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Prediction uncertainty validation for computational chemists

Pascal PERNOT 1

Institut de Chimie Physique, UMR8000 CNRS,

Université Paris-Saclay, 91405 Orsay, Francea)

Validation of prediction uncertainty (PU) is becoming an essential task for modern com-

putational chemistry. Designed to quantify the reliability of predictions in meteorology,

the calibration-sharpness (CS) framework is now widely used to optimize and validate

uncertainty-aware machine learning (ML) methods. However, its application is not lim-

ited to ML and it can serve as a principled framework for any PU validation. The present

article is intended as a step-by-step introduction to the concepts and techniques of PU

validation in the CS framework, adapted to the specifics of computational chemistry. The

presented methods range from elementary graphical checks to more sophisticated ones based

on local calibration statistics. The concept of tightness, is introduced. The methods are

illustrated on synthetic datasets and applied to uncertainty quantification data issued from

the computational chemistry literature.

a)Electronic mail: pascal.pernot@cnrs.fr
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I. INTRODUCTION

Uncertainty quantification (UQ) is becoming a major issue for chemical machine learning (ML),1

notably for the prediction of molecular and material properties.2–10 This is also the case for quantum

chemistry, when a level of confidence on predictions is sought out.1,11–21 In these contexts, the

validation of UQ outputs is essential to enable their use in applications such as active learning or

actionable predictions for the industry.

The practice of validation methods in the computational chemistry (CC) UQ literature is quite

diverse: from absent to elaborate through inappropriate. Even appropriate methods are found in

several variants. There is clearly a lack of uniformity and of well-defined reference methods. The

calibration-sharpness (CS) framework22 provides a principled approach to ML-UQ validation.4,5,9

Scalia et al.4 distinguish two validation settings: (i) confidence- or intervals-based calibration,23

comparing the empirical coverage of prediction intervals to their intended confidence level; and (ii)

error -based calibration,24 comparing errors to their predicted dispersion (variance-based calibra-

tion would be more appropriate,25 as both validation settings are based on error statistics, and I

will use this denomination below).

In a recent article, noted thereafter PER2022,20 I explored the application of the CS framework

to the validation of CC-UQ. My goal was to derive a practical set of validation tools adapted to the

specifics of CC-UQ, notably (i) the frequent use of statistical summaries (standard or expanded

uncertainties),26 instead of the prediction distributions expected by the CS framework, (ii) the

possible presence of uncertainty on the reference data used for validation, (iii) the small size of

most validation datasets when compared to ML applications, which limits the power of statistical

tests, and (iv) the non-normality of the error distributions due to the frequent predominance of

model errors.11,27–29

Considering these constraints, I was driven into considering two validation options for calibra-

tion, based on the available information. When expanded uncertainties are available, such as U95

(the half-range of a 95% confidence interval, as recommended in thermochemistry26), calibration

should be tested by comparing the effective coverage of the corresponding prediction intervals to

the target probability. But when standard uncertainties are available, the best option to avoid

undue distribution hypotheses is to test the variance of z -scores (errors normalized by the corre-

sponding uncertainty), which should be 1. This dichotomy maps perfectly the settings of Scalia et

al.4, although implementation details may differ.

However, average calibration of a prediction uncertainty scheme over a validation set does
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not guarantee its small-scale reliability.23 When designing a prediction method, this is typically

addressed by the consideration of sharpness, a statistic quantifying the concentration of predictive

distributions. Within a set of calibrated method, one should prefer the sharpest one. However,

even the sharpest one might still fail at small-scale reliability. This led me in PER2022 to propose

local calibration analysis schemes (LCP and LZV methods), where calibration is assessed within

subsets of the validation set. This is a form of group calibration30 or multicalibration31. I will show

below how the LZV analysis relates also to the reliability diagrams introduced recently by Levi et

al.24

Being hampered by the lack in the CS framework of a concept qualifying small-scale or local

calibration, I introduce below the tightness concept. As I found few to no use for sharpness in a

pure validation context (it is mostly useful in the benchmarking or design of probabilistic prediction

methods), I mostly refer in the following to a calibration-tightness (CT) framework.

A point that was not treated in PER2022 is the case where prediction statistics, typically mean

and standard deviation, are based on small prediction ensembles. This is a frequent scenario in

ML-UQ.32,33 The robustness of the calibration and tightness validation methods in presence of

this source of statistical noise needed to be studied. Moreover, as the ML-UQ literature makes

an abundant use of ranking-based statistics I also evaluated the interest of the correlation coeffi-

cients between uncertainty and absolute errors34 and the so-called confidence curves4 for CC-UQ

validation.

The next section (Sect. II) presents a short overview of the concepts and validation methods.

Its aim is to provide a step-by-step approach to the calibration-tightness UQ validation framework

and enable, as far as possible, its use by non-statisticians. After this, readers new to the field might

like to skip the technical sections (III-V) and go directly to SectionVI for examples of application

to a variety of CC-UQ datasets.

Sect. III introduces general definitions and notations used throughout the study and also the

synthetic datasets used to illustrate the methods. Sect. IV presents simple graphical validation

checks that do not require statistical testing procedures. These might be used for screening out

problematic UQ outputs. Unfortunately, quantitative validation is often necessary to conclude

in situations where rejection of calibration or tightness is not clear cut. Quantitative methods

for ranking-, intervals- and variance-based methods are presented in Sect.V, with the necessary

statistical tools and derived graphics. Sect.VI presents applications of these tools to datasets from

the CC-UQ literature. Available software implementing the CS and CT frameworks, or parts of
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them, is presented in Sect.VII. A conclusive discussion is presented in Sect.VIII.

