposed approach allows reconstructing the pressure field, without suffering from

the deficiency identified in [26, 27] for mean flow reconstruction. Compared to classical

unsteady variational approaches that require forward/backward time integration, a

benefit of the present method is that it only requires a steady adjoint model. We

will demonstrate, through both numerical and experimental test cases, that the

proposed Navier-Stokes-based Data-Assimilation approach for Single-Instant velocity

Measurements (NS-DA-SIM) enables faithfully reconstructing the full instantaneous

velocity along with providing as well the pressure and Eulerian acceleration fields,

which were not even accessible a priori at the measurement locations. Furthermore,

the scarcity of the velocity data is here tackled in the optimization procedure through

a H1-like regularization of the gradient of the cost function with respect to the control

vector (here the Eulerian acceleration) [28, 29, 30], instead of adding terms in the cost

function that would penalize its spatial gradients and introduce tunable parameters.

The smoothing scale that is involved in this regularization technique may be here

straightforwardly related to the average distance between neighboring measurements.

As such, and in conjunction with the strong enforcement of the Navier-Stokes equations,

the optimization problem in the proposed approach is free of any adjustable parameter,

thus fostering its application to a variety of configurations.

The paper is organized as follows. The proposed NS-DA-SIM methodology is first

described in §2. The generation of a first guess for the optimization procedure is detailed

in §3, along with the H1-like regularization of the gradient and numerical methods.

The approach is then assessed, first in §4 by relying on synthetic observations that

are extracted from the direct numerical simulation of the 3D flow past a cylinder at

Re = 300, and then in §5 by considering PTV measurements of an air jet flow at

Re = 4600 [3]. Finally, concluding remarks and perspectives are drawn in §6.

2. Navier-Stokes-based data assimilation of single-instant velocity

measurements (NS-DA-SIM)

2.1. Formulation of the NS-DA-SIM approach

We here investigate the reconstruction of incompressible Newtonian flows. All quantities

in this section and in the following are supposed already non-dimensionalized based on

reference velocity U , length scale D, and the fluid density ρ, which will be specified

for the considered flows in §4-§5. The velocity measurements which we consider in the

following correspond to a single-instant t = tm and are denoted by m(tm). We will here

particularly investigate the case of 3D scattered data as may be provided, e.g., through

3D PTV. In this context, m(tm) corresponds to a vector of size 3NPTV, with NPTV the
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number of 3D velocity vector data, and may be detailed as

m(tm) = (m1(tm)T,m2(tm)T, · · · ,mNPTV
(tm)T)T, (1)

with mi(tm) the i-th 3D velocity measurement at location xi (particle location in the

case of PTV). The density of the measurements will be here characterized by the mean

distance between neighboring measurement locations, d, so that dense measurements

correspond to low d and vice versa. In the case of PTV measurements, d thus identifies

with the mean inter-particle distance.

In the following, we aim to infer the full instantaneous flow field that is associated to

the measurements m(tm). The flow of interest is solution of the Navier-Stokes equations,

which may be written in the following non-dimensional form

∂u

∂t
+ (u · ∇)u−Re−1∆u +∇p = 0, ∇ · u = 0, (2)

where u and p are the velocity and pressure fields, respectively, Re = UD/ν is the

Reynolds number and ν the kinematic viscosity. We here thus aim to reconstruct u(tm)

and p(tm) from m(tm). Even if only single-instant measurements are supposed to be

available, one could consider directly relying on the unsteady Navier-Stokes equations

(2) to perform variational data assimilation (see Appendix A.2), as investigated in the

following (see §4.3). Instead, one may first write the momentum equation evaluated at

the measurement time tm according to(
(u · ∇)u−Re−1∆u +∇p

)
|tm = −∂u

∂t

∣∣∣
tm

= f(tm). (3)

The key proposal that underlies the present methodology is to adopt the viewpoint that

(3) forms steady equations. In this perspective, the opposite of the Eulerian acceleration
∂u
∂t
|tm is treated as a forcing f(tm) to these equations. Dropping the notation that all

quantities correspond to the measurement time tm for the sake of simplicity in the

following, (3) and the mass conservation equation may be rewritten in the following

compact form

N (q) = Pf , (4)

where q = (uT, p)T is the full flow field, or state-space vector, while the nonlinear

operator N and linear operator P are defined through

N (q) =

(
(u · ∇)u−Re−1∆u +∇p

−∇ · u

)
, P =

(
I
0

)
, (5)

where I is the identity matrix. The action of P thus makes the forcing f act on the

momentum equation only. A variational data assimilation procedure to reconstruct the

full flow from the single-instant velocity measurements m based on the imposition of

the steady Navier-Stokes equations (4) may be designed as follows. A fortiori in the

case of single-instant measurements, the Eulerian acceleration, and so f , is unknown.

Accordingly, it is here proposed to formulate the data assimilation problem as identifying

the forcing f that allows to minimize the discrepancies between the measurements m
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and the reconstructed velocity field u. The corresponding optimization problem, which

forms the core of the present NS-DA-SIM approach, may be written as

min
f

{
J =

1

2
‖m−Hu‖2

M

}
, N (q) = Pf , (6)

where H is a linear operator that maps the model space to the measurement one. In

the present case, if we assume the data (mi)i∈{1,2,···,NPTV} in (1) to correspond to strictly

pointwise measurements of the velocity field of interest, the application of H on the

velocity field u simply consists in evaluating the latter at the measurement locations

according to

Hu = (u(x1)T,u(x2)T, · · · ,u(xNPTV
)T)T. (7)

The norm used in the expression of the cost function J in (6) corresponds to the

Euclidean norm on R3NPTV , i.e. ‖m−Hu‖2
M =

∑NPTV

i=1 (mi − u(xi)) · (mi − u(xi)).

Before detailing how the equality-constrained minimization problem (6) is solved

in §2.2, two further comments may be made about the expression of the cost function

J . Firstly, measurement errors could be taken into account by replacing the standard

Euclidean norm with the definition ‖a‖2
M = aTCa, where a ∈ R3NPTV and C is

a symmetric 3NPTV × 3NPTV matrix which should correspond to the inverse of the

measurement error covariance matrix, assuming Gaussian statistics [9]. In the case of

uncorrelated, isotropic and homogeneous errors, C should reduce to C = cI with c

a positive real number. This would amount to multiply by c the present expression

of J , which should thus provide the same optimization results as with the present

formulation. However, in the case where finer information about measurement errors

are available, such information could thus be straightforwardly included in the present

approach. Secondly, as m here corresponds to scattered velocity measurements, one

might be surprised that the expression of J does not include any regularization/penalty

term on the forcing f . This point is in fact accounted for in a different manner here

and will be addressed in §3.2.

