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INTRODUCTION

ERMANENT magnet synchronous machines are often used in the servomotor system thanks to their characteristics [START_REF] Pillay | Application characteristics of permanent magnet synchronous and brushless dc motors for servo drives[END_REF]. Since the early 2000s, studies show that Halbach machine is an interesting option for this application ( [START_REF] Atallah | The application of Halbach cylinders to brushless ac servo motors[END_REF] and [START_REF] Zhu | Recent development of halbach permanent magnet machines and applications[END_REF]). These machines must primarily meet the criteria of cogging torque, torque ripple, dynamic behavior, etc. [START_REF] Pillay | Application characteristics of permanent magnet synchronous and brushless dc motors for servo drives[END_REF]. Considering the nonlinear aspect of the stator iron is important for servomotor design. In order to estimate and validate their electromagnetic outputs, finite element model (FEM) is often used because it is more precise than an analytical model. However, for motor optimizations, an analytical model is more suitable because it is faster.

The subdomain model based on Poisson's and Laplace's equations has a compromise between accuracy and computation time [START_REF] Devillers | A review of subdomain modeling techniques in electrical machines: Performances and applications[END_REF]. A constant and finite permeability of the iron on stator teeth and tooth tips was treated in [START_REF] Djelloul-Khedda | Semi-analytical magnetic field predicting in many structures of permanent-magnet synchronous machines considering the iron permeability[END_REF]. A nonlinear material in the stator was proposed in [START_REF] Djelloul-Khedda | Nonlinear analytical prediction of magnetic field and electromagnetic performances in switched reluctance machines[END_REF] and [START_REF] Wang | Nonlinear analytical solution of magnetic field and performances of a spoke array Vernier permanent magnet machine[END_REF]. Paper [START_REF] Djelloul-Khedda | Nonlinear analytical prediction of magnetic field and electromagnetic performances in switched reluctance machines[END_REF] presented a switched reluctance machine model with nonlinear material on the stator teeth and on the rotor saliency. They were divided into one zone per tooth, where the flux density modulus was calculated at the center of each zone in order to initiate a convergence algorithm using bisection method as an iterative solving method. In [START_REF] Wang | Nonlinear analytical solution of magnetic field and performances of a spoke array Vernier permanent magnet machine[END_REF], the model used a relaxation method and the stator/rotor teeth were divided into several small zones. The stator yoke had an infinite permeability and the motor studied was a spoke array vernier permanent magnet machine.

The paper presents a comparative study of three iterative solving methods used in a convergence algorithm to consider the relative permeability of a nonlinear material used in the stator of a Halbach PMSM. The three methods are: the relaxation, the secant with a relaxation coefficient, and a combination of the both [START_REF] Press | Numerical recipes in C : The art of scientific computing 2nd edition[END_REF]. The machine studied is represented by a subdomain model with five regions which three describe the stator: tooth tips/slot opening, stator teeth/slots, and stator yoke. Finally, the modulus of flux density, used in the convergence algorithm, is calculated in the radial and tangential section that crosses the center of each zone. This approach allows to consider an average value of the flux density instead of a local value in the middle of each zone.

This paper is organized as follows. First, the semi analytical model of the studied machine is set forth. Second, the nonlinear problem and the convergence algorithm are described. Third, three methods used to update the permeability are presented and evaluated for saturated and unsaturated cases. Finally, a comparison between semi analytical and finite element model is performed.

The authors are with the Grenoble Electrical Engineering Laboratory (G2ELab), University of Grenoble Alpes, Grenoble 38000, France. (e-mail: diegocarlos.de-lima-teles@g2elab.grenoble-inp.fr; christian.chillet@g2elab.grenoble-inp.fr; lauric.garbuio@g2elab.grenoble-inp.fr; laurent.gerbaud@g2elab.grenoble-inp.fr). 

B. Hypothesis

The following assumptions, considered in the semi-analytical model (SAM) used in the paper, are:  The end effects and eddy current are neglected  The current density has only one component (z-axis)  The permeability on the rotor yoke is infinite  The magnetic materials are considered isotropic.

