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Abstract
The omnipresence of services offered by diverse applications leads

customers to share more and more personal data, among which some
are sensitive. Dishonest entities perform inference attacks by querying
non-sensitive data in order to deduce the stored sensitive data. Detecting
those attacks is still an open problem in a setting where a dishonest entity
has access to distinct data controllers’ databases containing data collected
from the same customer. This problem has been addressed considering a
centralized detection system. However, this approach is limited because of
this centralized nature where the system protects the customers’ privacy
at the expense of the data controllers’ privacy. Hence, we propose in this
article the description of a distributed architecture to detect inference
attacks in a multi-database context, while preserving the privacy of both
the applications and the customers.

1 Introduction
Nowadays, individuals are used to share both non-sensitive and, more carefully,
sensitive personal data with distinct applications, in order to benefit from a
multitude of services. The data controllers are collecting, storing, and sharing a
part of this information with external entities based on the individuals’ consent
[Ger+18]. Hence, access control systems are leveraged in order to protect the
sensitive data against unauthorized direct access. Yet, dishonest entities perform
inference attacks on sensitive data by querying non-sensitive data, for which they
have an authorized access, to deduce the sensitive data stored in the databases
[FJ02]. Inference detection systems (InfDSs) have been proposed in the literature
with the aim of protecting a single personal database against inference attacks
[CC08]; [GMB17]; [TFE10]; [CM03]. However, this issue is still open in a setting
where a dishonest entity has access to databases managed by distinct controllers
containing data collected from the same customers.
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To illustrate this threat, let us consider an example in which a customer
creates an account on two distinct applications: Train and Flight allow to buy
train and plane tickets, respectively. At each account creation, the customer is
invited to share some of their personal data (e.g., name, age, sex, and so on).
Locally, the services protect the customers’ privacy thanks to both an access
control system and an InfDS. While respecting the consent of customers, the
services share the non-sensitive data with authorized entities. In this setting,
when a dishonest but authorized entity tries to gather a subset of non-sensitive
data related to a targeted customer in a single application, the InfDS of this
application will detect and prevent any queries leading to an inference attack.
However, by leveraging the fact that the targeted customer has subscribed to
the two services, and that the two services are asking for a common subset of
personal data, the dishonest entity queries a subset of non-sensitive data from
each application so that an inference attack becomes possible once combining the
two subsets of personal data. In this case, the inference attack is not detected
locally by the InfDSs since the queried subsets are not harmful when considered
separately. This example illustrates the threat of inference attacks exploiting
the distributed dependency strategy (DDS) [WB10].

In order to cope with this kind of inference attacks an InfDS must: (i) keep
track of the information that each entity obtains from all the collaborating
applications; (ii) be able to identify the semantic similarities between differently
formatted data managed by distinct applications. This observation has motivated
a previous work by Lachat et al. [LRB20] to address this problem by making the
applications collaborate with a centralized InfDS. The work presented in [LRB20]
is based on the two knowledge representations proposed by Chen et al. [CC08]: the
Semantic Inference Model (SIM) which represents the probabilistic dependencies
of a database at schema level, and the Semantic Instance Graph (SIG) which
reflects the dependencies expressed by the SIM at instance level. We proposed
the Global Instance Graph (GIG) which is composed of all the SIGs of the
collaborating applications, extended with a new kind of links (i.e., the semantic
links) representing semantic similarities between attributes of distinct databases.
In order to build the GIG, the centralized detection system requires to have
access to the schema of every database in order to identify the similarities, as
well as to the instances from distinct databases in order to incorporate those
similarities in between the SIGs.

The solution lacks privacy for both individuals’ data and databases schema
shared with the centralized InfDS, which discourages the applications to collabo-
rate with such a system. Therefore, to increase the acceptance of such a detection
system, it should be able to detect inference attacks without centralizing and
having access to the schema and the instances in clear. Hence, a distributed
InfDS must satisfy the following requirements in this multi-database context:
(i) The GIG has to be build in a distributed way preventing any schema and
data disclosure. (ii) The knowledge that an entity obtains by issuing a query
has to be propagated to all the collaborating applications to correctly keep track
of the queried information, while limiting the impact on the query answer time.
Thus, such a system will provide the required warranties in order to increase the
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motivation of applications to participate.
The main contribution of this paper is the proposition of a first solution

towards the distributed detection of inference attacks, which protects both
customers’ and applications’ privacy based on Chen et al. solution.

