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Towards the Multiple Constant Multiplication at
Minimal Hardware Cost

Rémi Garcia and Anastasia Volkova

Abstract—Multiple Constant Multiplication (MCM) over inte-
gers is a frequent operation arising in embedded systems that
require highly optimized hardware. An efficient way is to replace
costly generic multiplication by bit-shifts and additions, i. e. a
multiplierless circuit. In this work, we improve the state-of-
the-art optimal approach for MCM, based on Integer Linear
Programming (ILP). We introduce a new low-level hardware cost
metric, which counts the number of one-bit adders and demon-
strate that it is strongly correlated with the LUT count. This
new model permitted us to consider intermediate truncations
that permit to significantly save resources when a full output
precision is not required. We incorporate the error propagation
rules into our ILP model to guarantee a user-given error bound
on the MCM results. The proposed ILP models for multiple
flavors of MCM are implemented as an open-source tool and,
combined with an automatic code generator, provide a complete
coefficient-to-VHDL flow. We evaluate our models in extensive
experiments, and propose an in-depth analysis of the impact that
design metrics have on synthesized hardware.

Index Terms—multiple constant multiplication, multiplierless
hardware, ILP, datapath optimization

I. INTRODUCTION

Multiplications by integer constants arise in many numerical
algorithms. In particular, the evaluation of FIR filters in
their transposed direct form requires to multiply an input
by tens or hundreds of multiple constants [1, Chapter 6.4].
This is also the case for Fast Fourier Transform or par-
allel deep neural network controllers, where input vectors
are multiplied by constant matrices. On Field-Programmable
Gate Arrays (FPGAs), these constants are usually represented
with Fixed-Point (FxP) numbers which can be assimilated to
integers. When implementing these applications into resource-
constrained embedded systems, optimizing the multiple con-
stant multiplication (MCM) can significantly improve area,
power and delay [2]–[4]. In this paper we focus on improving
the optimal approaches of the MCM design using high- and
low-level hardware cost models.

Since the values of constants to multiply with are known
a priori, dedicated multiplierless architectures can be de-
signed, instead of relying on costly generic multipliers [5].
The shift-and-add approach is a common method to reduce
hardware cost, it consists in replacing multiplications by
additions/subtractions and bit-shifts. For example, multiplying
an integer variable x by the constant 7 can be rewritten as
7x = 23x − x, reducing the cost to a single bit-shift by
three positions to the left and a subtraction, instead of a
multiplication.
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Hence, the MCM problem is implementing a multiplication
of an unknown FxP input by multiple target FxP constants
at the lowest cost. A typical high-level metric is the number
of adders (bit-shifts can be hardwired at a negligible cost),
minimizing which is the goal of what we will call the MCM-
Adders problem. Its output is an adder-graph describing the
shift-and-add solution as a data flow, as in Fig. 1 where labeled
horizontal arrows denote shifts.

This work uses Integer Linear Programming (ILP) modeling
to solve the MCM optimally. We base our model on [6] that
solves the MCM-Adders problem, improve it and extend to
solve other flavors of the MCM. For instance, we propose a
novel bi-objective ILP formulation that permits to bound or
minimize the number of cascaded adders, called the adder
depth (AD), as a secondary objective.

Many adder graphs can have minimal number of adders, but
their one-bit adder cost can differ drastically. Assume adder
graphs in Fig. 1 taking a 3-bit input x and computing 51x
and 49x. While both require only three adders, the solution
in Fig. 1a requires 24 one-bit adder and the one in Fig. 1b
uses only 8. The adder graph in Fig. 1a also requires 9
NOT gates which come for free when targeting FPGAs. On
Application-Specific Integrated Circuits (ASICs), their cost is
small compared to the overall cost of the circuit, hence we
leave them out of scope in cost estimation.

One of the main contributions of this paper is solving the
MCM for a low-level hardware metric based on counting the
one-bit adders, when the word length of the input x is known
a priori. We refer to this problem as MCM-Bits. Moreover, the
results of MCM do not necessarily need to be full-precision
and in practice are often rounded post-MCM. We propose a
new formulation, tMCM, that truncates intermediate results
in adder graphs to optimize the resources while guaranteeing
faithful rounding to the output format.

With this paper, we aim at providing a tool that democratizes
access to MCM at minimal hardware cost. We mix the opti-
mization techniques to model the problem, have an in-depth
look at the hardware addition to provide fine-grain cost metrics
and a sound error-analysis to give numerical guarantees on
the computed output. The main ideas of our approach are
presented in Section III and in the next sections we go through
the details of the ILP models. In Section VII, we demonstrate
the efficiency of our approach providing optimization results
and obtained hardware comparisons.

II. STATE-OF-THE-ART

The multiplierless shift-and-add approach to solve the MCM
problem finds its first solution from the binary representation
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(a) AD = 3 and #B = 24 for 3-bit input (b) AD = 2 and #B = 8 for 3-bit input

Fig. 1: Different adder graph topologies computing the same outputs: 49x and 51x

of the constant which is literally a shift-and-add decomposition
of integers. A greedy algorithm based on the Canonical Signed
Digit (CSD) representation permits to reduce the number
of adders [7], [8] compared to the binary representation.
However, this number can be further reduced and heuristics
have been proposed to enhance the results obtained with the
CSD method [9]–[13]. Yet, heuristics do not provide any
guarantee on the solution quality.

Optimal approaches for the MCM-Adders can be roughly
divided into two categories: (i) first approaches based on
hypergraphs [14] and mathematical modeling [6], [15], [16],
which can be solved with generic solvers; (ii) dedicated
optimal algorithms based on branch and bound technique
proposed and further developed by Aksoy et al. [17]. In
this work, we improve and extend the results of the first
category of approaches, since ILP-based modeling offers a
better versatility for extensions than dedicated algorithms, and
permits to rely on the efficiency of generic solvers.

The state-of-the-art ILP-based model for the MCM-Adders
was proposed by Kumm in [6]. This method finds optimal
solutions in terms of the number of adders in reasonable time.
However, we found an error in the model which makes it miss
some optimal solutions. An approach to the MCM-Adders
solution using SAT/SMT solvers [16] has also been developed
for single and multiple constant multiplications.

Two generalizations of the MCM-Adders problem were re-
cently tackled, the first [18] solves the Unified MCM problem
and the second uses E-graphs [19] to solve generic circuit
design problems. These problems are more general and harder
to solve: the proposed methods do not scale well and cannot
be applied to many instances we will solve in Section VII. In
particular, the E-graph approach relies on a full enumeration of
the search-space, as in [15], which is not tractable for solving
the MCM-Adders problem.

The MCM-Bits problem has also been studied, however
classical bit-level optimization approaches are heuristics [9],
[20] that estimate the low-level cost of the final circuit and
track the number of one-bit adders. By one-bit adders, we
gather both half and full adders as logic elements having
roughly the same cost compared to the other logic elements
of the circuit. Moreover, on FPGAs the distinction between

half and full adders cannot be made. To our knowledge, we
propose the first optimal approach solving the MCM problem
targeting the one-bit adders (the MCM-Bits problem).

Focusing on a low-level metric allows to add intermediate
truncations [21]–[23] that will save resources and not waste
area and time to compute bits that will have no impact on
the rounded result. At the same time, the goal is to respect a
user-given absolute error on the result.