C. Subdomain Model

The subdomain model consists in dividing the motor into several concentric cylindrical regions in the polar coordinate system. The studied machine is divided into five regions as showed in Fig. For each region, the general formula of Poisson's and Laplace's equations are used to determine the magnetic vector potential (Az ⃗⃗⃗⃗⃗ ). These equations require knowing the distribution of the magnetization vector of the permanent magnet (M ⃗⃗⃗ ), the stator current density (Jz ⃗⃗⃗ ), and the magnetic permeability (μ), which are described by Fourier series in matrix format. The number of harmonic (NH) is an important parameter because it influences the accuracy and computation time of the solution. Once the equations for each region of the magnetic vector potential are determined, a system of linear equations is established using the boundary conditions of the studied domain. Then, this system is solved in order to calculate Az ⃗⃗⃗⃗⃗ for each region. Finally, using the Ampere's law, the flux density (B ⃗⃗ ) and the magnetic field (H ⃗⃗⃗⃗ ) can be obtained, which are used to calculate the performances of the machine for a given rotor position (θ).

D. General Solution of Magnetic Vector Potential

The aim of the paper is not to demonstrate the complete process for the characterization of Az ⃗⃗⃗⃗⃗ for each region. The semianalytical model (SAM) used in the paper was developed and presented in [START_REF] Djelloul-Khedda | Semi-analytical magnetic field predicting in many structures of permanent-magnet synchronous machines considering the iron permeability[END_REF]. Az ⃗⃗⃗⃗⃗ of each region is:

Az I | r =W I ( r R 1 ) λ I a I +W I ( R 0 r ) λ I b I +rG I ( 1 
)
Az II | r =W II ( r R 2 ) λ II a II +W II ( R 1 r ) λ II b II ( 2 
)
Az III | r =W III ( r R 3 ) λ III a III +W III ( R 2 r ) λ III b III ( 3 
)
Az IV | r =W IV ( r R 4 ) λ IV a IV +W IV ( R 3 r ) λ IV b IV +r 2 F IV (4) Az V | r =W V ( r R 5 ) λ V a V +W V ( R 4 r ) λ V b V (5)
Where "W" and "λ" are, respectively, the eigenvector and the diagonal eigenvalue matrix. G I and F IV are matrices which are influenced by M ⃗⃗⃗ and Jz ⃗⃗⃗ respectively, and "𝑎" and "b" are the column vectors of the constant unknown coefficients.

E. Boundary Conditions and Linear System

Once Az ⃗⃗⃗⃗⃗ of each region is established, then the boundary conditions are applied in order to determine the linear system to calculate Az ⃗⃗⃗⃗⃗ . On the interfaces between two regions, the boundary conditions are written as:

Az k | r = Az k+1 | r ( 6 
)
Ht k | r = Ht k+1 | r ( 7 
)
Where Ht is the tangential component of the magnetic field, k represents the region, and r is the radius. For the regions at the domain limits (Regions I and V), the boundary condition are:

Ht I | r=R 0 = 0 ( 8 
)
Az V | r=R 5 = 0 (9)
Radial and tangential components of the flux density, used to calculate the magnetic field, are determined by the Ampere's law:

Br= 1 r ∂Az ∂θ (10) Bt=- ∂Az ∂r (11)
The linear system is composed of 10 boundary condition matrix equations (two per region). All equations are collected under the form A .X=Y, where A, X, and Y represent respectively the coefficient factor matrix, the vector of unknown coefficients, and the vector of the constant values. The dimension of the whole system, and therefore, of the matrix A, is 2k(2NH+1).

III. NONLINEAR PROBLEM

A. Nonlinear Material and Zone Definition. 

B. Determination of the Flux Density in Each Zone

One part of the convergence algorithm consists in determining the modulus of the flux density in each zone. Papers [START_REF] Djelloul-Khedda | Nonlinear analytical prediction of magnetic field and electromagnetic performances in switched reluctance machines[END_REF] and [START_REF] Wang | Nonlinear analytical solution of magnetic field and performances of a spoke array Vernier permanent magnet machine[END_REF] calculate it at the middle of each zone (local value procedure). However, in this paper, the flux density modulus of each zone is determined by ΔAz between two points divided by the distance between them. By using this approach, the modulus of 𝐵 is an average value (|B ̅ |), and it is calculated by:

