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Towards the Multiple Constant Multiplication at
Minimal Hardware Cost

Rémi Garcia and Anastasia Volkova

Abstract—Multiple Constant Multiplication (MCM) over inte-
gers is a frequent operation arising in embedded systems that
require highly optimized hardware. An efficient way is to replace
costly generic multiplication by bit-shifts and additions, i. e. a
multiplierless circuit. In this work, we improve the state-of-
the-art optimal approach for MCM, based on Integer Linear
Programming (ILP). We introduce a new lower-level hardware
cost, based on counting the number of one-bit adders and
demonstrate that it is strongly correlated with the LUT count.
This new model for the multiplierless MCM circuits permitted us
to consider intermediate truncations that permit to significantly
save resources when a full output precision is not required. We
incorporate the error propagation rules into our ILP model
to guarantee a user-given error bound on the MCM results.
The proposed ILP models for multiple flavors of MCM are
implemented as an open-source tool and, combined with the
FloPoCo code generator, provide a complete coefficient-to-VHDL
flow. We evaluate our models in extensive experiments, and
propose an in-depth analysis of the impact that design metrics
have on actually synthesized hardware.

Index Terms—multiple constant multiplication, multiplierless
hardware, ILP, datapath optimization

I. INTRODUCTION

Multiplications by integer constants arise in many numerical
algorithms and applications. In particular, algorithms that tar-
get embedded systems often involve Fixed-Point (FxP) num-
bers which can be assimilated to integers. These algorithms
range from dot-product evaluation for deep neural networks
to more complex algorithms such as digital filters.

In order to save hardware resources, the knowledge on the
constants to multiply with can be used in dedicated multipli-
erless architectures, instead of costly generic multipliers [1].
The shift-and-add approach is the privileged method to reduce
hardware cost, it consists in replacing multiplications by
additions/subtractions and bit-shifts, which are multiplications
of the data by a power of two that can be hardwired for a
negligible cost. For example, multiplying an integer variable
x by the constant 7 can be rewritten as 7x = 23x−x, reducing
the cost to a single bit-shift by three positions to the left and
a subtraction, instead of a multiplication.

Given a set of target constants to multiply with, finding
the implementation with the lowest cost is called the Multiple
Constant Multiplication (MCM) problem. Typical way to
tackle the problem is to find shift-and-add implementations
represented using adder graphs, as in Fig. 1, that describe the
multiplierless solutions with the minimum number of adders.
In the following, this problem will be referred to as the MCM-
Adders. The main objective of this work is to first improve
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44000 Nantes. Email: firstname.lastname@univ-nantes.fr

the existing approaches for the MCM-Adders problem, then
push towards finer-grained hardware cost metrics counting
number of one-bit adders (the MCM-Bits problem), and
finally, use truncations in internal data paths to considerably
save resources (the tMCM problem).

It is straightforward to obtain a first shift-and-add solution
from the binary representation of the constant. A greedy
algorithm based on the Canonical Signed Digit (CSD) rep-
resentation permits to reduce the number of adders [2], [3].
Many heuristics enhance the results obtained with the CSD
method [4]–[8], but heuristics do not provide any guarantee on
the solution quality. Optimal approaches for the MCM-Adders
can be roughly divided into two categories: (i) first approaches
based on hypergraphs [9] and Integer Linear Programming
(ILP) model [10], which can be solved by generic solvers;
(ii) dedicated optimal algorithms based on branch and bound
technique proposed and further developed by Aksoy et al. [11].
In this work, we improve and extend the results of the first
category of approaches, since ILP-based modeling offers a
better versatility for extensions than dedicated algorithms, and
permits to rely on the efficiency of generic solvers.

The state-of-the-art ILP-based model for the MCM-Adders
was proposed by Kumm in [12]. This method finds optimal
solutions in terms of the number of adders in reasonable time,
and has been adapted to SAT/SMT solvers [13] for single
constant multiplication. However, we found an error in the
model which makes it miss some optimal solutions.

In this work, we use [12] as basis, correct the modeling
error for the MCM-Adders problem and build upon it to
solve other flavors of the MCM. In particular, the number
of cascaded adders, called the adder depth (AD), directly
impacts the delay of the circuit, and is hence desired to be
bounded. We first encode the AD count in our ILP model,
and secondly propose, for the first time, a new bi-objective
formulation called MCMAD, which minimizes the number of
adders and the AD simultaneously.

One of the main contributions of this paper is solving the
MCM for a low-level hardware metric based on counting the
one-bit adders, when the word length of the input x is known
a priori. Assume adder graphs in Fig. 1 taking a 3-bit input x.
While both require only three adders, the solution in Fig. 1a
requires 22 one-bit adders and the other in Fig. 1b uses only 9.
While classical bit-level optimization approaches are iterative
and require synthesis and simulations [4], [14], solving the
MCM with a fine-grained cost model is done only once. By
one-bit adders, we gather both half and full adders as logic
elements having roughly the same cost. This low-level metric
has been discussed for decades, see [4] in which a heuristic
for fixing the topology was presented. To our knowledge, we
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(a) AD = 3 (b) AD = 2

Fig. 1: Different adder graph topologies computing the same
outputs: 49x and 51x

propose the first optimal approach solving the MCM problem
targeting the one-bit adders (the MCM-Bits problem).

We further extend MCM-Bits model to solve the Truncated
MCM (tMCM) problem. Indeed, the output results of the
computations do not necessarily need to be full-precision
and in practice are often rounded post-MCM. Focusing on a
low-level metric allows to add intermediate truncations [15]–
[17] that will save resources and not waste area and time to
compute bits that will have no impact on the rounded result.
At the same time, our goal is to respect a user-given absolute
error on the result.