2.2. Adjoint-based optimization procedure

The equality-constrained minimization problem (6) in the present NS-DA-SIM approach

is solved following the adjoint approach [31, 9], which relies on the transformation of (6)

into an unconstrained optimization problem through the introduction of the following

Lagrangian

L = J −
〈
q†,N (q)−Pf

〉
Q , (8)

where q† = (u†T, p†)T is referred to as the adjoint state, while the involved scalar

product is defined as 〈a, b〉Q =
∫

Ω
a · b dΩ, where Ω is the flow domain and a and b are

two vectorial functions of space. In this framework, the solution of the minimization

problem should cancel the partial variations of L with respect to the direct state q, the

adjoint state q† and the forcing f . Cancelling variations with respect to q† gives back
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the steady Navier-Stokes equations (4). Cancelling variations with respect to q provides

the following linear problem for the adjoint state

N†q† = PH†(Hu−m), (9)

where the adjoint Navier-Stokes operator N† is defined as

N† =

(
◦ · (∇u)T − (u · ∇) ◦ −Re−1∆◦ −∇◦

∇ · ◦ 0

)
, (10)

while the right-hand-side involves the adjoint observation operator H† and may be

detailed as

H†(Hu−m) =

NPTV∑
i=1

δ(x− xi)(u(xi)−mi). (11)

The determination of the above expressions relies on the following definition of adjoint

operator: considering a linear operator F from vector space A to vector space B, its

adjoint operator F† verifies 〈b,Fa〉B =
〈
F†b,a

〉
A ∀a ∈ A,∀ b ∈ B. From solving the

adjoint problem (9), one may evaluate the partial derivative of L with respect to f , or

equivalently the total derivative of the cost function J with respect to f according to

dJ

df
= u†. (12)

More details about the above derivations may be found in [26, 32]. From these

expressions, one may employ an iterative gradient-based descent method to solve (6)

which may be summarized as follows:

(i) Start with a first guess for the forcing f . The generation of the latter is detailed

in §3.1.

(ii) Solve the steady Navier-Stokes equations (4) (see §2.3 and §3.3). This provides a

state q.

(iii) Solve the adjoint problem (9). This provides an adjoint state q†.

(iv) Compute the gradient dJ
df

according to (12). The latter is regularized following the

procedure in §3.2.

(v) Update f according to

f ← f + sd, (13)

where the descent direction d is computed from the gradient from previous step

based on the low-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method

[33], while the step size s is determined through the backtracking-Armijo line search

algorithm [34].

(vi) Return to step (ii) until convergence.

The output of the above procedure is thus full instantaneous velocity and pressure fields,

along with Eulerian acceleration through the optimal forcing f . The corresponding flow

will be referred to as the reconstructed flow in the following.
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2.3. On boundary conditions

While the computational domain and boundary conditions to solve (4) and (9) for the

considered flow configurations will be detailed in §4-§5, some general comments about

the latter are here provided. First concerning the computational domain, it may be

chosen indifferently to coincide or not with the measurement domain, which will be

confirmed in §4.4. Concerning boundary conditions, it may be worth noting that the

steady Navier-Stokes equations (4) are here solved in a fully coupled way, so that only

boundary conditions for the velocity field u are required and imposed. Boundaries may

be categorized in two groups: boundaries that correspond to easily identifiable boundary

conditions (e.g. no-slip conditions at solid surfaces or uniform inflow conditions), and

boundaries that do not. This latter situation may be encountered when, for example,

an inlet boundary intersects a fluctuating part of the flow. In this case, the Dirichlet

boundary condition u = uf is imposed, where uf refers to the first-guess velocity field

that is obtained in §3.1. The relevance of this choice will be confirmed by the quality of

the reconstruction results in §4-§5. Boundary conditions for the adjoint problem (9) are

derived from those imposed for the Navier-Stokes equations and from the integrations

by parts that are performed to get N† based on the definition of adjoint operator (see

§2.2). More details may be found in [26].

2.4. On pressure reconstruction

In this section, we discuss the ability of the present NS-DA-SIM methodology in

correctly reconstructing pressure from velocity measurements alone, in contrast with

other approaches. We first notice the similarities between the present methodology and

the procedure for mean flow reconstruction proposed in [26]. The same steady Navier-

Stokes equations (4) were solved in this work, and the data assimilation procedure also

consisted in optimizing a forcing in these equations. The key difference between the

present approach and [26] lies in the interpretation of the flow variables q and the

forcing f . In [26], q corresponded to mean-flow fields and f accounted for the opposite

of the divergence of the Reynolds-stress tensor −∇·R. In the present case, q thus refers

to instantaneous flow variables, while f should identify with −∂u
∂t

.

The difference in nature between ∇ · R and ∂u
∂t

is determinant in the ability of

data assimilation in correctly reconstructing the pressure field. Indeed, a variational

data assimilation procedure where the incompressible Navier-Stokes (or Stokes, see

Appendix A.1) equations are imposed can only reconstruct divergence-free forcings in

the momentum equation if only velocity measurements are available. This may be

inferred from (9)-(12), which show that∇· dJ
df

= ∇·u† = 0, which entails that the optimal

forcing obtained through the L-BFGS approach (see step (v) in §2.2) is divergence-free

[35]. ∇ · R is not a divergence-free vector, accordingly its Helmholtz decomposition

may be written as ∇ · R = f s +∇φ, where f s is the divergence-free component and φ

a (non-zero) potential. In the case of [26], only the component f s could therefore be

reconstructed. As a consequence, the data assimilation procedure could only give access
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to a pseudo-pressure field π = p + φ with the impossibility of distinguishing between

the true pressure p and the potential φ. In contrast, in the present case, the forcing f

has to account for −∂u
∂t

, which is a divergence-free quantity. This implies that the latter

may be reconstructed in its entirety and that the present NS-DA-SIM approach enables

unambiguous and accurate estimation of the pressure field from velocity measurements

alone, as confirmed in the following.

3. Implementation details

3.1. First-guess flow

The generation of a first guess for the forcing f (see step (i) in §2.2) is performed through

the three following steps which may be summarized as: computing a first guess for the

velocity field, then for the pressure field, and finally for the forcing f .

Firstly, a first guess for the velocity field u is computed from the measurements

m through a simple variational approach where we solely impose the divergence-

free character of u, while still enabling a prescribed degree of smoothness through

penalization of the velocity gradients, similarly as considered in, e.g., [12]. u is thus

sought as the solution of the following minimization problem

min
u

{
1

2
‖m−Hu‖2

M +
α

2
‖∇u‖2

Q

}
, ∇ · u = 0, (14)

where α is a tunable parameter. Relying on a Lagrangian formalism as exposed in §2.2,

an adjoint variable π, which may be physically interpreted as a pseudo-pressure field, is

introduced in association with the divergence-free condition. As (14) forms a quadratic

problem, its solution may be directly obtained through inverting the following linear

system (
−α∆ ◦+H†H◦ ∇◦
−∇ · ◦ 0

)(
u

π

)
=

(
H†m

0

)
. (15)

The Neumann condition ∇u · n = 0, where n refers to the normal unit vector to a

boundary, is imposed by default at boundaries, unless Dirichlet boundary conditions

are available. An appropriate value for the regularization parameter α is obtained

through the L-curve technique [36]. While such an approach requires several inversions

of (15) (typically ∼ 10), we emphasize that the associated computational cost remains

negligible compared to that of the whole optimization procedure in §2.2. Furthermore,

it was verified that finding a specific optimum value of α was not a strong necessity, as

reasonable variations in the smoothness of the first-guess flow do not appear to have a

significant influence on the reconstructed flow.

Secondly, a first guess for the pressure field p is evaluated. For this purpose, we

can not directly rely on the pseudo-pressure π that is given through solving (15). This

field is indeed highly unphysical (pointwise), which may be inferred through considering

that π is formally solution to the Poisson problem ∆π = −∇ · (H†(Hu −m)), whose

irregular right-hand-side is given through (11). Instead, we solve the Poisson problem
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for pressure ∆p = −∇· ((u ·∇)u) based on the velocity field obtained from the previous

step. The determination of appropriate boundary conditions for this Poisson problem

is known to be a delicate task [4], and as we assume to solely rely on the measurements

m, ∇p · n = 0 is imposed at all boundaries for the sake of simplicity, the pressure field

being automatically corrected during the data assimilation procedure.