|B i ̅ |= √ ( Az k,b -Az k,d D bd ) 2 + ( Az k,a -Az k,c D ac ) 2 ( 12 
)
Where 𝑖 describes the zones from 1 to 36, k is either the regions III, IV, or V, D ac is the distance between points a and c, and D bd is the arc between b and d. Points a, b, c, and 𝑑 represent the middle points of each segment (D ac ) and arc (D bd ) of each zone (Fig. 2(a)). For θ=0° and a linear material, Fig. 3 (μ r =90.92) and Fig. 4 (μ r =9092) show the evolution of |B| calculated by a FEM and SAM (NH=96) on the arc, which has the machine's center as reference center and its radii passing at the middle of the regions III, IV and V. Fig. 3. Modulus of the flux density on the stator (Reg. III, IV and V) with μ r =90.92 using a linear material.

The error between FEM and SAM increases when the permeability increases. This is explained by Gibbs phenomenon [START_REF] Djelloul-Khedda | Semi-analytical magnetic field predicting in many structures of permanent-magnet synchronous machines considering the iron permeability[END_REF]. Using a local value to calculate |B i | can influence the convergence of the system due to its oscillations created by the Gibbs phenomenon. 

C. Convergence Algorithm

The algorithm in Fig. 5 is used to verify and ensure the convergence of the system. It is worth noting that n represents the iteration number, and "𝑖" describes the zone as mentioned before. 



Step.1: For the first rotor position, an initial relative permeability in each zone is imposed. For the others, the final permeability calculated in the previously rotor position point (μr_old i,n ) is used if the new computational conditions expect a magnetic state very close to the previous one.  Step.2: 𝐴𝑧 is calculated at the points a, b, c, and d of each zone.  Step.3: For each zone, |B i,n ̅̅̅̅ | is calculated.



Step.4: For each zone, μr_curve i,n is calculated by μ r (|B i,n ̅̅̅̅ |). There is a coupling effect between the zones. It means that the value of μr_curve i,n+1 will be impacted by the value of the others zones calculated at iteration n. This effect will increase with the level of the saturation in the stator.  Step.5: The relative error ϵ i,n between μr_curve i,n and μr i,n is calculated :

ϵ i,n = μr curve i,n -μr i,n μr curve i,n (13) 


Step.6: If the maximum error of every zone (Max(ϵ i,n )) is lower than a stop criterion (ζ), then the algorithm converges.

 Step.7: If the condition in step 6 is not verified, then an iterative solving method (see section IV) is applied in order to update the relative permeability of each zone. Finally, steps 2-7 are repeated until the condition in step 6 is verified.

IV. UPDATE RELATIVE PERMEABILITY STUDY

A. Conditions of the Testing of the Iterative Solving Methods

In order to test the robustness of the iterative solving methods, two values of the maximum current (I max ) are imposed with the same rotation speed 1500rpm. The current is assigned to have the maximum value of the electromagnetic torque (T em ). I max = 80A represents a strong saturation level, and for I max = 10A, the machine operates at the linear zone of μ r (B) curve (Fig. 2(b)). Fig. 6 shows the distribution of the flux density in the stator at θ=0° for these current values.

The stop criterion affects the result accuracy and the computing time. It is imposed at a constraining value (ζ<1.0%). The tests are performed at position θ=0°, and the values of the coefficients of each method are determined by the trial and error procedure with a value in [0;1]. Once a coefficient is chosen, it will not be changed and it will be the same for every zone. 

B. Relaxation Method 1) Formulation

The relaxation method is written as follow:

μr i,n+1 = μr i,n + (μr_curve i,n -μr i,n ) α rel (14)
Where α rel is a coefficient. If α rel =0, then the new value of the relative permeability does not change, and if α rel =1, then μr i,n+1 is exactly equal to μr_curve i,n .

2) Results for Saturated and Unsaturated Cases

Fig. 7 (I max =10A) and Fig. 8 (I max =80A) represent the maximum of ϵ i,n and 𝑇 𝑒𝑚 per iteration for the relaxation method for different values of α rel . In the unsaturated case, the fastest convergence is obtained for α rel =0.9 with 6 iterations, and α rel =0.3 with 39 iterations for the saturated case. It can be seen in Fig. 8 that, for 𝛼 𝑟𝑒𝑙 = 0.4 and 𝛼 𝑟𝑒𝑙 = 0.5, 𝑀𝑎𝑥(𝜖 𝑖,𝑛 ) oscillates, and therefore, it does not allow the system to achieve the stop condition with a small 𝑛. For instance, for 𝛼 𝑟𝑒𝑙 = 0.4, the oscillation decreases and it will eventually converge (𝑀𝑎𝑥(𝜖 𝑖,𝑛 ) = 1.5% at 𝑛 = 1000). It seems that choosing small values of 𝛼 𝑟𝑒𝑙 will lead a convergence for the system, even though for an extreme saturated case. Small 𝛼 𝑟𝑒𝑙 will mitigate the coupling effects. 