Some previous works address the tMCM but applied to
a fixed adder-graph and either do not give a guarantee on
the output error, e. g., a heuristic-based approach [21], or
overestimate and sometimes wrongly compute the output error,
e. g., ILP-based [22]. However, as demonstrated in Fig. 4, some
adder graph topologies are better suited for truncations than
others. Hence, solving directly for tMCM and delegating the
design exploration to an ILP solver, is a better approach. Our
preliminary work [23] combined, for the first time, adder graph
optimization with internal truncations. Yet, in [23] the error
bounds can be tightened and a few several corner cases were
not implemented. With this work, we resolve these issues and
provide synthesis results on a large set of benchmarks.

III. BIRD VIEW

Our approach is based on ILP modeling, which consists in
stating objectives and constraints as linear equations involving
integer and binary variables. We chose to limit our possibilities
to linear equations because it allows using efficient and robust
solving approaches embedded in commercial or open-source
solvers such as CPLEX, Gurobi, GLPK, etc. Our end goal is
to provide a tool which, given the target constants to multiply
with, the choice of a cost function and several associated
parameters, builds the corresponding ILP model. Solving the
model with your favorite solver results in an adder graph
description, which can be passed to the fixed- and floating-
point core generator FloPoCo [24] to generate the VHDL code
implementing the MCM circuit.

From the modeling point of view, we search for an adder
graph that computes the product of the input x by given target
constants. In this work, we center the model of an adder graph
around the adders and their associated integer values, called
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ca,l

←− sa,l

ca,r

φa,rφa,l

cnsh
a

←− −sa
ca

(b) Adder in MCM modeling

Fig. 2: Classic (left) and proposed (right) adder models

fundamentals. The rules of construction of an adder graph
are simple:

• every fundamental is a sum of its signed and potentially
shifted left and right inputs, which can be other funda-
mentals or the input x;

• for every target constant, there exists one fundamental
equal to its value;

• every used fundamental can be traced back to the input
x, meaning that the adder graph topology holds.

The search-space for the fundamentals is deduced from
the target constants: a tight upper bound on the number of
fundamentals can be deduced using heuristics [12], [25]; and
the maximum value fundamentals can take is often restricted in
practice by the word length of the largest coefficient. To solve
the MCM-Adders problem correctly, we encode the above
rules as linear constraints. As a result of resolution, we obtain
a sequence of fundamentals, e. g., for Fig. 1a this sequence is
{1, 7, 49, 51}.

On top of that, for the MCM-Bits and tMCM problems,
each adder, depending on the inputs, has an associated one-
bit adder cost, which should be modeled. Furthermore, for
the tMCM problem, for each adder we associate potential
truncations for its left and right operands which permit to
reduce the adder cost. However, as each truncation induces an
error, the model of error propagation should be incorporated
as a set of constraints and the output errors is bounded by a
user-given parameter. The challenge is to consider all possible
cases and not overestimate the one-bit adders cost and errors.

With our approach we provide adder graphs that can multi-
ply an arbitrary input x, which can be either a positive integer
or a two’s complement signed integer, by an arbitrary set of
integer constants. However, the ILP model we use as back-
end only takes positive odd constants to multiply with, thus
the sign and even/odd adjustments are done outside of the
model in pre- and post-processing.

The main challenges are to translate these objective func-
tions and constraints into linear equations over integer/binary
variables. In the following, we give details for that process.

IV. MCM WITH A HIGH-LEVEL COST METRIC COUNTING
ADDERS

A. The base model for MCM

The main challenge behind this model is to be able to
formally state the constraints fixing the adder graph topology
with linear equations. For conciseness, we also extensively

use the so-called indicator constraints, which are supported
by most modern MILP solvers, and have the form of:

ax ≤ b if y = 1, (1)

where a and b are constants, x is an integer variable and y is
a binary variable. These indicator constraints can be used as
is, or linearized using big M constraints which transform (1)
into

ax ≤ b+M × (1− y) , (2)

where M is a constant large enough such that if y = 0 then
(2) is similar to ax ≤ ∞. Note that indicator constraints, when
passed as is, to common MILP solvers, might slow the solving
process. On the other hand, big M constraints are typically
faster but could lead to numerical instabilities and should be
used carefully when the value of M is order of magnitudes
higher than ax [26], [27].

To fix the adder-graph topology with linear constraints, we
first define a few sets of variables encoding adder information.
Integer variables ca correspond to the fundamentals for each
adder and ca,i, ∀i ∈ {l, r}, are the left and right inputs of
the adder a. To simplify, the adder graph input is handled
as the zeroth adder and its associated fundamental is one:
c0 = 1. Variables encoding shifts and signs are sa,i and φa,i,
respectively. Fig. 2a represents an adder and these variables
which are linked together through the relation

ca = (−1)
φa,l 2sa,lca,l + (−1)

φa,r 2sa,rca,r. (3)

It has been proven [9] that we can limit the adder graph to
odd fundamentals only, limiting the relevant shifts. Thus, it is
possible to simplify the modeling by considering only positive
left shifts, as illustrated by Fig. 2b, and let

ca = 2−sa
(

(−1)
φa,l 2sa,lca,l + (−1)

φa,r ca,r

)
, (4)

where the shifts, sa and sa,l, take values ensuring that ca is
odd. Previous work [6], did consider positive left shift only
or identical negative shifts, which is equivalent to our sa.
However, in their linearized model, integrity constraints con-
flicted with negative shifts dropping the latter when solving.
Nevertheless, negative shifts are absolutely necessary to find
optimal solution in some cases, e. g., for the target constants
C = {7, 19, 31} where 19 = 2−1 (7 + 31).

Equation (4) is nonlinear, thus multiple intermediate vari-
ables are necessary to compute ca using linear constraints only.
For instance, in order to linearize

csh
a,l = 2sa,lca,l, (5)

which involves a power of two and a product, a set of binary
variables σa,s is required with s taking values ranging from
0, meaning no shift, to an upper bound on the possible shift
Smax. These variables are used in (C8) where a constant,
20, 21, 22, etc., is multiplied with a variable removing the
power of two and product of variables issues. Variable σa,s
serves as an indicator of the shift s being used for adder
a, ∀s ∈ [[0;Smax]], and only one shift is selected for each
adder. All the required intermediate variables are presented in
TABLE I. These variables are used to produce the following
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TABLE I: Constants (top) and variables (bottom) used in the
ILP formulation

Constants/Variables and their meaning

NA ∈ N: bound on the number of adders;
NO ∈ N: number of outputs;
C ∈ NNO : odd target constants;
w ∈ N: fundamentals’ word length;
Smax ∈ N: maximum shift, Smax = w by default.