Some previous works address the tMCM but applied to a
fixed adder-graph and either do not give a guarantee on the
output error, e. g., the heuristic-based approach [15], or overes-
timate and sometimes wrongly-compute the output error, e. g.,
ILP-based [16]. However, as demonstrated in Fig. 4, some
adder graph topologies are better suited for truncations than
others. Hence, solving directly for tMCM and delegating the
design exploration to an ILP solver, is a better approach. In this
paper, we extend our preliminary work [17] for combining,
for the first time, adder graph optimization with internal
truncations. In particular, we tighten the error bounds and treat
several corner cases, compared to [17].

With this paper, we aim at providing a tool that democratizes
access to MCM at minimal hardware cost. We mix the
optimization techniques to model the problem, have an in-
depth look at the hardware addition to provide fine-grain cost
metrics and provide a sound error-analysis to give numerical
guarantees on the computed output. The main ideas of our
approach are presented in Section II and in the next sections
we go through the details of the ILP models. In Section VI,
we demonstrate the efficiency of our approach providing
optimization results and obtained hardware comparisons.

II. BIRD VIEW

Our approach is based on ILP modeling, which consists in
stating objectives and constraints as linear equations involving
integer and binary variables. We chose to limit our possibilities
to linear equations because it allows using efficient and robust
solving approaches embedded in commercial or open-source
solvers such as CPLEX, Gurobi, GLPK, etc. Our end goal is
to provide a tool which, given the target constants to multiply

with, the choice of a cost function and several associated
parameters, builds the corresponding ILP model. Solving the
model with your favorite solver results in an adder graph
description, which can be passed to the fixed- and floating-
point core generator FloPoCo [18] to generate the VHDL code
implementing the MCM circuit.

From the modeling point of view, we search for an adder
graph that computes the product of the input x by given target
constants. In this work, we center the model of an adder graph
around the adders and their associated integer values, called
fundamentals. The rules of construction of an adder graph are
simple:

• for every target constant, there exists one fundamental
equal to its value;

• every fundamental is a sum of its signed and potentially
shifted left and right inputs, which can be other funda-
mentals or the input x;

• every used fundamental can be traced back to the input
x, meaning that the adder graph topology holds.

The search-space for the fundamentals is deduced from
the target constants: a tight upper bound on the number of
fundamentals can be deduced using heuristics [7], [19]; and
the maximum value fundamentals can take is often restricted in
practice by the word length of the largest coefficient. To solve
the MCM-Adders problem correctly, we encode the above
rules as linear constraints. As a result of resolution, we obtain
a sequence of fundamentals, e. g., for Fig. 1a this sequence is
{1, 7, 49, 51}.

On top of that, for the MCM-Bits and tMCM problems,
each adder has an associated one-bit adder cost which must
be correctly computed depending on the values of the inputs.
Furthermore, for the tMCM problem, for each adder we
associate potential truncations for its left and right operands
which permit to reduce the adder cost. However, as each
truncation induces an error, the model of error propagation
should be incorporated as a set of constraints and the output
errors is bounded by a user-given parameter. The challenge is
to consider all possible cases and not overestimate the one-bit
adders cost and errors.

The main challenges are to translate these objective func-
tions and constraints into linear equations over integer/binary
variables. In the following, we give details for that process.

III. OPTIMAL MULTIPLE CONSTANT MULTIPLICATION
COUNTING ADDERS

A. The base model for MCM

The main challenge behind this model is to be able to
formally state the constraints fixing the adder graph topology
with linear equations. For conciseness, we also extensively
use the so-called indicator constraints, which are supported
by most modern MILP solvers, and have the form of:

ax ≤ b if y = 1, (1)

where a and b are constants, x is an integer variable and y is
a binary variable. These indicator constraints can be used as
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ca,l

←− sa,l

ca,r

←− sa,r
φa,rφa,l
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(a) Adder in adder graph

ca,l

←− sa,l

ca,r

φa,rφa,l

cnsh
a

←− −sa
ca

(b) Adder in MCM modeling

Fig. 2: Classic (left) and proposed (right) adder models

is, or linearized using big M constraints which transform (1)
into

ax ≤ b+M × (1− y) , (2)

where M is a constant large enough such that if y = 0 then
(2) is similar to ax ≤ ∞. Note that indicator constraints, when
passed as is, to common MILP solvers, might slow the solving
process. On the other hand, big M constraints are typically
faster but could lead to numerical instabilities and should be
used carefully when the value of M is order of magnitudes
higher than ax [20], [21].

To fix the adder-graph topology with linear constraints, we
first define a few sets of variables encoding adder information.
Integer variables ca correspond to the fundamentals for each
adder and ca,i, ∀i ∈ {l, r}, are the left and right inputs of
the adder a. To simplify, the adder graph input is handled
as the zeroth adder and its associated fundamental is one:
c0 = 1. Variables encoding shifts and signs are sa,i and φa,i,
respectively. Fig. 2a represents an adder and these variables
which are linked together through the relation

ca = (−1)
φa,l 2sa,lca,l + (−1)

φa,r 2sa,rca,r. (3)

It has been proven [4] that we can limit the adder graph to
odd fundamentals only, limiting the relevant shifts. Thus, it is
possible to simplify the modeling by considering only positive
left shifts, as illustrated by Fig. 2b, and let

ca = 2−sa
(

(−1)
φa,l 2sa,lca,l + (−1)

φa,r ca,r

)
, (4)

where the shifts, sa and sa,l, take values ensuring that ca
is odd. Previous work [12], did consider positive left shift
only or identical negative shifts, which is equivalent to our sa.
However, in their linearized model, integrity constraints con-
flicted with negative shifts dropping the latter when solving.
Nevertheless, negative shifts are absolutely necessary to find
optimal solution in some cases, e. g., for the target constants
C = {7, 19, 31} where 19 = 2−1 (7 + 31).