B. Secant Method with Relaxation Coefficient 1) Formulation

The secant method with a relaxation coefficient is defined as:

μr i,n+1 = μr i,n -ϵ i,n Δμr i,n Δϵ i,n α Sec (15)
Where 𝛼 𝑠𝑒𝑐 is the secant relaxation coefficient and

Δμr i,n =μr i,n -μr i,n-1 (16) Δϵ i,n =ϵ i,n -ϵ i,n-1 (17) 
Which allow to compute a finite difference giving the evolution of μr i,n .

This method is initiated with the relaxation method due to secant's derivative. Notably, when the value of Δϵ i,n is lower than a small criterion (freeze criterion γ), then α sec =0. It means that the relative permeability in this zone will not be changed otherwise μr i,n+1 can diverge from μr_curve i,n due to a small denominator value. This zone can be unfrozen thanks to the coupling effects between the others zones, but it is possible that the system stagnates without achieving the stop condition. It is worth noting that the use of the discrete derivative of the secant's method requires a smooth interpolation of the curve μr(𝐵) (Fig. 2(b)) to avoid divergence issues.

2) Results for Unsaturated Case

For the unsaturated case, the secant method converges with 5 iterations. Fig. 9 shows Max(ϵ i,n ) and T em per iteration for the secant method. α rel =0.3 (first iteration) and γ=5.10 -4 are imposed. For α sec =0.6, Max(ϵ i,n ) stagnates around 2.4% (n=55), and for α sec = 0.7, α sec =0.8, and α sec =0.9, it converges with 32, 35 and 41 iterations respectively. The divergence problem, illustrated by the peaks on the Fig. 9, can be explained by the approximation of the derivative in (15). Due to the coupling effects between the zones, a divergence issue in one zone can affect the others; therefore, the system may not converge. The secant method can converge faster than the relaxation method, but it has three parameters to set up instead of one. The relaxation method is more robust than the secant method in saturated cases. In an optimization problem, the lacking of robustness in the iterative solving method can be an issue.

Fig. 9. Convergence of the electromagnetic torque and Max(ϵ i,n ) of the secant method per iteration with I max =80A, α rel =0.9

(n=1) and γ<5.10 -4 .

C. Combined Method 1) Formulation

Compared to the secant method, the relaxation method should converge in extreme case of saturation but with a high number of iterations. The numerical error in the secant method, due to its discrete derivative, can also be a divergence issue. The combined method consists in using both methods in order to take advantage of each. The method is described in the following steps:  For n=1 of each cycle (each rotor position), the combined method initiates with the relaxation method, and for n>1, the secant method is preferred.  For each zone and n>1, if μ ̃ri,n+1 proposed by the secant method implies that | μr_curve i,n -μ ̃ri,n+1 | is higher than |μr_curve i,n -μr i,n |, then the relaxation method is used instead (Fig. 10). It means that μ ̃ri,n+1 proposed by the secant method would diverge from μr_curve i,n (Fig. 11). 

2) Results in Unsaturated Case

Fig. 12 shows Max(ϵ i,n ) and T em per iteration for the combined method for the saturated case. Visibly, it converges faster than the others with 15 iterations (α rel =0.3 and α sec =0.8), and therefore, it is 2.6 times faster than the relaxation and 2.1 times than the secant methods. Fig. 13 represents which method is used (orange for the relaxation method and yellow for the secant method) in the combined method for α rel =0.3 and α sec =0.8. The relaxation method is called upon 163 times of 504 (without considering the first iteration), which allows the system to converge in 15 iterations instead of 35 compared to the secant method with the same parameters. It can also be noticed in Fig. 13 that the zones "ones" of the six teeth have a high usage of the relaxation method compared to the zones "three". Overall, the zones "three" are saturated and that it is not the case for the zones "ones" (Fig. 6). A further study is required in order to fully understand this behavior.