ca ∈ [[0; 2w]], ∀a ∈ [[0;NA]]: fundamental, or constant, obtained in adder
a with c0 fixed to the value 1, corresponding to the input;
cnsh
a ∈ [[0; 2w+1]], ∀a ∈ [[1;NA]]: constant obtained in adder a before the

negative shift;
codd
a ∈ N, ∀a ∈ [[1;NA]]: variable used to ensure that ca is odd;
ca,i ∈ [[0; 2w]], ∀a ∈ [[1;NA]], i ∈ {l, r}: constant of adder from input
i before adder a;
csh
a,l ∈ [[0; 2w+1]], ∀a ∈ [[1;NA]]: constant of adder from left input before

adder a and after the left shift; for simplification csh
a,r is an alias of ca,r ;

c
sh,sg
a,i ∈ [[−2w+1; 2w+1]], ∀a ∈ [[1;NA]], i ∈ {l, r}: signed constant of

adder from input i before adder a and after the shift;
Φa,i ∈ {0, 1}, ∀a ∈ [[1;NA]], i ∈ {l, r}: sign of i input of adder a. 0
for + and 1 for −;
ca,i,k ∈ {0, 1}, ∀a ∈ [[1;NA]], i ∈ {l, r}, k ∈ [[0;NA − 1]]: 1 if input
i of adder a is adder k;
σa,s ∈ {0, 1}, ∀a ∈ [[1;NA]], s ∈ [[0;Smax]]: 1 if left shift before adder
a is equal to s;
Ψa,s ∈ {0, 1}, ∀a ∈ [[1;NA]], s ∈ [[−Smax; 0]]: 1 if negative shift of
adder a is equal to s;
oa,j ∈ {0, 1}, ∀a ∈ [[1;NA]], j ∈ [[1;NO]]: 1 if adder a is equal to the
j-th target constant.

linear model describing the adder graph topology and the link
between fundamentals and target constants Cj :

cnsh
a = csh,sg

a,l + csh,sg
a,r ∀a ∈ [[1;NA]](C1)

cnsh
a = 2−sca if Ψa,s = 1 ∀a ∈ [[1;NA]], s ∈ [[−Smax; 0]](C2)

0∑
s=−Smax

Ψa,s = 1 ∀a ∈ [[1;NA]](C3)

σa,0 =

−1∑
s=−Smax

Ψa,s ∀a ∈ [[1;NA]](C4)

ca = 2codd
a + 1 ∀a ∈ [[1;NA]](C5)

ca,i = ck if ca,i,k = 1 ∀a ∈ [[1;NA]], i ∈ {l, r} ,(C6)
∀k ∈ [[0; a− 1]]

a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1;NA]], i ∈ {l, r}(C7)

csh
a,l = 2sca,l if σa,s = 1 ∀a ∈ [[1;NA]], s ∈ [[0;Smax]](C8)
Smax∑
s=0

σa,s = 1 ∀a ∈ [[1;NA]](C9)

csh,sg
a,i = −csh

a,i if Φa,i = 1 ∀a ∈ [[1;NA]], i ∈ {l, r}(C10)

csh,sg
a,i = csh

a,i if Φa,i = 0 ∀a ∈ [[1;NA]], i ∈ {l, r}(C11)

ca = Cj if oa,j = 1 ∀a ∈ [[0;NA]], j ∈ [[1;NO]](C12)
NA∑
a=0

oa,j = 1 ∀j ∈ [[1;NO]](C13)

In details, constraint (C1) states that the value of an adder
before a potential negative shift is equal to the sum of its
shifted and signed inputs. Constraints (C2), (C3) and (C5)
apply the negative shift to variables ca and ensure that the

computed fundamental is odd. It can be noticed that a potential
negative shift after cnsh

a only makes sense if the sum of the
inputs is even, which can only happen if no left shift is applied
to the left input: constraint (C4) specifically states this in
order to speed up the solving process. The link between an
adder and its inputs is enforced by constraints (C6) and (C7).
Constraints (C8) and (C9) permit to apply the shift to the left
input of an adder while constraints (C10) and (C11) apply the
sign. Finally, every target constant Cj is computed once and
only once thanks to constraints (C12) and (C13).

These constraints are sufficient to define a model for the
following decision problem: is there an adder graph with NA
adders where all the target constants Cj are computed as
fundamentals? Either the model is “infeasible”, meaning that
no adder graph exists for computing the target constants with
just NA adders, or “optimal” returning values ca, that encode
fundamentals, and corresponding shifts and signs that permit
to produce a valid adder graph as in Fig. 1.

To tackle MCM as minimization problem, which is desirable
in order to use the full potential of MILP solvers, NA can
be fixed to a known upper bound, obtained using a heuristic
solution [12], [25] or a greedy algorithm [8], and then the
objective function is to minimize the number of effectively
used adders. A binary variable, ua ∈ {0, 1}, ∀a ∈ [[1;NA]],
permits to deactivate an adder if not used: ca = 0 if ua = 0.
Then, adding to the model the objective function

min
∑

ua, (6)

permits to solve the MCM problem as a minimization problem.

B. Bounding and/or Minimizing Adder Depth

The latency of the circuit is directly related to the number of
cascaded adders or adder depth (AD). It is often preferable to
have a bound on the AD to ensure a bound on the latency, or
at least to have the minimal AD possible as a second objective,
while simultaneously minimizing the number of adders. Works
[14], [15] that rely on the search space enumeration solve the
MCM problem with an AD bound up to 3 or 4 in best case.
In this section we propose a new simple way to propagate the
AD and to optionally bound it by a user-given constant ad
and/or to minimize it as a second objective.

In order to track the AD, we introduce the variable admax,
and two sets of integer variables: ada and ada,i, ∀a ∈ [[1;NA]],
i ∈ {l, r}, representing the AD of the adder a and the AD of
its left and right inputs, respectively. Naturally, the adder depth
of the input is set at zero, ad0 = 0, and the AD propagation
and the bound are handled by the following constraints:

ada = max (ada,l + 1, ada,r + 1) , ∀a ∈ [[1;NA]], (7)

ada,i = adk if ca,i,k = 1, ∀a ∈ [[1;NA]], i ∈ {l, r} ,
∀k ∈ [[0; a− 1]], (8)

admax ≥ ada, ∀a ∈ [[1;NA]], (9)

admax ≤ ad . (10)

Note that the max in (7) can be linearized adding a set of
binary variables to the model. Constraint (9) ensures that the
integer variable admax will be equal or greater than actual
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adder depth. With (10), we guarantee that the adder depth is
bounded by ad . In contrast to existing approaches [14] and
[15], this encoding of AD is performed automatically by the
solver, and does not require precomputations or a large number
of variables and constraints.

We further extend our ILP model towards the bi-objective
problem MCMAD in order to optimize for both adder count
and AD. The variable admax, which encodes the AD of the
adder graph, is used to replace the objective function (6) by

min

NA∑
a=1

(
NAua

)
+ admax. (11)

This new objective function is a weighted sum that enforces a
lexicographic optimization with the number of adders as first
objective and the AD as second. Indeed, reducing the number
of adders is unconditionally stronger than increasing the AD
because NA ≥ admax.

Solving MCMAD permits to select from the set of solutions
with minimal number of adders those which yield the smallest
delay in a hardware implementation. For example, in Fig. 1,
we propose two optimal solutions in terms of the number of
adders, NA = 3, for the target constants {49, 51}, but different
adder depths: AD = 3 in Fig. 1a and AD = 2 in Fig. 1b.
Solving MCMAD would directly find the adder graph with the
lowest adder depth among the optimal ones in terms of number
of adders.

This problem can be difficult for the solver, thus, in order to
speed up the solving process, we provide redundant constraints
that should help to reduce the search space. Gustafsson [28]
proposed some lower bounds on the AD for the target con-
stants which we can use in the following way:

ada ≥ oa,j × ad j ∀a ∈ [[1;NA]], j ∈ [[1;NO]], (12)

where ad j is the lower bound on the adder depth of the target
constant indexed by j. For our {49, 51} target set, the first
constant 49 has a minimal adder depth ad1 = 2, hence the
constraint becomes:

ada ≥ 2oa,1, ∀a ∈ [[1;NA]], (13)

enforcing the adder a to have an AD of at least 2 before con-
sidering it as a potential output for the first target constant 49.