Equation (4) is nonlinear, thus multiple intermediate vari-
ables are necessary to compute ca using linear constraints only.
For instance, in order to linearize

csh
a,l = 2sa,lca,l, (5)

which involves a power of two and a product, a set of binary
variables σa,s is required with s taking values ranging from
0, meaning no shift, to an upper bound on the possible shift
Smax. These variables are used in (C8) where a constant,
20, 21, 22, etc., is multiplied with a variable removing the

Constants/Variables and their meaning

NA ∈ N: bound on the number of adders;
NO ∈ N: number of outputs;
C ∈ NNO : odd target constants;
w ∈ N: fundamentals’ word length;
Smax ∈ N: maximum shift, Smax = w by default.

ca ∈ [[0; 2w]], ∀a ∈ [[0;NA]]: fundamental, or constant, obtained in adder
a with c0 fixed to the value 1, corresponding to the input;
cnsh
a ∈ [[0; 2w+1]], ∀a ∈ [[1;NA]]: constant obtained in adder a before the

negative shift;
codd
a ∈ N, ∀a ∈ [[1;NA]]: variable used to ensure that ca is odd;
ca,i ∈ [[0; 2w]], ∀a ∈ [[1;NA]], i ∈ {l, r}: constant of adder from input
i before adder a;
csh
a,l ∈ [[0; 2w+1]], ∀a ∈ [[1;NA]]: constant of adder from left input before

adder a and after the left shift; for simplification csh
a,r is an alias of ca,r ;

c
sh,sg
a,i ∈ [[−2w+1; 2w+1]], ∀a ∈ [[1;NA]], i ∈ {l, r}: signed constant of

adder from input i before adder a and after the shift;
Φa,i ∈ {0, 1}, ∀a ∈ [[1;NA]], i ∈ {l, r}: sign of i input of adder a. 0
for + and 1 for −;
ca,i,k ∈ {0, 1}, ∀a ∈ [[1;NA]], i ∈ {l, r}, k ∈ [[0;NA − 1]]: 1 if input
i of adder a is adder k;
σa,s ∈ {0, 1}, ∀a ∈ [[1;NA]], s ∈ [[0;Smax]]: 1 if left shift before adder
a is equal to s;
Ψa,s ∈ {0, 1}, ∀a ∈ [[1;NA]], s ∈ [[Smin; 0]]: 1 if negative shift of adder
a is equal to s;
oa,j ∈ {0, 1}, ∀a ∈ [[1;NA]], j ∈ [[1;NO]]: 1 if adder a is equal to the
j-th target constant.

TABLE I: Constants (top) and variables (bottom) used in the
ILP formulation

power of two and product of variables issues. Variable σa,s
serves as an indicator of the shift s being used for adder
a, ∀s ∈ [[0;Smax]], and only one shift is selected for each
adder. All the required intermediate variables are presented in
TABLE I. These variables are used to produce the following
linear model describing the adder graph topology and the link
between fundamentals and target constants Cj :

cnsh
a = csh,sg

a,l + csh,sg
a,r ∀a ∈ [[1;NA]](C1)

cnsh
a = 2−sca if Ψa,s = 1 ∀a ∈ [[1;NA]], s ∈ [[Smin; 0]](C2)

0∑
s=Smin

Ψa,s = 1 ∀a ∈ [[1;NA]](C3)

σa,0 =

−1∑
s=Smin

Ψa,s ∀a ∈ [[1;NA]](C4)

ca = 2codd
a + 1 ∀a ∈ [[1;NA]](C5)

ca,i = ck if ca,i,k = 1 ∀a ∈ [[1;NA]], i ∈ {l, r} ,(C6)
∀k ∈ [[0; a− 1]]

a−1∑
k=0

ca,i,k = 1 ∀a ∈ [[1;NA]], i ∈ {l, r}(C7)

csh
a,l = 2sca,l if σa,s = 1 ∀a ∈ [[1;NA]], s ∈ [[0;Smax]](C8)
Smax∑
s=0

σa,s = 1 ∀a ∈ [[1;NA]](C9)

csh,sg
a,i = −csh

a,i if Φa,i = 1 ∀a ∈ [[1;NA]], i ∈ {l, r}(C10)

csh,sg
a,i = csh

a,i if Φa,i = 0 ∀a ∈ [[1;NA]], i ∈ {l, r}(C11)

ca = Cj if oa,j = 1 ∀a ∈ [[0;NA]], j ∈ [[1;NO]](C12)
NA∑
a=0

oa,j = 1 ∀j ∈ [[1;NO]](C13)
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In details, constraint (C1) states that the value of an adder
before a potential negative shift is equal to the sum of its
shifted and signed inputs. Constraints (C2), (C3) and (C5)
apply the negative shift to variables ca and ensure that the
computed fundamental is odd. It can be noticed that a potential
negative shift after cnsh

a only makes sense if the sum of the
inputs is even, which can only happen if no left shift is applied
to the left input: constraint (C4) specifically states this in
order to speed up the solving process. The link between an
adder and its inputs is enforced by constraints (C6) and (C7).
Constraints (C8) and (C9) permit to apply the shift to the left
input of an adder while constraints (C10) and (C11) apply the
sign. Finally, every target constant Cj is computed once and
only once thanks to constraints (C12) and (C13).

These constraints are sufficient to define a model for the
following decision problem: is there an adder graph with NA
adders where all the target constants Cj are computed as
fundamentals? Either the model is “infeasible”, meaning that
no adder graph exists for computing the target constants with
just NA adders, or “optimal” returning values ca, that encode
fundamentals, and corresponding shifts and signs that permit
to produce a valid adder graph as in Fig. 1.

To tackle MCM as minimization problem, which is desirable
in order to use the full potential of MILP solvers, NA can
be fixed to a known upper bound, obtained using a heuristic
solution [7], [19] or a greedy algorithm [3], and then the
objective function is to minimize the number of effectively
used adders. A binary variable, ua ∈ {0, 1}, ∀a ∈ [[1;NA]],
permits to deactivate an adder if not used: ca = 0 if ua = 0.
Then, adding to the model the objective function

min
∑

ua, (6)

permits to solve the MCM problem as a minimization problem.