Thirdly, based on the velocity and pressure fields from previous steps, the left-hand-

side of the momentum equation in (4)-(5) may be evaluated, which straightforwardly

provides a first guess for the forcing f .

In the following, the output of the above procedure will be referred to as the first-

guess flow.

3.2. Gradient regularization

As scattered pointwise/PTV measurements are here considered, regularization has to

be considered in the data assimilation procedure in order not to introduce spurious

discontinuities linked to the introduction of such pointwise information. A first known

strategy to address this aspect may be penalization (see, e.g., [35, 32]), namely adding

terms in the cost function J to minimize in (6) that would penalize the spatial gradient

(or higher-order derivatives) of the control vector f . As an alternative, we here consider

H1-like regularization of the gradient dJ
df

in (12) [28, 29, 30]. From such a gradient, a

regularized gradient dJH1

df
is obtained based on the definition∫

Ω

dJ

df
· f̃ dΩ =

1

1 + l2sob

∫
Ω

dJH1

df
· f̃ + l2sob∇

(
dJH1

df

)T

: ∇f̃

 dΩ, (16)

for all admissible f̃ . While the left-hand-side of (16) corresponds to a L2 scalar product

(which also corresponds to the definition of 〈◦, ◦〉Q in §2.2), its right-hand-side is close to

the definition of a H1 scalar product, where the parameter lsob allows to adjust the degree

of smoothness of dJH1

df
. When getting dJH1

df
based on (16), one may here want to preserve

the divergence-free character of the gradient, as f should account for a divergence-free

quantity (see §2.4). Accordingly, verifying (16) in conjunction with the imposition

of ∇ · dJH1

df
= 0 may be formulated as a standard equality-constrained quadratic-

programming problem not far from that in (14), and whose solution is provided through

the inversion of(
1

1+l2sob
(I− l2sob∆) ◦ ∇◦
−∇ · ◦ 0

)(
dJH1

df

π

)
=

(
dJ
df

0

)
, (17)

where, similarly as in (15), π is introduced to take into account the divergence-free

constraint. Boundary conditions are the same as for the adjoint velocity field u† when

solving the adjoint problem (9) (in virtue of (12), see also §2.3). It may be worth noting

that dJH1

df
remains a descent direction, as demonstrated in, e.g., [29], and is thus fully

adapted to solve the constrained optimization problem of our NS-DA-SIM method.
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Although such a regularization approach requires solving the supplementary

problem (17), one may identify at least two advantages compared to penalization

techniques. Firstly, the use of (17) ensures that the control vector is always updated in a

sufficiently smooth way at every iteration of the optimization procedure, thus favouring

the stability of the computations. This is not the case in the penalization approach,

which only enables the control vector to be smoothed out over the whole optimization

procedure. Secondly, the parameter lsob in (16)-(17) may be interpreted as a (non-

dimensional) filter length [28]. This allows to choose lsob based on physical arguments,

while parameters in penalization approaches are less straightforward to interpret and

tune, and usually require multiple optimizations to identify appropriate values. In the

present case, as gradient regularization is employed in order to tackle the sparsity of the

measurements, we choose lsob = d, where d is the mean distance between measurements,

as introduced in §2.1. The validity of this choice will be confirmed in §4-§5 through the

physically-sound character of the reconstruction results.

3.3. Discretization methods

Spatial discretization is performed based on the finite-element method as implemented

in the software FreeFEM++ [37]. To allow affordable computations in the NS-DA-SIM

methodology, piecewise-linear functions that are enriched by bubble functions are used

for the velocity space, while piecewise-linear functions are used for pressure [38]. Second-

order polynomials elements for the velocity space are exceptionally used when generating

the numerical reference flow in §4. Steady linear problems such as (9), (15) and (17)

are solved in a fully coupled way through a direct matrix inversion. The nonlinearity

of the steady Navier-Stokes equations (4) is handled through the Newton method. Still

for (4), in order to facilitate the consideration of relatively high-Reynolds number flows

such as in §5, streamline-upwind Petrov–Galerkin (SUPG) [39, 35] and grad-div [40]

stabilisations, along with pseudo-time stepping [41], are implemented. When considered

unsteady, in particular to generate the numerical reference flow in §4, the Navier-Stokes

equations (2) are solved based on a fractional step methodology [42]. Time integration is

performed in a fully implicit way based on a second-order finite-difference approximation

of the time derivative. Finally, while the adjoint problem (9) has been derived following

the continuous approach in §2.2 for the sake of simplicity, it is actually implemented

following the discrete adjoint approach [31]. The same numerical methods are employed

for the alternative data assimilation methodologies that are described in Appendix A.

4. Numerical case: flow around a cylinder at Re = 300

4.1. Case setup

The present NS-DA-SIM methodology is here applied to the reconstruction of the

numerical flow past a cylinder at Reynolds number Re = 300, based on the diameter of

the cylinder D and the uniform inlet velocity U , which are used to non-dimensionalize
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Figure 1: (a) Schematic of the computational domain for the 3D flow past a circular

cylinder at Re = 300. (b) 2D slice of the mesh, zoomed in the vicinity of the cylinder.

In both figures, dashed lines delineate the domain in which synthetic measurements are

extracted.

all quantities in this section. The flow configuration and computational domain are

depicted in figure 1a. Coordinates x, y and z denote the streamwise, cross-stream and

spanwise directions, respectively. The origin O of the frame lies at the center of the

cylinder, which corresponds to the mid point of its axis.

A reference direct numerical simulation (DNS) is first performed, where the distance

of the cylinder axis to the inlet, outlet and top and bottom boundaries are Li = 20,

Lo = 30 and Ly/2 = 20, respectively, while the extent of the computational domain in

the spanwise direction is Lz = 12, as in the DNS study in [43]. The uniform boundary

condition u = (u, v, w)T = (1, 0, 0)T is imposed at the inlet, (Re−1 ∂u
∂x
− p, ∂v

∂x
, ∂w
∂x

) = 0 is

used at the outlet, symmetry conditions (∂u
∂y
, v, ∂w

∂y
) = 0 are imposed at top and bottom

boundaries, the no-slip condition u = 0 is enforced at the cylinder, while periodic

boundary conditions are used at the transverse planes z = ±Lz/2. The 3D mesh is

obtained by extruding a 2D mesh in the transverse direction which is discretized with

90 planes, resulting in a 3D mesh that is formed of tetrahedra with a total of 3.9 · 106

vertices. The results obtained with the present discretization are very close to those

obtained in [43]; in particular, we here estimate the Strouhal number and average drag

coefficient over 500 convective times as St = 0.204 and Cd = 1.28, which correspond

to discrepancies of the order of 0.1% and less than 1%, respectively, with the highest-

resolution DNS results of [43].

The instantaneous flow is illustrated in figure 2 where isosurfaces of the streamwise

vorticity ωx = ∂w
∂y
− ∂v

∂z
are reported. This quantity enables to assess purely 3D effects

and the identification of so-called mode B structures, whose spanwise wavelength is

usually found between 0.8 and 1 [43, 44, 45]. Synthetic observations are extracted from

this instantaneous flow in the domain that is delineated by dashed lines in figures 1-2.