In Section VII, we will show the advantages of MCMAD
over the classic single-objective MCM-Adders. Optimal so-
lutions are obtained in reasonable time when solving either
problems, and solving MCMAD provides better solutions. For
that reason, we will also consider the AD minimization as
second objective when tackling MCM-Bits and tMCM.

Similarly to bounding and/or minimizing the adder depth,
the Glitch Path Count (GPC) metric could be targeted in order
to control the power consumption [29]. In [6], Kumm showed
how to include such metric into an ILP model and this can be
adopted for our solution.

V. MCM WITH A LOW-LEVEL COST METRIC COUNTING
ONE-BIT ADDERS

Minimizing the number of adders and the AD leads to
efficient hardware but can also be used in software. In many

cases, optimizing w. r. t. these metrics is the best we can
provide and they already lead to a significant cost reduction.
However, when specifically targeting hardware, e. g., ASICs
or FPGAs, and when the word length of the input is a priori
known, it is possible to optimize using a finer-grain metric: the
number of one-bit adders. Indeed, two optimal adder graphs,
w. r. t. the number of adders, can have a significantly different
number of one-bit adders. This is illustrated by Fig. 1: for a
3-bit input x, solution in Fig. 1a requires 24 one-bit adders,
while the one in Fig. 1b needs only 8 one-bit adders. These
large differences motivate the choice to specifically target the
one-bit adder metric.

To solve the MCM-Bits problem, we enhance our MCMAD
model. In addition to the constraints fixing the adder graph
topology and keeping track of the adder depth, we need to
be able to count the number of one-bit adders. This additional
need comes with two main difficulties: first, we have to be able
to propagate the data word length which directly impacts the
number of one-bit adders required for a given adder; second,
counting the number of one-bit adders requires to consider
many cases, as presented in [20], e. g., the cost in terms of
one-bit adders differs between two adders because of shifts
and subtractions.

The former problem of word length propagation can be
decomposed into tracking the Most Significant Bit (MSB)
and Least Significant Bit (LSB) positions. Integer additions
and subtractions impact the MSB but do not change the LSB,
hence without loss of generality we can consider that the LSB
is always equal to zero. Given an upper bound on the input,
x, it is possible to compute the required MSB after any adder:

msba = dlog2 (xca)e (14)

where ca is the adder fundamental. Incorporating this nonlin-
ear constraint into our ILP model requires a few adjustments.
First, the rounding can be removed by relaxing the equality.
Second, exponentiation of both sides to remove the log2

leads to
2msba ≥ xca. (15)

The expression 2msba can be linearized similarly to shifts with
the challenge of the wider range of possible values for msba.
This permits to propagate the data word length, which is, in
the worst case, equal to the number of one-bit adders, Ba:

Ba ≤ msba + 1. (16)

However, multiple corner cases permit to save one-bit adders.
As illustrated in Fig. 3a, shifts can lead to output bits

computed without one-bit adders. Yet, one should note that
it is not always the case with subtractions, see Fig. 3c. The
MSB computation is either done by a dedicated one-bit adder,
as represented in Fig. 3a, or obtained from the carry of the
last one-bit adder, as in Fig. 3b. Both cases are illustrated
in Fig. 1b, where the MSB of 3x is done by the carry and
the MSB of 51x requires a dedicated one-bit adder. This can
be deduced from the MSB positions which depend on the
fundamental values, see (14), allowing for the gain of a one-
bit adder. One-bit adders might even not be necessary at all,
as illustrated in Fig. 3d.
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(a) Some output bits are com-
puted without one-bit adders
thanks to shifts.

(b) In some cases, the MSB
can be computed by the carry
of the last one-bit adder.

(c) For subtraction, shifts do
not always permit to save
one-bit adders.

(d) When shifts are large
enough, no one bit adders are
required.

Fig. 3: Counting one-bit adders

To wrap up, counting the number of one-bit adders, Ba,
consists in computing the word length and deducting the gains
ga and ψa,

Ba = msba + 1− ga − ψa, (17)

where ψa is equal to one if the MSB is computed by the carry
of the last one-bit adder. The gain ga is dependent on the signs,
shifts and MSBs and can be summarized as follows:

ga =


msba if sa,l > msba,r ∧ Φa,l = Φa,r
sa,l if sa,l ≤ msba,r ∧ Φa,l = Φa,r
sa,l if Φa,l = 1 ∧ Φa,r = 0
0 if Φa,l = 0 ∧ Φa,r = 1

, (18)

formalizing cases illustrated in Fig. 3a, 3c and 3d. To include
the computation of Ba and ga in an ILP model, we add several
binary variables to handle each condition.

As each adder a has an associated cost Ba, it is straight-
forward to formulate the objective as:

min

NA∑
a=1

NABa + admax, (19)

where NA is the number of adders the adder graph can use.
This solves the bi-objective problem minimizing the number
of one-bit adders first and the adder depth second.

For a given instance, we make the following conjecture: if a
solution of that instance requires NA adders, then the optimal
solution in terms of number of one-bit adders also requires
at most NA adders. As a consequence, we will use a bound
on NA and assume we do not exclude optimal solutions with
respect to one-bit adders.

In Section VII, our benchmarks show that solving MCM-
Bits, on average, reduces the number of LUTs by 7.59%
compared to our MCM-Adders.

VI. TRUNCATED MCM
Arithmetic operation usually increase the size of the data

paths but the full-precision result is often not required. For

Fig. 4: Computing 49x and 51x via the fundamental 17 leads
to only 4 one-bit adders for a 3-bit input/output.

instance, consider recursive digital filters, in which the result
of MCM is typically rounded to some internal word length
at each iteration. In these cases, hardware designers can often
provide an absolute error bound, ε, that the computed products
should respect. In order to avoid wasting resources to compute
the bits that will not impact the rounded result, we propose
to introduce truncations inside the adder graphs. Fig. 5b
illustrates a case when truncating a bit in one of the adder’s
operands saves a one-bit adder. Of course, a truncation can
generate an error that should be bounded and propagated, and
the truncated adder graph should respect the bound ε. Solving
the MCM problem with intermediate truncations is a more
complex problem which, however, yields significant hardware
cost reduction [21], [22].

In contrast to previous works, which focus on truncations of
a fixed adder graph, we postulate that truncations should guide
the topology, potentially leading to a different adder graph than
the one obtained solving the MCM-Bits problem. Consider
for instance the multiplication by 49 and 51 in Fig. 1, where
the adder graph Fig. 1b is the MCM-Bits solution. Applying
the truncations, s.t. only 3 output bits are faithful, yields a
design requiring at least 5 one-bit adders. However, there exists
another adder graph topology, shown in Fig. 4, that requires
only 4 one-bit adders and is hence better suited for a target
truncated result.

In this Section we outline the ILP model permitting to solve
the tMCM as one optimization problem, covering the whole
design space. In Section VII, our experiments demonstrate that
when the goal is to keep only half of the output bits, our tMCM
solutions reduce the number of LUTs by 28.87% compared to
our new MCM-Bits, and by 35.93% compared to the state of
the art MCM-Adders, on average.

A. Modeling truncations and error propagation

Truncations permit to gain one-bit adders and should be
incorporated into a model in order to benefit from this possi-
bility. To do so, we add integer variables, ta,i, encoding the
position of the truncated bits from the left and right inputs
of adder a. Then, we update (18) in order to include the
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εinfa,l, ε

sup
a,l

)
←− sa,l

(
εinfa,r, ε

sup
a,r

)
ta,rta,l
// (
εinfa , εsupa

)
(a) Model of an adder in pres-
ence of errors ε and trunca-
tions t.