B. Bounding and/or Minimizing Adder Depth

The latency of the circuit is directly related to the number of
cascaded adders or adder depth (AD). It is often preferable to
have a bound on the AD to ensure a bound on the latency, or
at least to have the minimal AD possible as a second objective,
while simultaneously minimizing the number of adders. Works
[9], [10] that rely on the search space enumeration solve the
MCM problem with an AD bound up to 3 or 4 in best case.
In this section we propose a new simple way to propagate the
AD and to optionally bound it by a user-given constant ad
and/or to minimize it as a second objective.

In order to track the AD, we introduce the variable admax,
and two sets of integer variables: ada and ada,i, ∀a ∈ [[1;NA]],
i ∈ {l, r}, representing the AD of the adder a and the AD of
its left and right inputs, respectively. Naturally, the adder depth
of the input is set at zero, ad0 = 0, and the AD propagation
and the bound are handled by the following constraints:

ada = max (ada,l + 1, ada,r + 1) , ∀a ∈ [[1;NA]], (7)

ada,i = adk if ca,i,k = 1, ∀a ∈ [[1;NA]], i ∈ {l, r} ,
∀k ∈ [[0; a− 1]], (8)

admax ≥ ada, ∀a ∈ [[1;NA]], (9)

admax ≤ ad . (10)

Note that the max in (7) can be linearized adding a set of
binary variables to the model. Constraint (9) ensures that the
integer variable admax will be equal or greater than actual
adder depth. With (10), we guarantee that the adder depth is
bounded by ad . In contrast to existing approaches [9] and [10],
this encoding of AD is performed automatically by the solver,
and does not require precomputations or a large number of
variables and constraints.

We further extend our ILP model towards the bi-objective
problem MCMAD in order to optimize for both adder count
and AD. The variable admax, which encodes the AD of the
adder graph, is used to replace the objective function (6) by

min

NA∑
a=1

(
NAua

)
+ admax. (11)

This new objective function is a weighted sum that enforces a
lexicographic optimization with the number of adders as first
objective and the AD as second. Indeed, reducing the number
of adders is unconditionally stronger than increasing the AD
because NA ≥ admax.

Solving MCMAD permits to select from the set of solutions
with minimal number of adders those which yield the smallest
delay in a hardware implementation. For example, in Fig. 1,
we propose two optimal solutions in terms of the number of
adders, NA = 3, for the target constants {49, 51}, but different
adder depths: AD = 3 in Fig. 1a and AD = 2 in Fig. 1b.
Solving MCMAD would directly find the adder graph with the
lowest adder depth among the optimal ones in terms of number
of adders.

This problem can be difficult for the solver, thus, in order to
speed up the solving process, we provide redundant constraints
that should help to reduce the search space. Gustafsson [22]
proposed some lower bounds on the AD for the target con-
stants which we can use in the following way:

ada ≥ oa,j × ad j ∀a ∈ [[1;NA]], j ∈ [[1;NO]], (12)

where ad j is the lower bound on the adder depth of the target
constant indexed by j. For our {49, 51} target set, the first
constant 49 has a minimal adder depth ad1 = 2, hence the
constraint becomes:

ada ≥ 2oa,1, ∀a ∈ [[1;NA]], (13)

enforcing the adder a to have an AD of at least 2 before con-
sidering it as a potential output for the first target constant 49.

In Section VI, we will show the advantages of MCMAD over
the classic single-objective MCM-Adders. Optimal solutions
are obtained in reasonable time when solving either problems,
and solving MCMAD provides better solutions. For that reason,
we will also consider the AD minimization as second objective
when tackling MCM-Bits and tMCM.

Similarly to bounding and/or minimizing the adder depth,
the Glitch Path Count (GPC) metric could be targeted in order
to control the power consumption [23]. In [12], Kumm showed
how to include such metric into an ILP model and this can be
adopted for our solution.
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IV. OPTIMAL MULTIPLE CONSTANT MULTIPLICATION
COUNTING ONE-BIT ADDERS

Minimizing the number of adders and the AD leads to effi-
cient hardware but can also be used in software. In many cases,
optimizing w. r. t. these metrics is the best we can provide
and they already lead to a significant cost reduction. How-
ever, when specifically targeting hardware, e. g., Application-
Specific Integrated Circuits (ASICs) or Field Programmable
Gate Arrays (FPGAs), and when the word length of the
input is a priori known, it is possible to optimize using a
finer-grain metric: the number of one-bit adders. Indeed, two
optimal adder graphs, w. r. t. the number of adders, can have
a significantly different number of one-bit adders. This is
illustrated by Fig. 1: for a 3-bit input x, solution in Fig. 1a
requires 22 one-bit adders, while the one in Fig. 1b needs only
9 one-bit adders. These large differences motivate the choice
to specifically target the one-bit adder metric.

To solve the MCM-Bits problem, we enhance our MCMAD
model. In addition to the constraints fixing the adder graph
topology and keeping track of the adder depth, we need to
be able to count the number of one-bit adders. This additional
need comes with two main difficulties: first, we have to be able
to propagate the data word length which directly impacts the
number of one-bit adders required for a given adder; second,
counting the number of one-bit adders requires to consider
many cases, as presented in [14], e. g., the cost in terms of
one-bit adders differs between two adders because of shifts
and subtractions.