V. RESULTS

SAM is validated by a FEM 2D, which has 66868 nodes and 33306 elements. The computer used has an Intel Core i5-6600 3.30GHz and 8Gb (RAM). The harmonic number used in SAM is 96, representing a system of 1930 equations. This value is chosen considering a compromise between computation time and accuracy. 

A. Analyze of the Local and Average Flux Density Procedure on the Electromagnetic Torque

Table I illustrates a comparison on T em between FEM, SAM using the average value of B (average procedure), and SAM with local value of B to calculate its modulus (local procedure). The convergence of using the nonlinear material is ensured by the combined method, which has α rel =0.2, α sec =0.6, and ζ<1.0%. Saturated and unsaturated cases are considered, and the simulations are made for Halbach machine with 4, 3, and 2 segments. The oscillations caused by the Gibbs phenomenon make the convergence of the system using the "local procedure" more difficult. It implies decreasing the values of α sec and α rel to converge, and therefore, it will increase the number of iterations needed. Another disadvantage of the "local procedure" is that the error on T em between FEM and SAM, calculated by the "local procedure", is normally higher than the error on T em between FEM and SAM calculated by the "average procedure". Table II compares the needed iteration in each procedure for ζ<10.0%. Overall, the number of iterations is higher for the "local procedure" than the "average procedure". One possibility of using the "local procedure" is increasing the harmonic number in order to reduce the oscillation on |B|, but the dimension of the system will increase, and therefore, the time to perform one calculus will also increase. Fig. 14 shows T em calculated by FEM and SAM for a nonlinear (M800-100A) and for a linear stator material. The flux density modulus is calculated by the "average procedure", and with α sec =0.8 and α rel =0.3. The average relative error on T em between FEM and SAM considering the linear material with I max =10A and I max =80A is 0.2%. For the nonlinear material, the errors are 0.5% and 1.7% with I max =10A and I max =80A respectively. These results consider a stop criterion ζ<10.0%, and they are practically the same as for ζ<1.0%. Considering the nonlinear effect, same amount of rotor position points, and same computer, SAM is around 3.0 and 1.7 faster than FEM with I max =10A and I max =80A respectively (Table III). For the linear case, SAM is 4.9 faster than FEM. Essentially, the computation time in SAM depends on the harmonic number, stop criterion, and saturation level. SAM takes less than one second to perform one calculus of the electromagnetic outputs. The addition of the convergence algorithm in SAM does not change significantly the time to perform this calculus. The nonlinear effect will increase the number of iterations needed to converge for one rotor position, and therefore, the computation time. It is worth mentioning that neglecting the nonlinear effect in the stator can be prejudicial when designing a servomotor. It can be seen in Fig. 14 that the average T em calculated by SAM with a linear material is higher than the one calculated by a nonlinear material model considering both courant values. This gap increases with the saturation level. In the servomotor design, the ripple torque is an important criterion and it has be as low as possible (<1.0 %) [START_REF] Flieh | Investigation of different servo motor designs for servo cycle operations and loss minimizing control performance[END_REF]. Using the model with linear material, the torque ripple is 0.05% for both I max =10A and I max =80A. However, the torque ripples are 0.7% and 4.0% respectively for SAM nonlinear material and 1.5% and 2.4% for FEM nonlinear material.

VI. CONCLUSION

In the paper, a subdomain model of a Halbach machine with five regions was presented considering the nonlinear effect on the stator. This model was validated by a finite element model.

The paper presented and tested three different iterative solving methods in the convergence algorithm for a low and high level of saturation on the stator. When the machine is not saturated, there is no major difference for the iteration number needed for converging. However, with a saturated iron in the stator, the combined method is 2.6 times faster than the relaxation method and 2.1 times faster than the secant method. Overall, the relaxation method seems guarantee the convergence of the system by choosing small values of its relaxation coefficient, but with a high iteration number. With the secant method, the system may converge faster than the relaxation method for saturated cases, however its coefficients has to be chosen carefully, otherwise the system may not converge. Even so, convergence is not guaranteed, which makes the relaxation method more robust compared to the secant method. Finally, the combined method unites the rapidity of the secant method with the robustness of the relaxation method.