(b) Some output bits are com-
puted without one-bit adders
thanks to shifts and trunca-
tions.

(c) Truncations might induce
zeros in the output.

(d) Zeros can be truncated
without increasing the error.

Fig. 5: Counting one-bit adders and propagating errors in
presence of truncations

truncations in the one-bit adders gain count:

ga =


msba if sa,l > msba,r ∧ Φa,l = Φa,r,
max (ta,l, sa,l, ta,r) if sa,l ≤ msba,r ∧ Φa,l = Φa,r,
max (ta,l, sa,l) if Φa,l = 1 ∧ Φa,r = 0,
ta,r if Φa,l = 0 ∧ Φa,r = 1.

(20)
The second case is illustrated in Fig. 5b where ta,l = 3,
sa,l = 2 and ta,r = 0 leading to ga = 3. The third case roughly
corresponds to the third case of (18) where the left input
truncation could surpass the shift. The last case corresponds
to the gain that could be obtained by adding a truncation in
Fig. 3c.

Typically, this gain is maximized in order to decrease the
number of one-bit adders in the adder graph. Obviously,
truncations should be constrained by the error they induce.
These errors must be propagated and respect a user-given
bound for each output.

Previous works [22], [23] underestimate the truncation-
induced errors resulting in an output error exceeding the bound
ε. This underestimation was partly mitigated by an overesti-
mation of the propagation of errors that we discuss here.

Classically, in computer arithmetic we consider the follow-
ing model to link the exact quantities and errors:

ỹ = y + ∆, where |∆| ≤ ε, (21)

where ỹ is the actually computed quantity, y is the exact
quantity, and ε is a bound on the error. This fits well for
symmetric errors, which is the case when rounding to nearest,
but overestimates nonsymmetric truncation-induced errors. We
propose to track errors using two positive bounds, εinf and
εsup, the former for the negative deviation from the exact
quantity and the latter for the positive deviation. That way,
it is possible to closely link the computed quantity with the
exact quantity:

y − εinf ≤ ỹ ≤ y + εsup. (22)

This equation holds for positive quantities and the following
error-analysis assume that all the quantities are positives. Mi-
nor sign adjustments of ε’s and reversing inequality relations
are necessary to extend our analysis to negative quantities.

In order to correctly propagate the errors, we start by inves-
tigating the evolution of errors when applying unary operators
used in truncated adder graphs. These unary operators are the
shift, the negation and the truncation. First, applying a shift s
to an inexact quantity ỹ is straightforward and as it increases
both error bounds:

2sy − 2sεinf ≤ 2̃sy ≤ 2sy + 2sεsup. (23)

Second, the negation applied on an inexact quantity ỹ does
not increase the overall error but swaps the deviations from
the exact quantity y like so:

−y − εsup ≤ −ỹ ≤ −y + εinf . (24)

Finally, when applied to a quantity ỹ, truncation up to the
t-th bit, �t (·), removes information. This can increase the
negative deviation εinf but not the positive deviation εsup, thus
the error bounds increase asymmetrically:

y − εinf − εt ≤ �t(ỹ) ≤ y + εsup + 0, (25)

where εt is bounded by the quantity it removes from ỹ:

εt ≤ 2t − 1. (26)

The bound is reached when all truncated bits are 1’s. However,
truncations could induce bits equal to 0 in the data path, as
illustrated in Fig. 5c, and keeping track of these trailing 0’s,
denoted z, allows for tighter bound on the truncation errors:

εt ≤ max
(
2t − 2z, 0

)
. (27)

To be able to use this bound, we add an integer variable za,
for each adder a, that keeps track of the number of trailing 0’s
induced by truncations or propagated from the inputs. In some
cases where truncated bits are all zeros, as in Fig. 5d, we can
even have error-free truncations. And with our approach, the
ILP solver will automatically privilege those.

Finally, we need to propagate errors through adders which,
for two inexact inputs, ỹ1 and ỹ2, adds error bounds together:

y1 + y2 − εinfy2 − ε
inf
y2 ≤ ỹ1 + ỹ2 ≤ y1 + y2 + εsupy1 + εsupy2

(28)

For each operand, we defined a dedicated propagation rule.
Our end goal is to bring them all and to bind them in a single
error propagation rule. For each adder, a, we define variables
for error bounds

(
εinfa , εsupa

)
which need to be bounded by the

user-given acceptable output error ε:∣∣εinfa ∣∣ ≤ ε and |εsupa | ≤ ε. (29)

Together with left and right truncations ta,i, we propagate(
εinfa,i, ε

sup
a,i

)
, and Fig. 5a sums up the interconnections between

these variables.
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The propagation rule for each adder a is as follows:

εinfa =


(

2sa,lεinfa,l + εta,l

)
+
(
εinfa,r + εta,r

)
, if Φa,l = Φa,r,(

2sa,lεinfa,l + εta,l

)
+
(
εsupa,r + εta,r

)
, if Φa,r = 1,(

2sa,lεsupa,l + εta,l

)
+
(
εinfa,r + εta,r

)
, if Φa,l = 1,

(30)

εsupa =


2sa,lεsupa,l + εsupa,r , if Φa,l = Φa,r,

2sa,lεsupa,l + εinfa,r, if Φa,r = 1,

2sa,lεinfa,l + εsupa,r , if Φa,l = 1.
(31)

Finally, the propagated errors can force the result of the
adder to the next binade w. r. t. the one deduced by (15). To
prevent the risk of overflow, we adjust the MSB taking the
error into account:

2msba ≥ xca + |εsupa | , (32)

where x is an upper bound on the maximum of the absolute
values of lower and upper bounds of x. The solver will chose
itself if it is more interesting to increase the MSB in order to
gain more from truncations or not.

We do not give the full mathematical model in this paper
but it is available alongside the open-source implementation.

VII. EXPERIMENTS AND DISCUSSION

We have implemented the ILP model-generation as an open-
source tool called jMCM1. We used the modeling language
JuMP [30] to implement the model generator, which can
then use any generic MILP solver supported by JuMP as
backend. We chose the Gurobi 9.5.1 [31] solver executed with
4 threads on an Intel® Core™ i9-11950H CPU at 2.60GHz
and a time limit of 30 minutes. We also fully automate a
tool-chain with FloPoCo [24], a state-of-the-art hardware code
generator for arithmetic operators, to produce VHDL which
we then synthesized for FPGA using Vivado v2018.2 for the
xc7v585tffg1761-3 Kintex 7 device.

In this section, we will compare the impact of our models on
different metrics, especially hardware metrics that are targeted
only indirectly. With these experiments, we want to confirm
that minimizing the adder depth does positively impact the
final hardware delay or that a focus on one-bit adders permits
to reduce the hardware cost. The research questions we answer
in this section are summarized into five main questions:
(RQ1) Does taking the adder depth into account lead to better

hardware?
(RQ2) Do adder graphs with less one-bit adders permit cost

reduction in the final hardware?
(RQ3) What is the impact of intermediate truncations?
(RQ4) How increasing error bound can decrease the synthe-

sized hardware costs?
(RQ5) How does our approach scale w. r. t. the number of

coefficients, their word length, etc.?
To answer these questions, we solve all our models on

benchmarks from image processing (11 instances) that have
already been used to compare MCM algorithms [15], [32].