The former problem of word length propagation can be
decomposed into tracking the Most Significant Bit (MSB)
and Least Significant Bit (LSB) positions. Integer additions
and subtractions impact the MSB but do not change the LSB,
hence without loss of generality we can consider that the LSB
is always equal to zero. Given an upper bound on the input,
x, it is possible to compute the required MSB after any adder:

msba = dlog2 (xca)e (14)

where ca is the adder fundamental. Incorporating this nonlin-
ear constraint into our ILP model requires a few adjustments.
First, the rounding can be removed by relaxing the equality.
Second, exponentiation of both sides to remove the log2

leads to
2msba ≥ xca. (15)

The expression 2msba can be linearized similarly to shifts with
the challenge of the wider range of possible values for msba.
This permits to propagate the data word length, which is, in
the worst case, equal to the number of one-bit adders, Ba:

Ba ≤ msba + 1. (16)

However, multiple corner cases permit to save one-bit adders.
As illustrated in Fig. 3a, shifts can lead to output bits

computed without one-bit adders. Yet, one should note that
it is not always the case with subtractions, see Fig. 3c. The
MSB computation is either done by a dedicated one-bit adder,
as represented in Fig. 3a, or obtained from the carry of the
last one-bit adder, as in Fig. 3b. This can be deduced from the

(a) Some output bits are com-
puted without one-bit adders
thanks to shifts.

(b) In some cases, the MSB
can be computed by the carry
of the last one-bit adder.

(c) For subtraction, shifts do
not always permit to save
one-bit adders.

(d) When shifts are large
enough, no one bit adders are
required.

Fig. 3: Counting one-bit adders

MSB positions which depend on the fundamental values, see
(14), allowing for the gain of a one-bit adder. One-bit adders
might even not be necessary at all, as illustrated in Fig. 3d.

To wrap up, counting the number of one-bit adders, Ba,
consists in computing the word length and deducting the gains
ga and ψa,

Ba = msba + 1− ga − ψa, (17)

where ψa is equal to one if the MSB is computed by the carry
of the last one-bit adder. The gain ga is dependent on the signs,
shifts and MSBs and can be summarized as follows:

ga =

 msba if sa,l > msba,r
sa,l if Φa,r = 0
0 otherwise

, (18)

formalizing cases illustrated in Fig. 3a, 3c and 3d. To include
the computation of Ba and ga in an ILP model, we add several
binary variables to handle each condition.

As each adder a has an associated cost Ba, it is straight-
forward to formulate the objective as:

min

NA∑
a=1

NABa + admax, (19)

where NA is the number of adders the adder graph can use.
This solves the bi-objective problem minimizing the number
of one-bit adders first and the adder depth second.

For a given instance, we make the following conjecture: if a
solution of that instance requires NA adders, then the optimal
solution in terms of number of one-bit adders also requires
at most NA adders. As a consequence, we will use a bound
on NA and assume we do not exclude optimal solutions with
respect to one-bit adders.

In Section VI, our benchmarks show that solving MCM-
Bits, on average, reduces the number of LUTs by 7.59%
compared to our MCM-Adders.



6

Fig. 4: Computing 49x and 51x via the fundamental 17 leads
to only 4 one-bit adders for a 3-bit input/output.

V. TRUNCATED MULTIPLE CONSTANT MULTIPLICATION

Arithmetic operation usually increase the size of the data
paths but the full-precision result is often not required. For
instance, consider recursive digital filters, in which the result
of MCM is typically rounded to some internal word length
at each iteration. In these cases, hardware designers can
often provide an absolute error bound, ε, that the computed
products should respect. In order to avoid wasting resources
to compute the bits that will not impact the rounded result,
we propose to introduce truncations inside the adder graphs.
Fig. 5b illustrates a case when truncating a bit in one of
the adder’s operands saves a one-bit adder. Of course, a
truncation can generate an error that should be bounded and
propagated, and the truncated adder graph should respect
the bound ε. Incorporating truncations the complexity of the
problem, however it has been shown that it can significantly
reduce the final hardware cost [15], [16].

In contrast to previous works, which focus on truncations of
a fixed adder graph, we postulate that truncations should guide
the topology, potentially leading to a different adder graph than
the one obtained solving the MCM-Bits problem. Consider
for instance the multiplication by 49 and 51 in Fig. 1, where
the adder graph Fig. 1b is the MCM-Bits solution. Applying
the truncations, s.t. only 3 output bits are faithful, yields a
design requiring at least 5 one-bit adders. However, there exists
another adder graph topology, shown in Fig. 4, that requires
only 4 one-bit adders and is hence better suited for a target
truncated result.

In this Section we outline the ILP model permitting to solve
the tMCM as one optimization problem, covering the whole
design space. In Section VI, our experiments demonstrate that
when the goal is to keep only half of the output bits, our tMCM
solutions reduce the number of LUTs by 28.87% compared to
our new MCM-Bits, and by 35.93% compared to the state of
the art MCM-Adders, on average.

A. Modeling truncations and error propagation

Truncations permit to gain one-bit adders and should be
incorporated into a model in order to benefit from this possi-
bility. To do so, we add integer variables, ta,i, encoding the
position of the truncated bits from the left and right inputs

(
εinfa,l, ε

sup
a,l

)
←− sa,l

(
εinfa,r, ε

sup
a,r

)
ta,rta,l
// (
εinfa , εsupa

)
(a) Model of an adder in pres-
ence of errors ε and trunca-
tions t.

(b) Some output bits are com-
puted without one-bit adders
thanks to shifts and trunca-
tions.

(c) Truncations might induce
zeros in the output.

(d) Zeros can be truncated
without increasing the error.

Fig. 5: Counting one-bit adders and propagating errors in
presence of truncations

of adder a. Then, we update (18) in order to include the
truncations in the one-bit adders gain count:

ga =


msba if sa,l > msba,r,
max (ta,l, sa,l, ta,r) if sa,l ≥ 0 ∧ Φa,l = Φa,r,
max (ta,l, sa,l) if sa,l ≥ 0 ∧ Φa,l = 1,
ta,r if sa,l ≥ 0 ∧ Φa,r = 1,
0 otherwise.

(20)
Typically, this gain is maximized in order to decrease the
number of one-bit adders in the adder graph. Obviously,
truncations should be constrained by the error they induce.
These errors must be propagated and respect a user-given
bound for each output.

Previous works [16], [17] underestimate the truncation-
induced errors resulting in an output error exceeding the bound
ε. This underestimation was partly mitigated by an overesti-
mation of the propagation of errors that we discuss here.