The paper also presented a comparison on the electromagnetic torque using two different methods to calculate the flux density modulus for each zone in the stator. An average value of 𝐵 to determine |B| in each zone instead of a local value allows the system to converge faster with a smaller error on the electromagnetic torque between FEM and SAM. Using the "average procedure" to calculated the flux density, and the combined method in the convergence algorithm, for an unsaturated case, SAM (semi analytical model) is 3.0 times faster than FEM (finite element model), and 1.7 times faster for a saturated case. In both cases, SAM presents an average relative error less than 2.0% compared to FEM.

In future works, the combined method can be improved and refined by implementing an adaptive relaxation coefficient per zone for the relaxation and the secant methods.
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 1 Fig.1shows half geometry of Halbach PMSM studied in the paper. The machine has 12 slots, 10 poles, and Halbach permanent magnet has four segments per pole-pairs with a parallel magnetization. Its winding is non-overlapping with doublelayer.

  (1):  Region I: Permanent magnet  Region II: Air gap  Region III: Tooth tips and slot opening  Region IV: Stator teeth and stator slots  Region V: Stator yoke.

Fig. 2 (

 2 Fig.2(b) Illustrates the characteristic μ r (B) of the material (M800-100A) used in the stator of the studied machine. In order to take into account the nonlinear effect of the material, first the stator must be divided into several zones. Fig.2(a) shows a part of the stator that is segmented into 6 zones: 3 for the tip tooth (Region III), 1 for the tooth (Region IV), and 2 for the stator yoke (Region V). Since the machine has 12 slots, the stator can be segmented into 12 parts each having 6 zones (72 zones in total). Due to the symmetry of the machine, only 36 zones are needed to consider the nonlinear effect of the stator. Once the zones are established, then the convergence algorithm can be initiated.

Fig. 4 .

 4 Fig. 4. Modulus of the flux density on the stator (Reg. III, IV and V) for 𝜇 𝑟 = 9092 using a linear material.
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 5 Fig. 5. Diagram for the convergence algorithm.
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 6 Fig. 6. Visualization of the magnetic flux density distribution on the stator (FEM) for I max =10A and I max =80A , M800-100A, and θ=0°.
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 7 Fig. 7. Convergence of the electromagnetic torque and Max(ϵ i,n ) of the relaxation method per iteration with I max =10A.
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 8 Fig. 8. Convergence of the electromagnetic torque and Max(ϵ i,n ) of the relaxation method per iteration with I max =80A.
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 10 Fig. 10. Diagram for the combined method.
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 11 Fig. 11. Correction by the relaxation method in the combined method.
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 12 Fig. 12. Convergence of the electromagnetic torque and maximum error of Combined method with I max =80A and α rel =0.3.Fig.13represents which method is used (orange for the relaxation method and yellow for the secant method) in the combined method for α rel =0.3 and α sec =0.8. The relaxation method is called upon 163 times of 504 (without considering the first iteration), which allows the system to converge in 15 iterations instead of 35 compared to the secant method with the same parameters. It can also be noticed in Fig.13that the zones "ones" of the six teeth have a high usage of the relaxation method compared to the

Fig. 13 .

 13 Fig. 13. Methods used per iteration and per zone [orange -Relaxation (α rel =0.3); yellow -Secant (α sec =0.8)] with I max =80A.

  a) 𝐼 𝑚𝑎𝑥 = 10𝐴 b) 𝐼 𝑚𝑎𝑥 = 80𝐴 Fig. 14. Comparison of the electromagnetic torque of the nonlinear FEM, nonlinear SAM, linear FEM and linear SAM with μ r =4546.

  

TABLE I

 I Electromagnetic torque (Nm) calculated by the "average" and "local" procedures for α rel =0.2, α sec =0.6, and ζ<1.0%.

	Halbach	I max = 10A FEM Average Local FEM Average Local I max = 80A
	2 Seg	5.74	5.79	5.72	38.94	38.37	35.12
	3 Seg	6.36	6.38	6.15	43.66	43.35	39.51
	4 Seg	6.06	6.07	5.95	41.27	40.73	37.11

TABLE III Computation

 III time for the FEM and SAM with nonlinear material.

		FEM	SAM
		nonlinear	nonlinear
	I max = 10A	282s	94s
	I max = 80A	326s	189s