The distances of the cylinder axis to the boundaries of this measurement domain, as
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(a) (b)

Figure 2: Isosurfaces of streamwise vorticity ωx = ±0.5 for the reference instantaneous

DNS flow in (a) z-normal and (b) y-normal views. Dashed lines delineate the domain

in which synthetic measurements are extracted.

depicted in figure 1a, are li = 1.5, lo = 5.5 and ly/2 = 1.75, while the extent in the

spanwise direction is lz = 1 in order to include at least one whole mode B structure.

The present measurement domain thus extends both upstream and downstream of the

cylinder, which is not necessarily typical of actual experiments [46, 20, 24]. However,

this choice will allow us to illustrate the ability of the present NS-DA-SIM methodology

in reconstructing high-gradient regions and in providing aerodynamic efforts. This setup

will be rediscussed in the following. Measurement locations xi are randomly generated

in the measurement domain to match a prescribed mean distance d, which will be

varied in the following. Synthetic measurements m then correspond to the value of

the DNS velocity field at these locations. In the following, the aim of the NS-DA-SIM

methodology will thus be the reconstruction of the full instantaneous flow of figure 2 in

the measurement domain from these observations.

The computational domain that is employed for the NS-DA-SIM procedure is

similar to that for the above DNS, but restricting its spanwise extent to that of the

measurement domain, i.e. taking Lz = lz = 1. The corresponding 2D mesh that is

extruded in the spanwise direction to get the 3D mesh is illustrated in figure 1b. It

is mainly refined in the measurement domain, especially close to the cylinder, with

a density of vertices nearly identical to that of the mesh for the reference DNS. The

resulting 3D mesh is formed of tetrahedra with a total of 8.7 · 104 vertices. Imposed

boundary conditions are similar as described above, except at the transverse planes

z = ±Lz/2 = ±0.5 where the first-guess velocity field is imposed as Dirichlet condition

(see §2.3). This computational domain along with the measurement one will be varied

and restricted downstream of the cylinder to get closer to experimental conditions in

§4.4.

4.2. Reconstruction results

We first consider relying on relatively dense synthetic measurements m with mean

distance d = 0.08. This value coincides with one tenth of the lower-bound estimation

of the spanwise wavelength of mode B structures. The locations of these synthetic
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Figure 3: (a) Synthetic measurement locations in z-normal view for d = 0.08 colored by

the streamwise velocity u of the reference flow, in a −0.025 ≤ z ≤ 0.025 slice. (b) Cost

function J (normalized by its initial value J0) versus the iteration of the minimization

procedure in the NS-DA-SIM approach.

measurements are illustrated in figure 3a in z-normal view, restricting the shown

locations to −0.025 ≤ z ≤ 0.025. The convergence of the minimization procedure

in the NS-DA-SIM methodology is illustrated in figure 3b. It appears that the value

of the cost function J in (6) has been decreased by more than one order of magnitude

in 300 iterations. While this number of iterations has been considered in the present

case, as in the following ones, to ensure converged results, already satisfactory solutions

could be obtained through only ∼ 100 iterations. Figures 4-6 illustrate the estimation

of various flow quantities, comparing the reconstructed flow with the reference and first-

guess ones. In addition, figure 7 reports the following reconstruction relative error for

various quantities b

e(b) =

∫
Ωm

(br − b)2 dΩm∫
Ωm

br 2 dΩm

, (18)

where br and b refer to the reference and reconstructed fields, respectively, and Ωm is

the measurement domain. Errors are reported not only for the present case d = 0.08,

which is highlighted through vertical grey dotted lines, but also for other measurement

spatial samplings which will be discussed in the following. While this mean inter-

particle distance is here given in non-dimensional form (based on the cylinder diameter

D), it should be emphasized that the chosen values are fully in line with typical seeding

densities obtained in experiments. In particular, in the case of the jet experiment in

§5, a seeding density of 0.06 particles per pixel (ppp) corresponds to d = 0.06, and 0.02

ppp to d = 0.09.

It appears from figure 7a that the estimation of the velocity field for the first-

guess flow is already quite satisfactory, with e(u) = 4.5 · 10−3. This is due to the

relatively high density of the measurements with respect to flow structures of size ∼ 1

in this case. Still, this estimation is significantly further improved by the NS-DA-SIM
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Figure 4: Data assimilation with synthetic measurements corresponding to d = 0.08.

Left and right columns report the vorticity components ωz and ωx in the z = 0 plane,

respectively. Top to bottom rows report results for (a,b) the reference flow, (c,d)

the first-guess flow, and (e,f) the reconstructed flow from the NS-DA-SIM approach,

respectively.

approach (e(u) = 7.7 · 10−4). We directly illustrate the more challenging estimation of

the velocity gradients through the vorticity components ωz = ∂v
∂x
− ∂u

∂y
and ωx = ∂w

∂y
− ∂v

∂z

in figures 4 and 5. The reconstruction of the vorticity component ωz in the z = 0

plane is first considered through figures 4a, 4c and 4e. While the 2D features of the

vortex shedding are overall captured in the first-guess flow, the latter provides a crude

estimation of ωz close to the cylinder, in particular regarding the shear layers at the top

and bottom of the cylinder. The NS-DA-SIM approach enables a large enhancement in

the reconstructed ωz field, which appears very close to the true one. The reconstruction

of purely 3D flow features as quantified through the vorticity component ωx is illustrated

in figures 4b, 4d and 4f in the z = 0 plane, and in figure 5 in the y = 0.25 and y = 0.5

planes. The reference ωx field appears accurately captured in the reconstructed flow,

which is not as much the case for the first-guess one. Overall, as reported by figure 7b,

the NS-DA-SIM methodology has decreased by almost one order of magnitude the error

e(∇u) on the velocity gradients compared to the first-guess flow, from e(∇u) = 1.9·10−1
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Figure 5: Data assimilation with synthetic measurements corresponding to d = 0.08.

Left and right columns report the streamwise vorticity ωx in the y = 0.25 and y = 0.5

planes, respectively. Top to bottom rows report results for (a,b) the reference flow, (c,d)

the first-guess flow, and (e,f) the reconstructed flow from the NS-DA-SIM approach,

respectively.

to e(∇u) = 3.0 · 10−2.

The ability of the NS-DA-SIM approach in inferring other quantities such as the

pressure field, but also Eulerian acceleration, is investigated in figure 6 for the z = 0

plane. First concerning pressure (see figures 6a, 6c and 6e), the first-guess flow appears

to both underestimate the reference pressure upstream of the cylinder and overestimate

it in the wake. In contrast, the reconstructed pressure field appears very satisfactory

and close to the true one, with e(p) = 9.8 ·10−3 (while e(p) = 5.3 ·10−2 for the first-guess

flow). A valuable outcome of this accurate reconstruction of the pressure field along with

that of the velocity gradients is the good estimation of the instantaneous aerodynamic

coefficients with the NS-DA-SIM approach, as reported in figures 7e-7f, with remaining

discrepancies that are below 3% for both drag and lift coefficients.

The y-component of the Eulerian acceleration field ∂v
∂t

, which is particularly

considered as it takes the highest values in magnitude among the three components,

is illustrated in figures 6b, 6d and 6f. This field is thus estimated from the forcing f

according to ∂v
∂t

= −fy for the first-guess and reconstructed flows. The intensity of ∂v
∂t

appears significantly underestimated for the first-guess flow compared to the reference

one (e(∂u
∂t

) = 1.8 · 10−1). The estimation of the reconstructed flow is more satisfactory

(e(∂u
∂t

) = 9.2 · 10−2), even if remaining discrepancies are more visible than for other

quantities. The inspection of figures 7a-7d confirms that Eulerian acceleration is the

most difficult quantity to accurately reconstruct among the considered ones. The present

results appear reminiscent of the findings in [32], where it was noted in the context of

mean-flow reconstruction that significantly fewer measurements were needed to ensure

a good estimation of the full mean velocity field than of the control vector of the data
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Figure 6: Data assimilation with synthetic measurements corresponding to d = 0.08.