Classically, in computer arithmetic we consider the follow-
ing model to link the exact quantities and errors:

ỹ = y + ∆, where |∆| ≤ ε, (21)

where ỹ is the actually computed quantity, y is the exact
quantity, and ε is a bound on the error. This fits well for
symmetric errors, which is the case when rounding to nearest,
but overestimates nonsymmetric truncation-induced errors. We
propose to track errors using two positive bounds, εinf and
εsup, the former for the negative deviation from the exact
quantity and the latter for the positive deviation. That way,
it is possible to closely link the computed quantity with the
exact quantity:

y − εinf ≤ ỹ ≤ y + εsup. (22)

This equation holds for positive quantities and the following
error-analysis assume that all the quantities are positives. Mi-
nor sign adjustments of ε’s and reversing inequality relations
are necessary to extend our analysis to negative quantities.
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In order to correctly propagate the errors, we start by inves-
tigating the evolution of errors when applying unary operators
used in truncated adder graphs. These unary operators are the
shift, the negation and the truncation. First, applying a shift s
to an inexact quantity ỹ is straightforward and as it increases
both error bounds:

2sy − 2sεinf ≤ 2̃sy ≤ 2sy + 2sεsup. (23)

Second, the negation applied on an inexact quantity ỹ does
not increase the overall error but swaps the deviations from
the exact quantity y like so:

−y − εsup ≤ −ỹ ≤ −y + εinf . (24)

Finally, when applied to a quantity ỹ, truncation up to the
t-th bit, �t (·), removes information. This can increase the
negative deviation εinf but not the positive deviation εsup, thus
the error bounds increase asymmetrically:

y − εinf − εt ≤ �t(ỹ) ≤ y + εsup + 0, (25)

where εt is bounded by the quantity it removes from ỹ:

εt ≤ 2t − 1. (26)

The bound is reached when all truncated bits are 1’s. However,
truncations could induce bits equal to 0 in the data path, as
illustrated in Fig. 5c, and keeping track of these trailing 0’s,
denoted z, allows for tighter bound on the truncation errors:

εt ≤ max
(
2t − 2z, 0

)
. (27)

To be able to use this bound, we add an integer variable za,
for each adder a, that keeps track of the number of trailing 0’s
induced by truncations or propagated from the inputs. In some
cases where truncated bits are all zeros, as in Fig. 5d, we can
even have error-free truncations. And with our approach, the
ILP solver will automatically privilege those.

Finally, we need to propagate errors through adders which,
for two inexact inputs, ỹ1 and ỹ2, adds error bounds together:

y1 + y2 − εinfy2 − ε
inf
y2 ≤ ỹ1 + ỹ2 ≤ y1 + y2 + εsupy1 + εsupy2

(28)

For each operand, we defined a dedicated propagation rule.
Our end goal is to bring them all and to bind them in a single
error propagation rule. For each adder, a, we define variables
for error bounds

(
εinfa , εsupa

)
which need to be bounded by the

user-given acceptable output error ε:∣∣εinfa ∣∣ ≤ ε and |εsupa | ≤ ε. (29)

Together with left and right truncations ta,i, we propagate(
εinfa,i, ε

sup
a,i

)
, and Fig. 5a sums up the interconnections between

these variables.
The propagation rule for each adder a is as follows:

εinfa =


(

2sa,lεinfa,l + εta,l

)
+
(
εinfa,r + εta,r

)
, if Φa,l = Φa,r,(

2sa,lεinfa,l + εta,l

)
+
(
εsupa,r + εta,r

)
, if Φa,r = 1,(

2sa,lεsupa,l + εta,l

)
+
(
εinfa,r + εta,r

)
, if Φa,l = 1,

(30)

εsupa =


2sa,lεsupa,l + εsupa,r , if Φa,l = Φa,r,

2sa,lεsupa,l + εinfa,r, if Φa,r = 1,

2sa,lεinfa,l + εsupa,r , if Φa,l = 1.
(31)

Finally, the propagated errors can force the result of the
adder to the next binade w. r. t. the one deduced by (15). To
prevent the risk of overflow, we adjust the MSB taking the
error into account:

2msba ≥ xca + |εsupa | , (32)

where x is an upper bound on the maximum of the absolute
values of lower and upper bounds of x. The solver will chose
itself if it is more interesting to increase the MSB in order to
gain more from truncations or not.

We do not give the full mathematical model in this paper
but it is available alongside the open-source implementation.

VI. EXPERIMENTS

We have implemented the ILP model-generation as an open-
source tool called jMCM1. We used the modeling language
JuMP [24] to implement the model generator, which can
then use any generic MILP solver supported by JuMP as
backend. We chose the Gurobi 9.5.1 [25] solver executed with
4 threads on an Intel® Core™ i9-11950H CPU at 2.60GHz
and a time limit of 30 minutes. We also fully automate a
tool-chain with FloPoCo [18], a state-of-the-art hardware code
generator for arithmetic operators, to produce VHDL which
we then synthesized for FPGA using Vivado v2018.2 for the
xc7v585tffg1761-3 Kintex 7 device.

In this section, we will compare the impact of our models on
different metrics, especially hardware metrics that are targeted
only indirectly. With these experiments, we want to confirm
that minimizing the adder depth does positively impact the
final hardware delay or that a focus on one-bit adders permits
to reduce the hardware cost. The research questions we answer
in this section are summarized into four main questions:

(RQ1) Does taking the adder depth into account lead to better
hardware?

(RQ2) Do adder graphs with less one-bit adders permit cost
reduction in the final hardware?

(RQ3) What is the impact of intermediate truncations?
(RQ4) How increasing error bound can decrease the synthe-

sized hardware costs?