This paper is organized as follows: Section 2 presents the limitation of
inference detection systems w.r.t the described issue. Section 3 presents the SIM
and the SIG, the two models on which is based Chen et al. solution. Section 4
describes our solution for the distributed detection of inference attacks. Section 5
presents the conclusion and the future research directions.

2 Related works
In this section, we review the related work in the field of inference detection and
raise their limitations to overcome the issues listed in Section 1. Most of the
proposed solutions focus on inference attacks on a single database.

Chen et al. [CC08] and Guarnieri et al. [GMB17] propose to tackle inference
attacks by building a model which represents probabilistic inference channels.
Guarnieri et al. propose a system where one module acts as a policy decision
point whereas the other checks inference attempts. The two solutions address
inference attack detection with the assumption of protecting a single static
personal database. The solution of Guarnieri et al. works under the assumption
that only closed queries are issued to the database.

The system presented by Toland et al. [TFE10] models the Functional
Dependencies (FDs) within a database to compute the disclosed knowledge each
time a query is issued. In their work the FDs are limited to logical dependencies.
This work is the only one that considers database updates (i.e., tuple updates,
deletion or insertion), by storing the most recent updates in the query history
log. This solution however focuses on protecting a single personal database.

Similarly to Chen et al., Chang et al. [CM03] propose a mechanism which
reasons on the probabilistic dependencies among attributes, but for a distributed
personal database. The authors are focusing on a distributed database, the solu-
tion is not suitable to model the semantic similarities between databases owned
by distinct applications, thus having different schemas. Lachat et al. [LRB20]
extend the work of Chen et al. in order to detect inference attacks exploiting
multi-database inference channels using data linkage techniques. While Lachat
et al. is the only work which, to the best of our knowledge, focuses on protecting
multiple databases, it leads to the limits described in Section 1.

3 Detection in presence of a single database
The contribution presented in this article relies on two models proposed by
Chen et al. [CC08]. In this section, we provide a short description of the
Semantic Inference Model (SIM) and the Semantic Instance Graph (SIG). The
SIM represents existing probabilistic dependencies at the schema level. This
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(a) Semantic Inference Model (SIM).
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(b) Semantic Instance Graph (SIG). The sensitive attribute is in orange
(LAX_TAKEOFF...) and the queried attributes are in red (C5_MIN_LAND...,
C5_MIN_RW..., LAX_ELEV...).
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Figure 1: Example of a SIM and a SIG. Partial reproduction of Fig.1 in [LRB20].

model is based on the Probabilistic Relational Model (PRM), which itself relies on
Bayesian networks. According to [Get+01], the PRM “[...] allows the properties
of an object to depend probabilistically both on other properties of that object
and on properties of related objects”. This model is composed of a skeleton
and parameters. The skeleton describes the direct influences between parents
attributes and some child attribute (i.e., a DAG). The parameters define the
Conditional Probability Distribution (CPD) between a child attribute and its
parents. The CPDs represent the probabilistic distribution of a given snapshot of
the stored data. Chen et al. define three kinds of links for the SIM: (i) dependency
link: which corresponds to an edge in the skeleton of the PRM, (ii) schema
link: which models relationships between primary keys and foreign keys, and
(iii) semantic link: which represents an influence between attributes which can
be manually specified based on domain knowledge for instance. In order to
reason on queries selecting specific instances of the database, the dependencies
of the SIM must be instantiated at the instance-level. This results in a SIG
where the nodes of the graph represent an instance attribute value. To detect
inference attacks based on the SIG, the system administrator must first define
which attribute are considered as sensitive in the SIM as well as defining for each
of them an inference threshold. Each queried parent attributes will modify the
percentage of confidence an entity has concerning the sensitive child attribute.
Hence, when a new query is issued to the protected database, the detection
system applies an evidence on each of the selected nodes in the SIG. Then, the
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system checks whether the probability of a sensitive attribute becomes greater
than its defined inference threshold.