Left and right columns report the pressure field p and the Eulerian acceleration

component ∂v
∂t

in the z = 0 plane, respectively. Top to bottom rows report results

for (a,b) the reference flow, (c,d) the first-guess flow, and (e,f) the reconstructed flow

from the NS-DA-SIM approach, respectively.

assimilation procedure, which was also a forcing in the momentum equation [26]. As

indicated by the above discussed results, the noted discrepancies in the inferred forcing

f/ Eulerian acceleration do not however preclude an accurate estimation of other flow

quantities of interest, while figure 7d confirms that the identification of the Eulerian

acceleration field may be further improved in the case of denser measurements.

Figure 7 also confirms the abilities of the present data assimilation approach in

flow reconstruction based on fewer PTV measurements. For all considered values of

d, it provides significant improvements compared to the first-guess flow, even for the

highest values of d, which correspond to very low measurement densities.

4.3. Comparisons with other data assimilation approaches

The present NS-DA-SIM methodology is now compared with other variational data

assimilation approaches that are based on alternative physical models and detailed in

Appendix A. In order to highlight the importance of the physical model in the fidelity
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Figure 7: (a-d) Relative reconstruction error e(b) (defined in (18)) with b taken as (a)

the velocity field u, (b) the velocity gradient ∇u, (c) the pressure field p, and (d) the

Eulerian acceleration ∂u
∂t

, versus the mean distance between synthetic measurements d.

(e-f) Estimated (e) drag Cd and (f) lift Cl coefficients, reference values are reported

through horizontal black dash-dotted lines. Results are reported for the first-guess flow

( ) and the reconstructed flow from the NS-DA-SIM approach (#). Vertical grey dotted

and dashed lines indicate d = 0.08 and d = 0.12, respectively.
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Figure 8: Synthetic measurement locations for d = 0.12 in z-normal view colored by the

streamwise velocity u of the reference flow, in a −0.025 ≤ z ≤ 0.025 slice.

(a) (b)

(c) (d)

(e) (f)

Figure 9: Data assimilation with synthetic measurements corresponding to d = 0.12:

comparisons with Stokes-based data assimilation. Left and right columns report the

absolute error field between reference and estimated quantities |∆b| = |br−b| in the z = 0

plane with b taken as the vorticity component ωz or the pressure field p, respectively. Top

to bottom rows report results for (a,b) the first-guess flow, (c,d) the reconstructed flow

from the Stokes-based approach, and (e,f) the reconstructed flow from the NS-DA-SIM

approach, respectively.
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of the reconstruction, comparisons are performed based on a sparser set of observations

than in previous figures 3-6, namely d = 0.12 as illustrated in figure 8. As d ∝ N
− 1

3
PTV,

the present case is indeed roughly equivalent to three times less data than illustrated in

figure 3a (d = 0.08).

We first investigate the possibility of relying on the strong imposition of the simpler

and linear Stokes equations in the data assimilation procedure, similarly as performed in

[47] (however working directly on particle image data), instead of the (steady) Navier-

Stokes equations in the present NS-DA-SIM methodology. In this case, as detailed in

Appendix A.1, the control vector of the minimization procedure represents Lagrangian

acceleration, namely du
dt

= ∂u
∂t

+ (u ·∇)u. The same first-guess flow is used for both this

so-called Stokes-based approach and the present NS-DA-SIM methodology (see §3.1 and

Appendix A.1).

Reconstruction results are illustrated in figure 9, where the absolute discrepancies

between the reference and reconstructed vorticity component ωz and pressure p in the

z = 0 plane are reported. The Stokes-based approach allows already a significant

improvement in the estimation of the velocity field and in particular of the vorticity

component ωz compared to the first-guess flow. On the other hand, remaining

discrepancies close to the cylinder, and in particular upstream, are still large. This may

suggest limitations of the Stokes-based approach in correctly accounting for relatively

high velocity gradients, in particular close to solid boundaries. Furthermore, it appears

that the discrepancies with respect to the reference pressure field have been largely

increased compared to the first-guess flow. This is explained by the fact that only

the divergence-free part of Lagrangian acceleration may be identified through the

Stokes-based data assimilation procedure, leading to an indeterminacy in the pressure

estimation (see §2.4 and Appendix A.1). The present results thus confirm the inability

of Stokes-based methods in reconstructing pressure. In contrast, the present NS-DA-

SIM approach succeeds in decreasing by almost one order of magnitude the errors in the

pressure estimation compared to the first-guess flow (see also figure 7c). In addition,

concerning the reconstruction of the vorticity component ωz, the present approach

enables an accurate reconstruction of the flow close the cylinder and, despite of slightly

larger remaining discrepancies in the wake, provides an overall better estimation of the

velocity gradients compared to the Stokes-based approach (e(∇u) = 1.3 · 10−1 and

e(∇u) = 8.7 · 10−2 for the Stokes-based and NS-DA-SIM procedures, respectively).

These findings therefore confirm the advantage of solving for the convection term in the

present approach, in contrast to Stokes-based methodologies, for the estimation of both

velocity and pressure fields.

Data assimilation based on the unsteady Navier-Stokes equations (see, e.g.,

[20, 25, 24]), which will be hereafter referred to as 4DVar (following a general

terminology, see, e.g., [9]), is now briefly considered. In the present context of single-

instant measurements, 4DVar may be applied as follows: the measurements m and the

flow to reconstruct are assumed to correspond to the end of a time window of size T , and

the control vector of the data assimilation procedure is the initial flow at the beginning
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(a) (b)

Figure 10: Unsteady data assimilation (4DVar) with synthetic measurements

corresponding to d = 0.12. The error |∆ωz| = |ωz,r − ωz| in the z = 0 plane is reported

for time window sizes (a) T = 0.025 and (b) T = 0.25.

of this time window. More formulation and implementation details may be found in

Appendix A.2. In this approach, the time window size T is an adjustable parameter.

Reconstruction results obtained with 4DVar are illustrated in figure 10 for T = 0.025

and T = 0.25. While one could be tempted to use a short time horizon in this context

of single-instant measurements, it clearly appears that 4DVar is not able to provide

accurate reconstruction results for the case T = 0.025, for which there is only moderate

improvement compared to the first-guess flow (see figure 9a). This suggests that T has to

be large enough to enable the different terms in the unsteady Navier-Stokes equations to

act between measurement locations and significantly improve the first-guess flow. While

the determination of an optimal value for T and of its dependency with respect to the

measurement density and other physical parameters is out of the scope of this study, it

is found that increasing it to T = 0.25 in the present case allows to obtain reconstruction

results whose quality becomes similar to that of the estimation from the present NS-

DA-SIM methodology (e(∇u) = 1.0 · 10−1 and e(∇u) = 8.7 · 10−2 for the 4DVar (with

T = 0.25) and NS-DA-SIM procedures, respectively). The non-trivial determination

of an appropriate time horizon for the consideration of single-instant measurements,

in conjunction with the inherent complexity in implementing 4DVar and performing

it over appreciable time horizons - which necessitates a large quantity of memory or

disk storage associated to the direct flow snapshots within the time horizon - emphasize

in our view the benefits of the proposed approach in the present context. This may

be further supported by the fact that one may expect these difficulties in 4DVar to be

significantly amplified for flows at higher Reynolds number, all the more as their smaller

Lyapunov time scales are known to require elaborate strategies to make 4DVar converge

[23].