To answer these questions, we solve all our models on
benchmarks from image processing (11 instances) that have
already been used to compare MCM algorithms [10], [26].
We extend our tests on the whole FIRsuite project (75 in-
stances) [27], which is a collection of digital filter designs
and is a direct application of the MCM problem. We solved
multiple flavors of the MCM problem, four to be precise,
producing hundreds of adder graphs. Using FloPoCo and
Vivado, we synthesized all these adder graphs and extracted
the number of LUTs, the delay and power (we present the sum
of the logic, dynamic and signal powers). For conciseness,
detailed results in TABLE III are shown only for the image
processing benchmark, while the statistics are discussed over
the full set of 86 benchmarks. The detailed report is available
on git and results are reproducible in an automated way.

1Available on git: https://github.com/remi-garcia/jMCM

https://github.com/remi-garcia/jMCM
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Fig. 6: The cost reduction of proposed models compared to
the corrected [12]. Here tMCM is for 8-bit inputs and faithful
rounding to 50% of the output word length.

A. Optimization settings and timings

One of the advantages of ILP-based approach is that a
“good” candidate solution is available after the first several
second of resolution, even if optimality over a huge design
space is too difficult to prove by a generic solver. And in most
cases that we observed, the solver either proves the optimality
within first 10 seconds, or timeouts. To be precise, for the
metrics based on number of adders, we could prove optimality
for two thirds of benchmarks, and for models targeting one-
bit adders it decreases to only a third of proven optimal
results. With the ILP modeling for MCM, the complexity
of the problem is not necessarily in the number of target
coefficients, as we could quickly solve large instances and
struggle with smaller ones, but in the coefficients themselves.
One limitation is, however, data representation in the ILP
solvers and potential numerical instabilities that can arise.
In our benchmarks, we detected that starting from 12 bits,
optimality could not be proven, but good candidate solutions
were found for coefficients up to 19 bits.

Since solving the MCM-Adders problem permits to quickly
obtain adder graphs with a low number of adders, we use it as
a warm-start for the MCM-Bits or tMCM in order to speed up
the resolution of complex models. And for any model, we give
a bound on the number of adders by either using the RPAG
library [19], if available, or the CSD greedy algorithm [3].

In many cases the MCM circuits are used in an iterative
way, hence the output result is truncated to some inter-
mediate format and then re-injected in the circuit, so that
the input/output word lengths are the same. For the image-
processing benchmarks an 8-bit input/output word length is a
reasonable choice, hence we limited the error to a single unit
of least precision (ulp) of the output precision. When taking
the error of last rounding into account, we obtain that the error
bound for internal truncations is actually half an ulp.

B. RQ1: the impact of simultaneous adder count and adder
depth minimization

We start by analyzing the first improvement to the corrected
MCM-Adders model, which is the simultaneous minimization
of AD, as a secondary objective to the adder count. In 13 out

TABLE II: Correlation between different metrics and actual
hardware cost

#adders #one-bit adders adder depth

#LUTs 0.9602 0.9967 0.2367
Delay 0.9549 0.913 0.3481
Power 0.9812 0.9659 0.2592

of 86 benchmarks we exhibited a decrease of the AD by 1 and
up to 4 stages, for the same minimal number of adders. Solving
the MCM-Adders led to many adder graphs with AD greater
than 4 and up to 6, while MCMmin AD shows that for every
instance of our benchmarks there exists an adder graph with
AD ≤ 4. The running times were similar to our MCM-Adders,
though some solutions were not proven optimal anymore.

Minimizing the AD is an empirical approach to lower the
delay of resulting hardware, its area and power. In Fig. 6 we
exhibit, with the red bars, the reductions in each metric com-
pared to the corrected state-of-the-art MCM-Adders. Over the
13 instances impacted by the simultaneous AD minimization,
the average improvements are small, around 1% but can go up
to roughly 20% for all metrics. We conclude that while MCM-
Adders is already doing a good job w.r.t. the adder depth, it
can be quite beneficial to automatically search the design space
of adder graphs with minimal number of adders for the ones
with least AD.

We also investigate the correlation between adder depth
and the delay. We computed the correlation between different
metrics and the hardware cost for all our benchmarks, each
implemented in four flavours (MCM-Adders, MCMmin AD,
MCM-Bits, tMCM). As illustrated in TABLE II, the corre-
lation between the delay and the AD is r = 0.3481. We
find this quite interesting, since in previous works [10], [12]
bounding the adder depth to some low value was motivated
by supposedly lower delay, which is refuted by our analysis.
Indeed, as we observed, bounding the adder depth to a
value lower than optimal, i. e., obtained with our MCMmin AD,
always leads to a larger number of adders that have much
bigger correlation with delay: r = 0.9549.

As a result, we do not further investigate artificially bound-
ing the AD but, by default, incorporate the AD minimization
as a second objective in MCM-Bits and tMCM.

C. RQ2: hardware impact of the one-bit adder metric

The detailed hardware results in TABLE III demonstrate that
minimizing the one-bit adders always reduces the number of
LUTs, though in rare cases the results coincide with the MCM-
Adders solution, e. g., for U.3-1. As illustrated by Fig. 6, we
reduced the number of LUTs by 7.59% on average, and 19.1%
at most for the full benchmark set.

As illustrated in TABLE III, minimizing the one-bit adders
can sometimes lead to a larger adder count, as in the case
LP15, while significantly improving all hardware metrics.
Also, in some cases, even if minimizing the AD is a default
secondary objective, the optimal one-bit adder solutions re-
quire more stages.
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TABLE III: Detailed results for the image-processing benchmarks, where Delay is in (ns), Power is in (mW)