In the following we develop an example, extracted from [CC08], based on the
SIM and SIG depicted by Figure 1 in order to illustrate how the solution of Chen
et al. [CC08] works. Here, a subset of the SIG makes references to three distinct
instances: LAX, R1, and C5 which correspond to an airport, a runway, and an
aircraft, respectively. Each attribute is prefixed with the name of its related
instance to avoid any ambiguity. In this illustration, the sensitive attribute is
TAKEOFF_LANDING_CAPACITY (TLC) with an inference threshold equal
to 70%. Assuming that an entity knows, e.g., via a previous query, that C5 is
able to land on R1 from LAX and that she has queried C5_MIN_LAND_DIST
(= long) and C5_MIN_RUNWAY_WIDTH (= wide), then the entity is able
to infer the value of TLC with a confidence of 58.3%. If she succeeds to query
LAX_PARKING_SQ_FT (= large), she would be able to infer that TCL is
equal to large with a percentage of confidence of 71.5%. Since it is above the
defined inference threshold, an inference attack is detected for this last query.
Therefore, this solution is limited to detecting attacks that issue queries to the
protected database only, and not from external sources, e.g., from collaborating
data controllers.

4 Distributed detection of inference attacks
In the following, we propose a solution to the problem of distributively detecting
inference attacks leveraging the DDS. As a first step, we define two generic
assumptions. We assume that: (i) The applications are collaborating in order
to protect the privacy of their customers. (ii) The authorized entities use a
single identity when they interact with the applications (i.e., there is no collusion
between entities).

As depicted in Figure 2a, the collaborating applications are uniquely identified
and form a peer-to-peer (P2P) network to share information for the distributed
detection ❶. Each application creates and manages locally its own SIM ❸ and
its own SIG ❹, and is able to locally detect inferences thanks to the local InfDS
(see Figure 2b). Hence, upon receiving the query of an authorized entity, an
application performs two actions: (i) ■ It checks locally if the selected attribute
leads or not to an inference on its own database. (ii) ✱ It informs the other
applications about the queried information, via the P2P network, in order to let
them keep track of the knowledge obtained by the entity and to detect inference
attacks leveraging the DDS.

This second action requires that each application knows what the semantic
similarities are that exist between its own database and the databases of the
other applications. Consequently, the applications must cooperate to build a
distributed GIG while protecting their own privacy and the privacy of their
customers.

5



Application1 Application2

Application3Application4

Semantic
Repository

❶

❷ ❷
❷❷

(a) Applications collaborating via a peer-to-peer network.
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(b) Architecture of an application in the network.

Figure 2: Distributed architecture enabling the collaboration of applications in
order to detect inference attacks using the DDS.
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Figure 3: SIMs representing the dependencies within two distinct databases,
connected via two similar attributes. PAL: Physical Activity Level and CVD:
CardioVascular Disease.
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4.1 Distributed computation of the GIG
The applications must compute the GIG without relying on a centralized system,
but instead they exchange, via the P2P network, the required information to build
the GIG. Now, the risk is to leak private information to the other collaborating
applications. Hence, the required information must be shared while providing
privacy guarantees to the applications. Thus, the following privacy requirements
must be met when building the distributed GIG:

1. In the distributed context, the schema information which appears in a SIM
must be shared with other applications to be able to compute the similarity
links. However, this information must be protected (e.g., encrypted, hashed,
etc.) so that another application cannot access the name of an attribute,
while still being able to perform a schema matching technique.

2. In order to compute the semantic similarities between SIGs, the appli-
cations must identify which instances in distinct databases are related
to the same real world customers [LRB20]. The instances shared among
applications must be encoded in a way which enables the computation of
a similarity score between instances of distinct databases, while preventing
other applications to retrieve attribute values of an instance.

3. If one of the collaborating applications becomes malicious, by design the
solution must limit the information that is obtained about other applica-
tions. When an application receives information from the P2P network, it
should not be able to know from which application it originates. Hence,
both the schema and the instances must be protected using techniques to
avoid disclosing this identity.

For the first requirement, we assume that at the start of the collaboration,
each application has access to a common semantic repository (e.g., using a
generic resource such as Wikidata [Erx+14]) and maps each of its SIM nodes
to a semantic term from the semantic resource ❷. The usage of such resource
enables the data controllers to share information about their database schema,
without having to share the schema by itself. They can choose to provide precise
semantic terms to improve the accuracy of the identified semantic similarity
links, or more generic terms to reduce the schema information indirectly leaked
to the other DCs. The issues related to the requirements 2 and 3 are not tackled
in this article.