1Available on git: https://github.com/remi-garcia/jMCM

We extend our tests on the whole FIRsuite project (75 in-
stances) [33], which is a collection of digital filter designs
and is a direct application of the MCM problem. We solved
multiple flavors of the MCM problem, four to be precise,
producing hundreds of adder graphs. Using FloPoCo and
Vivado, we synthesized all these adder graphs and extracted
the number of LUTs, the delay and power (we present the sum
of the logic, dynamic and signal powers). For conciseness,
detailed results in TABLE III are shown only for the image
processing benchmark, while the statistics are discussed over
the full set of 86 benchmarks. The detailed report is available
on git and results are reproducible in an automated way.

A. Optimization settings and timings

One of the advantages of ILP-based approach is that a
“good” candidate solution is available after the first several
second of resolution, even if optimality over a huge design
space is too difficult to prove by a generic solver. And in most
cases that we observed, the solver either proves the optimality
within first 10 seconds, or timeouts. To be precise, for the
metrics based on number of adders, we could prove optimality
for two thirds of benchmarks, and for models targeting one-
bit adders it decreases to only a third of proven optimal
results. With the ILP modeling for MCM, the complexity
of the problem is not necessarily in the number of target
coefficients, as we could quickly solve large instances and
struggle with smaller ones, but in the coefficients themselves.
One limitation is, however, data representation in the ILP
solvers and potential numerical instabilities that can arise.
In our benchmarks, we detected that starting from 12 bits,
optimality could not be proven, but good candidate solutions
were found for coefficients up to 19 bits.

Since solving the MCM-Adders problem permits to quickly
obtain adder graphs with a low number of adders, we use it as
a warm-start for the MCM-Bits or tMCM in order to speed up
the resolution of complex models. And for any model, we give
a bound on the number of adders by either using the RPAG
library [25], if available, or the CSD greedy algorithm [8].

In many cases the MCM circuits are used in an iterative
way, hence the output result is truncated to some inter-
mediate format and then re-injected in the circuit, so that
the input/output word lengths are the same. For the image-
processing benchmarks an 8-bit input/output word length is a
reasonable choice, hence we limited the error to a single unit
of least precision (ulp) of the output precision. When taking
the error of last rounding into account, we obtain that the error
bound for internal truncations is actually half an ulp.

B. RQ1: the impact of simultaneous adder count and adder
depth minimization

We start by analyzing the first improvement to the corrected
MCM-Adders model, which is the simultaneous minimization
of AD, as a secondary objective to the adder count. In 13 out
of 86 benchmarks we exhibited a decrease of the AD by 1 and
up to 4 stages, for the same minimal number of adders. Solving
the MCM-Adders led to many adder graphs with AD greater
than 4 and up to 6, while MCMmin AD shows that for every

https://github.com/remi-garcia/jMCM
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Fig. 6: The cost reduction of proposed models compared to
the corrected [6]. Here tMCM is for 8-bit inputs and faithful
rounding to 50% of the output word length.

TABLE II: Correlation between different metrics and actual
hardware cost

#adders #one-bit adders adder depth

#LUTs 0.9602 0.9967 0.2367
Delay 0.6623 0.5996 0.0915
Power 0.9812 0.9659 0.2592

instance of our benchmarks there exists an adder graph with
AD ≤ 4. The running times were similar to our MCM-Adders,
though some solutions were not proven optimal anymore.

Minimizing the AD is an empirical approach to lower the
delay of resulting hardware, its area and power. In Fig. 6 we
exhibit, with the red bars, the reductions in each metric com-
pared to the corrected state-of-the-art MCM-Adders. Over the
13 instances impacted by the simultaneous AD minimization,
the average improvements are small, around 1% but can go
up to roughly 20% for all metrics. However, minimizing the
AD is not always beneficial. In the worst case, the number of
LUTs increased by 23% and the highest increases in terms of
delay and power are by 17% and 0.5%, respectively. Such an
increase is not surprising, since reducing the AD changes the
topology and might pass by fundamentals having a big one-
bit adder cost. This result is nevertheless an outlier among 86
benchmarks we tested.

We also investigate the correlation between adder depth
and the delay. We computed the correlation between different
metrics and the hardware cost for all our benchmarks, each im-
plemented in four flavors (MCM-Adders, MCMmin AD, MCM-
Bits, tMCM). As illustrated in TABLE II, the correlation
between the delay and the AD is r = 0.0915. We find this quite
interesting, since in previous works [6], [15] bounding the
adder depth to some low value was motivated by supposedly
lower delay, which is refuted by our analysis. Indeed, as we
observed, bounding the adder depth to a value lower than
optimal, i. e., obtained with our MCMmin AD, always leads to
a larger number of adders, and consequently to a larger delay.

As a result, we do not further investigate artificially bound-
ing the AD but, by default, incorporate the automatic AD
minimization as a second objective in MCM-Bits and tMCM.

C. RQ2: hardware impact of the one-bit adder metric

The synthesis results over all 86 benchmarks demonstrate
that our approach MCM-Bits, based on counting the one-bit
adders, reduces the number of LUTs by 7.59% on average, and
19.1% at most, compared to the state-of-the-art MCM-Adders.
However, some outliers exist and in one case the number of
LUTs, the delay and the power consumption actually increased
by 11%, 41% and 19%, respectively. This is due to our
test setting, which starts with a heuristic number of adders
in the beginning, and has 30 minutes to find the optimal
solution. Allowing for more resolution time and/or giving a
good warmstart resolves the problem.

TABLE III demonstrates detailed hardware results for the
11 image-processing instances, for which MCM-Bits always
reduces the number of LUTs, though in rare cases the results
coincide with the MCM-Adders solution, e. g., for U.3-1. We
observe that minimizing the one-bit adders can sometimes lead
to a larger adder count, as in the case LP15, nevertheless sig-
nificantly improving all hardware metrics. Also, in some cases,
even if minimizing the AD is a default secondary objective,
the optimal one-bit adder solutions require more stages.

To compare the impact of the one-bit adder metric vs.
the adder count, we analyzed the correlation between each
of them and the actual hardware cost. TABLE II clearly
demonstrates that the one-bit adders are most certainly in a
linear relationship with the LUT count, with a correlation
factor r = 0.9967, which is stronger than r = 0.9602 for the
number of adders. This does not mean that minimizing the
number of one-bit adders will surely minimize the number of
LUTs, yet it is reasonable to expect it.

The one-bit adder correlation factors for the delay and power
are 0.5996 and 0.9659, respectively, which indicates a less
strong relationship, which is also worse than for the number
of adders. This analysis also confirms the detailed results in
TABLE III, where sporadic increase in delay and power for
seemingly better MCM-Bits solutions can be observed. In
general, the increase is small and could be neglected but is
probably due to a different glitch path count, which can also
be modeled and used to guide the adder topology [6].

With the above, we can conclude that using the one-bit adder
metric is more beneficial for the LUT count, regardless of
occasional increase in the adder depth and number of adders.

D. RQ3 and RQ4: advantages of truncated adder graphs

In [23] we provide a preliminary analysis and comparison
with the state-of-the-art models and our tMCM by counting
the number of one-bit-adders. On the same set of benchmarks,
we deduced that the number of one-bit adders, was on average
reduced by 25.31% compared to MCM-Bits problem.