Bench MCM-Adders MCM-Bits tMCM

NA AD #B #LUTs Delay Power NA AD #B #LUTs Delay Power NA AD #B #LUTs Delay Power

G.3 4 2 43 45 7.385 111 4 2 40 41 7.305 108 4 2 24 27 7.205 85
G.5 5 4 58 60 9.700 168 5 4 57 58 8.937 175 5 4 36 44 9.267 139
HP5 4 2 42 42 7.506 121 4 3 39 41 8.574 134 4 2 25 26 7.678 89
HP9 5 2 50 50 7.859 158 5 2 47 48 7.675 165 5 2 34 40 7.826 146
HP15 12 2 122 122 10.207 401 12 3 105 108 10.377 421 12 2 60 62 9.842 270
L.3 3 3 34 36 7.868 116 3 3 31 33 8.377 112 3 3 26 29 7.925 102
LP5 6 3 66 68 9.099 213 6 3 60 65 9.142 209 6 3 47 52 8.994 173
LP9 12 5 157 154 11.915 537 12 3 137 138 12.439 516 13 3 88 95 11.379 361
LP15 26 6 313 315 20.979 1359 27 4 250 258 15.617 1218 27 3 150 182 14.632 959
U.3-1 4 2 32 33 7.372 104 4 2 32 33 7.372 104 4 2 22 17 6.479 63
U.3-2 5 3 61 58 8.937 169 5 4 49 49 9.625 167 5 4 33 32 8.967 102

To compare the impact of the one-bit adder metric vs.
the adder count, we analyzed the correlation between each
of them and the actual hardware cost. TABLE II clearly
demonstrates that the one-bit adders are most certainly in a
linear relationship with the LUT count, with a correlation
factor r = 0.9967, which is stronger than r = 0.9602 for the
number of adders. This does not mean that minimizing the
number of one-bit adders will surely minimize the number of
LUTs, yet it is reasonable to expect it.

The one-bit adder correlation factors for the delay and power
are 0.9129 and 0.9659, respectively, which indicates a less
strong relationship, which is also worse than for the number
of adders. This analysis also confirms the detailed results in
TABLE III, where sporadic increase in delay and power for
seemingly better MCM-Bits solutions can be observed. In
general, the increase is small and could be neglected but is
probably due to a different glitch path count, which can also
be modeled and used to guide the adder topology [12].

With the above, we can conclude that using the one-bit adder
metric is more beneficial for the LUT count, regardless of
occasional increase in the adder depth and number of adders.

D. RQ3 and RQ4: advantages of truncated adder graphs

In [17] we provide a preliminary analysis and comparison
with the state-of-the-art models and our tMCM by counting
the number of one-bit-adders. On the same set of benchmarks,
we deduced that the number of one-bit adders, was on average
reduced by 25.31% compared to MCM-Bits problem.

In this work we go further and synthesize all adder graphs
for hardware. TABLE III confirms that tMCM provides major
hardware cost reductions: for 8-bit inputs/outputs, the number
of LUTs is decreased by 21.55%, the delay by 5.15% and the
power by 18.68%.

These results are also expected due to the strong correlation
factor between the LUT count and the number of one-bit
adders, which are minimized in tMCM. Similarly to the
case of MCM-Bits, truncated adder graphs in some cases
require more adders, which is natural, since there are many
different corner cases that permit to reduce the one-bit adder
count with a drawback of larger number of fundamentals.
Interestingly, in presence of truncations the adder depth might

be, on the contrary, smaller than for the MCM-Bits solutions,
significantly improving power.

Of course, this significant performance improvement re-
quires the embedded system designers to be able to provide
an a priori error bound for the outputs. However, we do
not find it unreasonable, since analyzing the finite-precision
behavior of the implemented system is expected for resource-
constrained applications. Generic static analysis tools can be
used to compute such bounds, such as [28], [29], or they can
be manually deduced for specific applications, such as has
been done for digital filters [30].

In the above discussion we fixed the accuracy of the MCM
outputs by setting the output word length to 8 bits, which is
reasonable for an image-processing benchmark. In general, as
the coefficients have different magnitudes, this meant that for
some instances 8-bit output contained the exact result, and for
some only a fraction of it. In order to present a fair general
comparison, we now vary the error bound for each instance
and first remove a quarter, and then a half of the exact output
word length. For example, if the full-precision result requires
16 bits, we solve tMCM to faithfully round to 12 bits and then
to 8 bits. In cases when the coefficient magnitude is close
to that of the input, keeping half of the result bits is quite
reasonable, as it basically corresponds to maintaining the same
input/output size. This experiment also permits us to see how
varying the error bound impacts the hardware cost and might
help to find the sweet spot between accuracy and resources.

On average, reducing the output word length by 25% results
in 6.2% one-bit adders reduction, compared to full precision.
Leaving only 50% of the output bits permits to significanly
change the topology of the adder graphs (as illustrated by the
adder depth and adder count change in) and obtain, on average,
the reduction of 28.87% in terms of one-bit adder count. This
significant improvement is also reflected in the actual hardware
metrics, as illustrated in Fig. 6, reaching in some cases a 61%
reduction in LUTs.

VII. CONCLUSION

Many approaches exist for solving the MCM problem
but they mostly rely on solving the MCM-Adders problem,
i. e., with a high-level metric. In this work we propose a
low-level metric based on counting the number of one-bit
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adders, and tackle the MCM problem in different flavors: from
minimization of the adder depth as a secondary objective, to
adding intermediate truncations whilst computing a faithfully
rounded output. With this work, the non-trivial MCM design-
space exploration for embedded system designers is automated
and delegated to powerful ILP solvers, liberating the design-
ers to study high-level questions, such as definition of the
input/output word lengths for their application.

With the ILP-based approach, we showed that extending the
MCM-Adders problem does not require too much effort, when
the cost/constraint modeling is done, which opens an easy way
for more extensions such as the glitch path count. Moreover,
our MCM model can be incorporated into the design of more
complex algorithms that use MCM, such as digital filters [31].

We kept our focus on FPGA design but most of this work
directly applies to ASICs. As a perspective, refining the one-
bit adder metric into half-adders and full-adders could further
improve the results for ASICs.

Overall, we proposed a tool with options allowing for
tackling the MCM problem with respect to many end-user
needs. Given enough time and numerical robustness of the
MILP solver, the solving process permits to find optimal
solutions and prove optimality with an exhaustive search, or
propose candidate solutions if a timeout is fixed.
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