Based on those requirements, we replicate the two stages described in Section 1
to compute the GIG. First, in addition to the local SIM and SIG, each application
has a SIM table, ❺ in Figure 2b, with three columns: (i) the unique identifier
of a node (i.e., an attribute) in the local SIM (ii) the semantic term associated
to this attribute (c.f., requirement 1) (iii) one or multiple encrypted SIM node
identifiers, which have the same semantic term in other collaborating applications.
Those identifiers are stored in an encrypted way to prevent the application from
identifying the origin and the name of the attribute. Figure 3 shows an example
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where two SIMs are connected, since two attributes are semantically similar in
the two distinct databases. The SIM table enables applications to keep track of
those links between the SIMs of collaborating applications. Following the same
idea, each application has a SIG table ❻ with three columns: (i) the unique
identifier of a node (i.e., the attribute of an instance) in the local SIG (ii) the
identifier of the related attribute in the local SIM (iii) one or multiple encrypted
(c.f., requirement 1) SIG node identifiers, related to a similar instance in the
other collaborating applications. Thus, the SIG table allows the collaborating
applications to have a distributed representation of the GIG by keeping track of
the similarity links between the SIGs. Note that the way the SIM and the SIG
tables are filled in thanks to some protocols among application is an ongoing
work and will not be presented in this paper.

4.2 Local detection & Propagation of the queried informa-
tion

As described above, once receiving a query issued by an authorized entity e,
the local InfDS performs the detection in two phases. First, it uses its local
SIG to check if there is an inference attack on its own database. If so, then the
application prevents the attack by denying the query. Otherwise, it shares the
information about the queried data with the other collaborating applications, in
order to let them keep track of the knowledge obtained by the entity. The local
InfDS sends on the P2P network a message containing the protected identifier
of the queried node in its local SIG, as well as the entity’s identifier. As soon
as this message is received, each application checks that the protected identifier
of the node appears in its SIG table. If so, it updates its local SIG, indicating
that this entity e has queried this information from one of the collaborating
applications. Otherwise, it means the application does not have a similarity link
with the queried node, hence it ignores the message.

In case an entity issues at the same time multiple queries to distinct applica-
tions, it can lead to an unintended disclosure. For instance, if each application
first checks locally for an inference, they each conclude that the received query
does not lead to an inference and thus answer it. To prevent this threat, the dis-
tributed detection system implements a token distribution. In this way, when an
entity e queries a data from the database of one of the collaborating applications
p, p takes the token of the entity e and releases it once the distributed detection
is finished. Hence, any further query by the same entity could not be answered
in the mean time. Note that a more intelligent token management system with
smaller granularity could be studied to assign tokens only if the data asked in
parallel could be a threat on a data at a participating application.

The distributed detection is performed following one of the three strategies
listed below:

(i) It starts by propagating the queried information to the network ✱. (a) If
another collaborating application says that this information leads to an
inference, then the initial application concludes to not answer the query, in
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order to avoid the attack. (b) If no inference is detected, the application
checks if the query leads to an inference for its local SIG ■.

(ii) It first performs locally the detection ■, propagates the information to the
network ✱, then concludes if it can safely answer the query.

(iii) It first performs locally the detection ■, concludes based on the result
if it can safely answer the query, and propagates the information to the
network ✱.

In the two first choices, the initial application ensures that the query does
not lead to an inference, both for itself and for others. However, it increases the
query answer time, since it waits for the answer of each other application. In
the last choice the application prioritizes the decrease of the query answer time,
while still allowing other applications to keep track of the queried knowledge,
although the disclosure risk still exists.

A first implementation of the proposed distributed system is currently in
progress. The communication via a peer-to-peer network is based on the
p2pnetwork library1. The local detection of inferences is implemented based on
the pyAgrum library [DGW20] to leverage the Bayesian network data structure
(to represent the SIM & the SIG), as well as algorithms to apply evidences and
to propagate probabilities.

5 Conclusion
In this paper, we have highlighted the lack of solutions aiming at distributively
detecting inference attacks in a multi-database context, in order to protect both
the privacy of applications and the privacy of its customers. We have provided
an overview of a distributed architecture in which the detection is performed by
the collaborating applications. As a future work, we plan to formalize the three
proposed protocols. We plan to finish the ongoing prototype to demonstrate
the feasibility of our approach on a case study. Finally, we plan to evaluate and
compare the different distributed detection strategies listed in Section 4.2.
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