4.4. Variations in the measurement and computational domains

Finally in this section, we consider the case where measurements are restricted to

a region downstream of the cylinder, which may be more representative of actual

experimental setups [46, 20, 24]. Observations are supposed to be available only from
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Figure 11: Data assimilation where both the synthetic measurements and the

computational domain are restricted to a region downstream of the cylinder. (a)

Synthetic measurement locations for d = 0.08 in z-normal view colored by the

streamwise velocity u of the reference flow, in a −0.025 ≤ z ≤ 0.025 slice. (b-d)

Recontructed (b) streamwise vorticity ωx, (c) pressure p and (d) Eulerian acceleration

component ∂v
∂t

in the z = 0 plane with the NS-DA-SIM approach.

x = 0.75, while the other dimensions of the measurement domain are the same as

previously (see §4.1). The computational domain is chosen to fully coincide with

the measurement domain, which allows to minimize computational costs. The inlet

condition thus becomes non-trivial and non-uniform in this case as the inlet intersects

the wake flow in transverse directions, and is now determined based on the first-guess

velocity field (see §2.3). The considered observations, for which d = 0.08 as for most

of the reported results in §4.2, along with the reconstructed flow with the NS-DA-SIM

approach are illustrated in figure 11. The reconstructed flow appears similar to the

one in figures 4 and 6 obtained with the previous measurement and computational

domains. This is confirmed by the similar reconstruction errors evaluated in the present

measurement/computational domain: e(u) = 7.8 · 10−4 (respectively e(u) = 8.7 · 10−4),

e(∇u) = 5.3 · 10−2 (respectively e(∇u) = 5.8 · 10−2), e(p) = 1.7 · 10−2 (respectively

e(p) = 1.2 · 10−2) and e(∂u
∂t

) = 7.6 · 10−2 (respectively e(∂u
∂t

) = 9.3 · 10−2) in the

present case (respectively when relying on the previous measurement and computational

domains). These findings demonstrate the robustness of the present NS-DA-SIM

procedure with respect to the choice of the computational domain, which may be chosen

to fully coincide with the measurement one even if its boundaries (even the inlet one) cut

fluctuating parts of the flow. This choice will be adopted for the following experimental

test case in §5.



Dense flow reconstruction from single-instant velocity data 23

(a)

𝑦

𝑥

𝑧

𝐿𝑦

𝐿𝑥/2 𝐿𝑥/2

𝐿2 𝐿1

𝐷

𝑉

𝑂

(b)

(c)

Figure 12: (a) Experimental setup of the cylindrical transitional jet at Re =

4600, including volumetric illumination and four cameras for 3D PTV measurements.

Reprinted by permission from Springer Nature [3]. (b) Schematic of the computational

domain for data assimilation, which identifies with the measurement domain. (c) 2D

slice of the mesh used for the computations. Dashed lines in (b,c) symbolize the jet

core.

5. Reconstruction of an experimental round jet flow at Re = 4600

5.1. Experimental and numerical setups

The present NS-DA-SIM approach is now applied to PTV data obtained on a transitional

round air jet [3]. The experimental apparatus is illustrated in figure 12a. Based on the

exit diameter D and vertical velocity V at the center of the exit plane, which will be

used to non-dimensionalize all quantities in this section, the corresponding Reynolds

number is equal to Re = 4600. Measurements are obtained through the Double-

Frame Tomographic PTV (DF-TPTV) approach which was proposed in [3]. In the

following, we will consider the instantaneous data corresponding to figures 12 and 13 in

[3], these measurements being here illustrated in figure 13a, which reports an extraction

in a central slice. They correspond to relatively dense PTV measurements, i.e. to a

seeding density of 0.06 particles per pixel, and a mean inter-particle distance d = 0.06.

These data are available in the domain that is depicted in figure 12b, which is also

https://link.springer.com/article/10.1007/s00348-019-2859-2
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used as computational domain in the data assimilation procedure. The origin O of

the frame lies at center of the jet in the exit plane. The extents of the measurement

domain in the horizontal and vertical (streamwise) directions are Lx = 5 and Ly = 7.5,

respectively. In the z direction, the finite thickness of the illumination restricts the

results to −L1 ≤ z ≤ L2, with L1 = 0.6 and L2 = 0.4, i.e. corresponding to an extent of

one characteristic jet diameter but with a slight truncation of the jet core on one side.

The computational domain (which thus identities with the measurement one) is

discretized with a mesh that is obtained by extruding the 2D mesh in figure 12c in the

streamwise direction, resulting in a mesh of tetrahedra with a total of 7.1 · 104 vertices.

Dirichlet boundary conditions u = 0 are imposed at x = ±Lx/2 = 2.5. This seems

a good approximation given the values of the PTV data close to theses boundaries,

and that the latter are already relatively far from the jet core. The other boundary

conditions are determined from the first-guess velocity field (see §2.3), except at plane

y = Ly where the outflow condition (∂u
∂y
, Re−1 ∂v

∂y
− p, ∂w

∂y
) = 0 is employed.

5.2. Reconstruction results

The NS-DA-SIM procedure is first performed relying on the full set of instantaneous data

which are illustrated in figure 13a, the corresponding results being reported in figures 13-

16. Note that we will also present results from a second reconstruction, based on only a

partial set of these measurements. In the following descriptions, figures and tables, these

two cases will be also referred to as ’full dataset’ and ’partial dataset’, respectively. The

vertical velocity field v of the full dataset reconstruction is first illustrated in the z = 0

plane in figures 13b-13c for the first-guess flow and the reconstructed one, respectively.

Despite the relatively modest decrease (∼ 30%) in the value of the cost function J

in this case compared to the previous synthetic cylinder flow (see figures 14 and 3b

for comparison), it appears from figures 13b-13c that the data assimilation procedure

has significantly modified the first-guess flow. In particular, it has sharpened velocity

gradients at the boundaries of the jet core compared to the smoother first-guess flow. In

order to confirm the quality of the reconstructed flow, the latter is compared in figures

13d-13e with mean profiles v̄ of the vertical velocity at y = 1.4 and y = 2, which are

obtained through both time and azimuthal averaging of DF-TPTV results using spatial

bins in the form of annuli centered with the jet axis [3]. As the present reconstructed

flow corresponds to a single instant, only azimuthal average is performed on the latter

and on the first-guess flow for this comparison. Figures 13d-13e confirm that the first-

guess flow significantly underestimates velocity gradients, in particular at a distance

from the jet core r = 0.5, i.e. one characteristic jet radius. In contrast, the output

of the NS-DA-SIM approach appears to well capture the highest gradient zones. It is

actually much closer to the mean profiles v̄ at all r, and remaining differences are seen

to be of the same order of magnitude as the root-mean-square fluctuating velocity vrms,

which can be taken as an additional confirmation of the quality of the reconstructed

flow.
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Figure 13: Data assimilation using the full PTV measurement set. (a) Measurement

locations in z-normal view colored by the vertical velocity v in a −0.025 ≤ z ≤ 0.025

slice. (b)-(c) v field in the z = 0 plane for (b) the first-guess flow and (c) the

reconstructed flow from the NS-DA-SIM approach. (d)-(e) Averaged v̄ as a function

of the distance r to the center of the round jet at (d) y = 1.4 and (e) y = 2, these y-

locations being denoted by dashed lines in (b)-(c). Grey lines correspond to azimuthal

and time bin averaging of PTV data, with profiles of v̄ ( ) and v̄ ± vrms ( ).