In this work we go further and synthesize all adder graphs
for hardware. TABLE III confirms that tMCM provides major
hardware cost reductions: for 8-bit inputs/outputs, the number
of LUTs is decreased by 21.55%, the delay by 2.24% and
the power by 18.68%. Compared to the MCM-Adders, the
number of LUTs and the power consumption in our tests never
increased. However, in one case the truncations led to a delay
increased by 76%.
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TABLE III: Detailed results for the image-processing benchmarks, where Delay is in (ns), Power is in (mW)

Bench MCM-Adders MCM-Bits tMCM

NA AD #B #LUTs Delay Power NA AD #B #LUTs Delay Power NA AD #B #LUTs Delay Power

G.3 4 2 43 45 3.771 111 4 2 40 41 3.719 108 4 2 24 27 3.658 85
G.5 5 4 58 60 4.484 168 5 4 57 58 4.369 175 5 4 36 44 4.348 139
HP5 4 2 42 42 3.876 121 4 3 39 41 3.914 134 4 2 25 26 3.774 89
HP9 5 2 50 50 4.056 158 5 2 47 48 4.035 165 5 2 34 40 4.002 146
HP15 12 2 122 122 6.317 401 12 3 105 108 8.174 421 12 2 60 62 5.757 270
L.3 3 3 34 36 3.842 116 3 3 31 33 3.833 112 3 3 26 29 3.826 102
LP5 6 3 66 68 4.236 213 6 3 60 65 4.355 209 6 3 47 52 4.346 173
LP9 12 5 157 154 7.266 537 12 3 137 138 7.743 516 13 3 88 95 6.164 361
LP15 26 6 313 315 15.312 1359 27 4 250 258 9.055 1218 27 3 150 182 16.179 959
U.3-1 4 2 32 33 3.817 104 4 2 32 33 3.817 104 4 2 22 17 3.714 63
U.3-2 5 3 61 58 4.049 169 5 4 49 49 4.436 167 5 4 33 32 3.997 102

These results are also expected due to the strong correlation
factor between the LUT count and the number of one-bit
adders, which are minimized in tMCM. Similarly to the
case of MCM-Bits, truncated adder graphs in some cases
require more adders, which is natural, since there are many
different corner cases that permit to reduce the one-bit adder
count with a drawback of larger number of fundamentals.
Interestingly, in presence of truncations the adder depth might
be, on the contrary, smaller than for the MCM-Bits solutions,
significantly improving power.

Of course, this significant performance improvement re-
quires the embedded system designers to be able to provide
an a priori error bound for the outputs. However, we do
not find it unreasonable, since analyzing the finite-precision
behavior of the implemented system is expected for resource-
constrained applications. Generic static analysis tools can be
used to compute such bounds, such as [34], [35], or they can
be manually deduced for specific applications, such as has
been done for digital filters [36].

In the above discussion we fixed the accuracy of the MCM
outputs by setting the output word length to 8 bits, which is
reasonable for an image-processing benchmark. In general, as
the coefficients have different magnitudes, this meant that for
some instances 8-bit output contained the exact result, and for
some only a fraction of it. In order to present a fair general
comparison, we now vary the error bound for each instance
and first remove a quarter, and then a half of the exact output
word length. For example, if the full-precision result requires
16 bits, we solve tMCM to faithfully round to 12 bits and then
to 8 bits. In cases when the coefficient magnitude is close
to that of the input, keeping half of the result bits is quite
reasonable, as it basically corresponds to maintaining the same
input/output size. This experiment also permits us to see how
varying the error bound impacts the hardware cost and might
help to find the sweet spot between accuracy and resources.

On average, reducing the output word length by 25% results
in 6.2% one-bit adders reduction, compared to full precision.
Leaving only 50% of the output bits permits to significantly
change the topology of the adder graphs (as illustrated by the
adder depth and adder count change in) and obtain, on average,
the reduction of 28.87% in terms of one-bit adder count. This
significant improvement is also reflected in the actual hardware

metrics, as illustrated in Fig. 6, reaching in some cases a 61%
reduction in LUTs.

E. RQ5: scalability of our approach

a) Number of target constants: We tested our approach
on the 75 instances from FIRSuite and 11 from image-
processing. These instances have from 3 and up to 121 target
constants. During pre-processing, we modified the constants to
make them positive and odd, leading to the maximum instance
size reduced to 51 unique target constants. We observed that
increasing the number of target constants does not necessarily
increase the difficulty, e. g., one of the FIRSuite instances
with 19 target constants is solved in less than a second.
On the contrary, more target constants might lead to a more
constrained design-space, and hence faster resolution time.
This is why applications like inference for deep neural network
controllers that have several hundreds of constants in each
layer, can be achievable for small word lengths, especially after
pre-processing. It is the values of the constants that represent
the main criteria fixing the complexity of an instance, which
makes the necessary resolution time hard to estimate a priori.

b) Target constants word length: The target constants
from the FIRSuite project are represented with word lengths up
to 19 bits. Due to the solvers’ integrality tolerance, our model
is sensible to numerical instabilities when a target constant
requires more than 12 bits to be represented. This tolerance
can be adjusted at the cost of higher solving time and the
issue is common to ILP models. At the current state of the
MILP solvers, the largest target coefficient word length that
can be reasonably handled is around 20 bits, otherwise the
solver cannot ensure the correctness of the solution. In any
event, we ensure that the returned solution is a correct adder
graph, verifying the topology a posteriori. For larger constants,
a workaround involving a multiple-step process should be
developed. For example, constants used in cryptography are
usually hundreds of bits and could be split into multiple
smaller constants, for which an MCM instance is solved and
whose result is collected back, as recently proposed by Aksoy
et al. [37].

c) Input word length: On every instance, we solved the
MCM-Bits considering an 8-bit input word length. For image
processing benchmarks we additionally experimented for 16-



11

bit and 32-bit input word lengths. Interestingly, proving opti-
mality is easier when increasing the input word length: LP9
benchmark timed out for 8- and 16-bit input word length but
for the 32-bit input word length the solver proved optimality
in less than a minute. For higher data word lengths, the solver-
related numerical instabilities might lead to errors in the one-
bit adder count, hence to an overflow in the intermediate data
paths. Our post-processing permits to avoid returning invalid
results.

VIII. CONCLUSION

Many approaches exist for solving the MCM problem
but they mostly rely on solving the MCM-Adders problem,
i. e., with a high-level metric. In this work we propose a
low-level metric based on counting the number of one-bit
adders, and tackle the MCM problem in different flavors: from
minimization of the adder depth as a secondary objective, to
adding intermediate truncations whilst computing a faithfully
rounded output. With this work, the non-trivial MCM design-
space exploration is automated and delegated to powerful ILP
solvers, liberating the designers to study high-level questions,
such as definition of the input/output word lengths for their
application.

The proposed ILP model is versatile and numerous ex-
tensions are possible through adding new sets of variables
and constraints, as we showed by adding support for trun-
cations. In future, we could track the number of NOT gates
and differentiate between full and half adders to fine-tune
the model for ASICs. Moreover, our MCM model can be
incorporated into the design of more complex algorithms. For
instance, it can replace MCM-Adders in a digital filter design
approach [2] or quantization-aware training of multiplierless
neural networks [4].

We kept our focus on FPGA design but most of this work
directly applies to ASICs. As a perspective, refining the one-
bit adder metric into half-adders and full-adders could further
improve the results for ASICs. We did not consider the use of
DSPs in this work but we believe that combining our one-bit
adder approach with, for example, [38] would permit to take
maximum advantage of the built-in component of FPGAs.