Black lines correspond to the azimuthal average of the estimated instantaneous v field

for the first-guess flow ( ) and the reconstructed one ( ).
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Figure 14: Cost function J (normalized by its initial value J0) versus the iteration of the

minimization procedure in the NS-DA-SIM approach when all ( , full set) or only

one third ( , partial set) of the jet flow PTV measurements are used, respectively.

(a) (b)

(c) (d)

Figure 15: Q-criterion isosurface (Q = 0.4) colored by the streamwise vorticity ωy for

(a,c) the first-guess flow and (b,d) the reconstructed flow from the NS-DA-SIM approach

(full dataset case) from two perspectives (top and bottom).
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(a) (b)

Figure 16: Isosurface Q = 0.4 with the (a) pressure p and (b) streamwise Eulerian

acceleration ∂v
∂t

in the z = 0 plane for he reconstructed flow from the NS-DA-SIM

approach (full dataset case).

The enhancement of the flow estimation through the data assimilation procedure is

further assessed through figure 15 where an isosurface of the Q-criterion colored by the

streamwise vorticity ωy is reported for both first-guess and reconstructed flows. While

the first-guess flow mostly exhibits vortex rings, with only irregular traces of secondary

streamwise vortices in its downstream part, the reconstructed flow is characterized

by a much richer content in vortical structures. The vortex rings appear in a more

definite form, with, for some of them, clearer signs of azimuthal corrugations which

are typically observed in the near-field of round jets. A much larger number of well-

definite streamwise vortices of alternate signs can also be evidenced, not only in the most

downstream part of the jet where they are characterized by a significant spatial extent,

but also more upstream where they appear with finer sizes. Their location relative to the

vortex rings is fully consistent physically, i.e. mostly in between two subsequent vortex

rings, which defines the so-called ’braid region’ (see, e.g., [48]). These observations

clearly further confirm the ability of the NS-DA-SIM procedure in providing a wealth

of detailed information about high-gradient flow regions. The pressure and streamwise

Eulerian acceleration fields are also illustrated in figure 16 for the reconstructed flow.

Regions of lower pressure well coincide with the core of the vortex rings, as was expected.

The spatial field of the Eulerian acceleration ∂v
∂t

also seems physically sound, in particular

with respect to the vortex rings. These rings indeed induce a local constriction of the

jet column, which results, due to mass conservation, in a local increase of streamwise

velocity in its core. Conversely, the region between two subsequent rings is characterized

by a broadening of the jet core, and thus smaller streamwise velocities. Now, recalling
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Figure 17: Data assimilation using one third of the jet flow PTV measurements (partial

dataset case). The legend is otherwise the same as for figure 13.

that these rings have a motion of translation in the streamwise direction, one can

understand that the presence of positive (resp. negative) patches of ∂v
∂t

downstream

(resp. upstream) of a given ring is consistent. Indeed, the region directly upstream of a

ring must be undergoing a progressive constriction (thus acceleration), while the region

downstream must be in a phase of broadening (thus deceleration).

The NS-DA-SIM approach is here further assessed in a second case where only

one third of the available measurements is considered (partial dataset case). The

corresponding results are reported in figure 17. The mean inter-particle distance

becomes d = 0.09 (instead of d = 0.06 previously), corresponding to a flow seeding

density of 0.02 particles per pixel. The decrease in the measurement density has

a significant impact on the first-guess flow, which in particular appears to further

underestimate the intensity of streamwise velocity in the acceleration regions, as may

be inferred from the comparison between figures 13b and 17b. On the other hand,

although some differences are visible, the reconstructed flow in the present case (see
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(a) (b)

Figure 18: Discrepancies |∆mi| = ‖u(xi) −mi‖ between PTV measurements and the

reconstructed flow from the NS-DA-SIM approach in a −0.025 ≤ z ≤ 0.025 slice. The

two thirds of the data that are not used in the partial dataset case are considered in

this figure, for the (a) full and (b) partial dataset case, respectively. Circled particles

correspond to |∆mi| > 0.6 in both cases.

figure 17c) appears close to the one in the previous data assimilation procedure based

on the full measurements (see figure 13c). The still very satisfactory comparison between

the present reconstructed flow and the mean profiles in figures 17d-17e further supports

the robustness of the steady NS-DA-SIM approach with respect to the measurement

scarcity in this case.

As a supplementary validation of the NS-DA-SIM methodology, figure 18 reports

the discrepancies |∆mi| = ‖u(xi)−mi‖, where ‖◦‖ denotes the Euclidean norm on R3,

between the reconstructed flow and the remaining two thirds of the full measurements

that were not used in the partial dataset case. Note that we represent this quantity

for the two reconstructions presented above, i.e. both when using the full and partial

datasets in the assimilation procedure. The discrepancies presented in figure 18a for

the full dataset case should correspond to the minimum residual discrepancies that may

be reached at the reported locations, and will serve as a reference in the following.

Values of |∆mi| are overall low, in particular outside of the jet and in the jet core.

Errors seem larger in the shear layers and in the most downstream part of the jet, which

correspond to regions with higher velocity gradients. Interestingly, discrepancies |∆mi|
associated to particles adjacent to a particle characterized by a high |∆mi| are generally

found significantly lower. In other words, high values of |∆mi| appear isolated in space,

which may suggest that these particles could be residual outliers in the PTV dataset

that were not filtered out by the statistical rejection used in [3]. This might be the
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Table 1: Average discrepancies E (as defined by (19)) between PTV measurements and

reconstructed flows obtained by performing the NS-DA-SIM procedure with full and

partial measurement datasets, evaluated by considering either the full data (NPTV), the

partial dataset (N1/3), or its complementary (N2/3). This quantity is also evaluated by

considering the same data ensembles, but discarding measurements corresponding to

the 5% largest discrepancies of the full dataset case (̃·).

NPTV N1/3 N2/3 ÑPTV Ñ1/3 Ñ2/3

full dataset 1.0 · 10−2 1.0 · 10−2 1.0 · 10−2 6.3 · 10−3 6.3 · 10−3 6.3 · 10−3

partial dataset 1.3 · 10−2 1.0 · 10−2 1.5 · 10−2 8.3 · 10−3 6.5 · 10−3 9.3 · 10−3

case in particular for exemplified (circled) particles in figure 18a, which correspond to

the largest discrepancies, with |∆mi| > 0.6. Now turning to the partial dataset case,

which is illustrated in figure 18b, the comparison between this figure and figure 18a does

not suggest a drastic increase in the errors with respect to the unused measurements,

compared to the full dataset case. Interestingly, the largest discrepancies are reached

at the same locations in both cases, which may be a supplementary indication of the

presence of outliers there.

A quantitative assessment of these discrepancies is provided in table 1 where we

report the average error

E =
1

N

N∑
i=1

‖u(xi)−mi‖2, (19)

where the sum is performed over the whole set of measurements (NPTV ), the partial

dataset (N1/3) or its complementary (N2/3). Motivated by the above discussion on

the possible presence of outliers, the error E is also evaluated when excluding the

measurements that correspond to the 5% largest remaining discrepancies of the full

dataset case. Concerning this first case, table 1 confirms the similar error level in

the two measurement subsets (see columns N1/3 and N2/3). It also indicates that by

removing only the 5% most problematic measurements, E is decreased from 1.0 · 10−2

to 6.3 · 10−3, thus by 37%. Concerning the partial dataset case, it reaches the same

discrepancy levels at the used measurements (see column N1/3) as in the full dataset

case, while errors with respect to the unused measurements (see column N2/3) are 50%

larger. These discrepancies still remain low, which further supports the efficacy of the

NS-DA-SIM approach.

6. Conclusions

In this study, a variational data assimilation approach for instantaneous 3D flow

reconstruction has been proposed. It has been specifically designed to rely on single-

instant velocity measurements only, and therefore does not require any time-resolved
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or acceleration data. It is based on a strong enforcement of the Navier-Stokes

equations in a steady form where a forcing in the momentum equation, which should

account for Eulerian acceleration, is adjusted to minimize the discrepancies between the

reconstructed flow and the velocity measurements. Focusing on the case of scattered

measurements as in PTV, potential spurious effects linked to the introduction of

pointwise data are avoided thanks to regularization of the gradient of the cost function

in the data assimilation procedure, resulting in a parameter-free methodology, since the

length scale in this regularization can be taken as the mean distance between neighboring

measurements.

The ability of the proposed NS-DA-SIM approach to accurately reconstruct full

instantaneous velocity, pressure and Eulerian acceleration fields, along with estimating

aerodynamic forces, has been thoroughly assessed based on the 3D numerical flow past

a cylinder at Re = 300. Comparisons with alternative data assimilation schemes have

further emphasized the merits of the present approach. The ability of the latter to

handle volumetric PTV measurements has also been demonstrated for a transitional

jet flow experiment at Re = 4600, as evidenced in particular by the rich and physical

vortical content of the reconstructed flows, as well as the physical soundness of the

pressure and Eulerian acceleration fields.

Obvious extensions of the present study include the application of the present

methodology to other flow configurations. The present optimization framework

could also be extended to the use of robust norms [49] to better handle outliers,

which are unavoidable in any experimental context. More generally, measurement

uncertainties/errors could be taken into account when available in the data assimilation

procedure, possibly in an iterative process where data assimilation itself could be used to

update the estimation of these uncertainties. An even stronger coupling with the PTV

data processing could also be considered, also within an iterative approach, whereby the

reconstructed flows would yield successive displacement predictors in order to detect and

match the largest possible number of particles. Finally, the present formalism should

be versatile enough to enable the consideration of other types of velocity measurements

(e.g. PIV), but also of pressure or temperature, in conjunction with other models than

the incompressible Navier-Stokes equations.

Appendix A. Other variational data assimilation approaches

Appendix A.1. Stokes-based data assimilation

Instead of relying on the (steady) Navier-Stokes equations, one could consider the strong

imposition of the following Stokes equations, similarly as performed in [47] in the context

of optical flow (i.e. working directly on particle images)

Sq = Pg, S =

(
−Re−1∆◦ ∇◦
−∇ · ◦ 0

)
. (A.1)

The forcing g in the above equation should account for the opposite of the material
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derivative of the velocity field, namely −du
dt

= −∂u
∂t
− (u · ∇)u. It may noted that this

quantity is not divergence-free, which should preclude an unambiguous reconstruction

of the pressure field (see §2.4). The data assimilation problem based on the Stokes

equations (A.1) may be expressed as

min
g

{
J =

1

2
‖m−Hu‖2

M

}
, Sq = Pg, (A.2)

Similarly as in the NS-DA-SIM procedure, (A.2) is here solved through an iterative

gradient-based algorithm. The gradient dJ
dg

is obtained in a similar way as described in

§2.2, the adjoint problem for the Stokes equations being close to (9)-(10) but dropping

the first two contributions in the left-hand-side of the adjoint momentum equation which

originate from the convection term. The identification of a first guess for this procedure

is performed in a similar way as described in §3.1, only changing its third step and

evaluating the left-hand-side of the momentum equation in (A.1) to get a first guess for

g.

Appendix A.2. Unsteady Navier-Stokes-based data assimilation (4DVar)

Variational data assimilation based on the unsteady Navier-Stokes equations (2), which

was almost exclusively considered for time series of measurements (see, e.g., [20, 21, 24]),

may be applied as follows in the present context of single-instant measurements [25].

The time dependency of the flow, which was discarded in §2.1 to simplify notations, is

here reintroduced for the sake of clarity. Considering a time window of size T , which

forms the main adjustable parameter of the following methodology, the data assimilation

problem is formulated as identifying the initial condition u(tm−T ) so that the velocity

field u(tm) matches the measurements m(tm). The corresponding optimization problem

may be written as

min
u(tm−T )

{
J =

1

2
‖m(tm)−Hu(tm)‖2

M

}
, (A.3)

P
∂u

∂t
+ N (q) = 0, t ∈ [tm − T, tm],

where, using (5), the second equality refers to the imposition of the unsteady Navier-

Stokes equations. Similarly as in §2.2 and Appendix A.1, (A.3) is solved in an iterative

way. The gradient of the cost function J with respect to the initial condition u(tm−T )

is obtained by first integrating backward in time from t = tm to t = tm − T the adjoint

unsteady Navier-Stokes equations

−P
∂u†

∂t
+ N†q† = 0, t ∈ [tm − T, tm], (A.4)

with the terminal condition u†(tm) = H†(Hu(tm) − m(tm)). The definition of the

involved adjoint operators may be found in §2.2. The required gradient is then obtained

through dJ
du(tm−T )

= u†(tm − T ). It may be emphasized that the backward integration

of the unsteady adjoint equations (A.4) first requires the integration of the unsteady

Navier-Stokes and the storage (or the recomputation) of the full flow history in the
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interval [tm−T, tm]. The identification of a first guess for the initial condition u(tm−T ) is

performed by first following the first step described in §3.1, which provides a first guess

for u(tm). The unsteady Navier-Stokes equations are then solved backward in time,

negating the diffusion term to ensure stable computations, to get the first-guess initial

condition.
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[31] J. E. V. Peter and R. P. Dwight. Numerical sensitivity analysis for aerodynamic optimization: A

survey of approaches. Computers & Fluids, 39:373–391, 2010.

[32] V. Mons and O. Marquet. Linear and nonlinear sensor placement strategies for mean-flow

reconstruction via data assimilation. Journal of Fluid Mechanics, 923:A1, 2021.

[33] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage. Mathematics of

Computation, 35:773–782, 1980.

[34] L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific

Journal of Mathematics, 16:1–3, 1966.

[35] L. Franceschini, D. Sipp, and O. Marquet. Mean-flow Data Assimilation based on minimal

correction of turbulence models: Application to turbulent high-Reynolds number backward-

facing step. Physical Review Fluids, 5:094603, 2020.

[36] P. C. Hansen and D. P. O’Leary. The use of the L-curve in the regularization of discrete ill-posed

problems. SIAM Journal on Scientific Computing, 14:1487–1503, 1993.

[37] F. Hecht. New development in FreeFem++. Journal of Numerical Mathematics, 20:251–265,

2012.

[38] D. N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equations. Calcolo,

21:337–344, 1984.

[39] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection

dominated flows with particular emphasis on the incompressible Navier-Stokes equations.

Computer Methods in Applied Mechanics and Engineering, 32:199–259, 1982.



Dense flow reconstruction from single-instant velocity data 35

[40] M. Olshanskii, G. Lube, T. Heister, and J. Löwe. Grad–div stabilization and subgrid pressure
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