Given enough time, our tool permits to find optimal
solutions and prove optimality with an exhaustive search,
or quickly propose good candidate solutions. Overall, we
proposed a push-button tool with various options allowing
for tackling the MCM problem with respect to many end-
user needs.
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APPENDIX
APPLICATIONS

A. High-level vs low-level metrics for fully parallel neural
network implementation

Another pertinent application for multiplierless MCM are
neural network controllers (NNCs) implemented in embedded
systems running in real-time. NNCs are neural networks typi-
cally implemented with just a few hidden layers and their goal
is to serve as a cheaper, faster and more robust substitute to
classic numerical control algorithms [a], [b], [c]. A typical ap-
proach is to use High Level Synthesis (HLS) to generate FPGA
implementations, which do not necessarily take advantage of
the structured nature of DNNs or optimize the dense layer
computation. Hence, it is pertinent to explore the possibility
of applying our MCM techniques to replace the dense layer
matrix computation by fully-parallel adder-graphs, one for
each neuron. Some work in combining MCM and NNCs has
recently been done [4] in the context of quantization-aware
training, where the float32 model was retrained for low-cost
MCM solutions. However, as retraining is not always possible,
here we explore a direct application of MCM to quantized
NNC weights.

Our goal here is to test the scalability of the proposed
MCM formulations and evaluate possible gains of the low-
level MCM-Bits model w. r. t. MCM-Adders on a real-life
NNCs. Testing the tMCM model would require an in-depth

TABLE IV: Optimization results for the two NNC bench-
marks. #Uhl the average number of target coefficients in hidden
layer MCM instances.

∑
NA and

∑
#B are the total number

of adders and one-bit adders, respectively. R is the number of
adders/number of unique coefficients ratio.

NNC Model #parameters #Uhl
∑
NA

∑
#B R

ACC3
MCM-Adders

920 18.6
995 20119 1.16

MCM-Bits 1022 18148 1.19

Tora
MCM-Adders

20500 68.5
14460 293439 1.03

MCM-Bits 14462 242539 1.03

error analysis of the NNC to deduce the accuracy requirement
for each layer. As the scalability of tMCM model is closely
correlated with the one of MCM-Bits, we leave this research
question out of scope of this paper.

a) Benchmarks: For our experiments, we consider two
neural networks from the ARCH competition [d]: ACC3,
which is an adaptive cruise control system of a car and Tora
benchmark, which controls transitional oscillations. The ACC3
network has 5 inputs, passing through 3 hidden layers with
20 neurons each, and has an output layer of dimension 1.
The Tora benchmark has 4 inputs, 100 neurons in each of 3
hidden layers and an output layer of dimension 1.

b) Word lengths: The weight matrices from the ARCH
competition are given in float32 format, hence the question
of quantization to fixed-point arises. The difficulty here is
that for NNCs weight quantization impacts not only the mean
square error (MSE) of the network, but also the safety of the
controller. In [4], it was shown that using the NNV tool [e]
which performs a formal verification for NNCs, and some
retraining, 8-bit FxP coefficients yield a safe controller with
an MSE similar to the baseline float32 model. For the input-
output word length of each layer, which is necessary for the
MCM-Bits model, we chose 16 bits, which is typical for the
application. This is a naive yet sensible baseline choice, and
better results can be obtained with additional error analysis of
the NNC.

c) Target coefficient set sizes: For each layer we replace
an N × M matrix multiplication with N adder graphs for
M constants each. For example, the first hidden layer of
Tora controller requires solving 4 MCM problems for at
most 100 constant weights. As both controllers have only one
output, the output layer actually requires only single constant
multiplications (SCM). In total, we solved 45 instances of
MCM and 20 instances of the SCM problem for ACC3, and
204 MCM and 100 SCM instances for Tora. In Tora, each
instance of the hidden layer, after removing the duplicates
during pre-processing, had on average 65.8 target coefficients,
and ACC3 had 18.6 unique coefficients, on average.

d) Results: In our experiments we observed that with
MCM-Adders, the number of adders per adder graph is
roughly equal to the number of target constants plus a few
overhead adders. This number of overhead adders tends to
decrease with the number of target constants: larger instances
are easier to solve when counting the number of adders. The
adder depth ranged from 2 to 10, independently of the target
set size and deep adder graphs occurred in both NNCs. For

https://www.gurobi.com/
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ACC3, we observe that 1.16 adders are required per target
constant, while 1.03 adders per target constant is enough for
the larger NNC Tora. In general, in both the NNCs and digital
filter applications, we observe a positive trend that increasing
the number of unique target coefficients does not represent a
bottleneck for our MCM approach.

These experiments again confirm that when we consider the
lower-level metric in MCM-Bits, the number of one-bit adders
is decreased by 10% for the smaller network, ACC3, and by
17% for the larger network, Tora. The detailed values are
presented in Table IV.

To conclude, application of our MCM models for safety-
critical NNCs yields promising results. Using a static analysis
for rounding error propagation, e. g. Daisy [34], will permit to
better decide on the input/output word lengths for our model.
Moreover, solving a (mixed-)precision assignment problem
between layers will permit to also apply the tMCM model
and further reduce the resource while providing precision
guarantees.

B. Very large constant multiplication for cryptography

Multiplierless implementation of MCM can also be use-
ful for cryptographic applications. These applications usually
involve multiplications with very large constants. A single
constant which is represented with hundreds of bits can be
split into multiple smaller word length constants. Then, the
multiplication can be rewritten as

C × x = (c0 + 2s1c1 + · · ·+ 2sncn)× x (33)
= c0 × x+ 2s1 (c1 × x) + · · ·+ 2sn (cn × x) . (34)

The multiplication of the input x by the target constants ci can
be solved using an MCM and the overall result then can be
computed using shifts and n adders. The splitting part can be
optimized and Aksoy et al. [37] recently proposed a heuristic
to solve this problem and used various techniques to solve the
MCM part.

Our intention is to illustrate that our proposed MCM-Adders
model can be used as well. Hence, we leave the use of heuristic
out of scope and consider a naive split every p bits to generate
an MCM instance.

For our experiment, we took a 204-bit constant C from the
definition of Anomalous elliptic curve described in [f]

C = 153478980553715805908905767

21314318823207531963035637503096292.

We test our MCM-Adders in two settings: we split the constant
into 8- and 12-bit chunks. The only heuristic we apply is to
skip consequent zeros between chunks.

As a result, in the 8-bit experiment, we obtained 25 target
constants which led to 10 unique odd coefficients. Our MCM-
Adders proved that exactly 10 adders are required to perform
the 10 8-bit multiplications. To collect these results together
as in (34), 24 more structural adders are necessary leading to
a total of 34 adders to compute C × x.

For the 12-bit experiment, we obtained a target set of 16
constants, 10 out of which are unique. Within the allocated
time, 30 minutes, our tool found a solution requiring 18 adders.

Adding the 15 structural adders to recompose the C×x yields
the total cost of 33 adders.

We observe a trade-off between the MCM cost and the
recollection cost which should be explored. To get an optimal
result given a target constant, all combinations of the size
and the uniformity of the chunks could be tested with an
external loop which can take a considerable time. Instead, it
might be pertinent to model these constraints into our versatile
ILP model and to rely on the solver to efficiently explore the
design space.
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