II. A SHORT GUIDE TO CC-UQ VALIDATION

This section provides a brief introduction to the concepts and methods for UQ validation in

computational chemistry, by guiding potential users to the choice of methods best adapted to their

data. Without further delving into the technical details, readers new to this topic should then be

able to understand the case studies presented in SectionVI, and to appreciate the interest and

usefulness of these tools. Links to the main text are provided for each topic. For bibliographic

references, please consult the relevant sections.

To begin with, one needs a validation set, which can be as minimal as a set of errors (E) and the

corresponding dispersion statements. Errors are the differences between predicted values of a quan-

tity of interest (QoI) V and reference values, and dispersion statements on errors can take the form

of predictive distributions, prediction ensembles or statistical summaries, typically uncertainties.

Note that these should account for the dispersion of reference values, if any. [Sect. III B]

The goal of calibration validation is to check the statistical consistency between the errors

and their dispersion statements. One considers two complementary validation levels: average

calibration (simply referred-to below as calibration), where the statistical consistency is checked

over the whole validation set, and tightness, where the statistical consistency is checked at a finer

scale, typically in relevant subsets of the validation set. Calibration alone does not guarantee the

reliability of individual prediction uncertainties, and tightness should be sought for. Note that a

set of predictions cannot be considered to be tight if it is not calibrated. [Sect. IIIA]

Many validation methods are proposed in the literature. The most important decision cri-

terion to choose a pertinent method is based on the available dispersion information. The main

types occurring in CC-UQ (uncertainty, expanded uncertainty, prediction ensembles and predictive

distributions) are considered now to present the available options.

Uncertainty. Let us consider first a very common scenario, where one has a set of M errors

and uncertainties, noted E = {Ei}Mi=1
and uE = {uE,i}Mi=1

. Without further characterization, an

uncertainty has to be understood as a standard uncertainty, i.e. the standard deviation of the

possible values of the corresponding property. Hence, the basic probabilistic model linking an

error Ei to an uncertainty uE,i is Ei ∼ D(0, uE,i), meaning that Ei is a random realization from

an unspecified distribution D, centered on 0 (errors are assumed to be corrected of systematic

bias) with scale/dispersion parameter uE,i. One should thus consider distribution-free validation
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methods, and simply answer the question: “Does uncertainty correctly quantify the dispersion of

the errors ?”. [Sect.VA1]

• If one deals with a constant value of uE (homoscedastic case), one cannot do much better

than to check that u2
E correctly describes the variance of the errors set, i.e. Var(E) ≃ u2

E

or Var(Z) ≃ 1 for Zi = Ei/uE,i, within the limits allowed by the size of the validation set

M . Note that this is a test for (average) calibration and this simple scenario does not enable

to assess tightness. For this, one would need to have additional data, such as the set of

predicted values V from which E is derived, and check that Var(Z) ≃ 1 in relevant subsets

of V . This is called a local Z-variance (LZV) analysis. [Sect.VB2]

• If uE is not constant (heteroscedastic case), a simple graphical method, where one plots E

vs uE can help to answer the main question (Fig. 1): if on such a plot the dispersion of E

does not increase linearly with uE, the statistical consistency can be rejected without further

trial. In the opposite case, additional tests are necessary to assess calibration and tightness.

[Sect. IVA] For calibration, one should check that Var(Z) ≃ 1. For tightness, validation

methods use the estimation of error statistics within subsets of sorted uE values:

– In the LZV analysis [Fig. 5(a)], one makes bins of uE and one plots the value of Var(Z)

for each bin against the central value of the bin. For tight predictions, all Var(Z) values

should be close to 1. [Sect. VB2]

– Reliability diagrams [Fig. 5(b)] are based on a similar setup, but for each bin, one

plots the standard deviation of errors (SD(E)) vs the root mean squared uncertain-

ties (RMS(uE)). For tight predictions, the points should lie near the identity line.

[Sect.VA2]

– In confidence curves [Fig. 5(c)], one makes sets of errors iteratively pruned from the

values associated with an increasing percentage of the largest uncertainties. The mean

absolute error (MAE) for those sets is plotted against the percentage of pruning. A

uniformly decreasing curve reveals that the larger absolute errors are associated with

larger uncertainties, but it does not inform us on a proper scaling. To assess tightness,

one needs to compare the confidence curve to a probabilistic reference curve obtained

by the same procedure using a synthetic dataset of errors generated using the Ei ∼
D(0, uE,i) probabilistic model. [Sect.VA3]
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In complement to a calibration test (for instance Var(Z) = 1), a reliability diagram and a

LZV analysis provide basically the same information and enable to validate tightness. In the

case of a confidence curve, a probabilistic reference is required to reach the same goal, which

implies a choice of distribution for D. As in the homoscedastic case, if the predicted values

(V ) are also available, tightness can be tested by a LZV analysis using subsets of V .

Expanded uncertainty. A less common scenario is based on expanded uncertainties (UE,P ),

which are the half range of a probability interval (typically at the P = 95% level). Without

information on the distribution D of prediction errors, one cannot reliably estimate a standard

uncertainty from an expanded uncertainty, and the variance-based validation methods proposed

above cannot be used. One should then have recourse to intervals-based validation methods.

[Sect.VA1]

The prediction interval coverage probability (PICP) νP is estimated as the percentage of errors

Ei lying within the corresponding interval [−UE,P,i, UE,P,i]. For a good calibration, one should

have νP = P , within the statistical uncertainty due to the size of the dataset. Applied to the

whole validation set, this approach enables to validate calibration. For tightness, the same test is

performed within subsets of the validation set, either along UE,P if it is not constant, and/or V , if

available, resulting in a local coverage probability (LCP) analysis [Fig. 4(a,b)]. [Sect.VB1]

Prediction ensembles. Let us now consider ensemble-based dispersion assessments, which are

common in ML-UQ. One has then an ensemble of errors for each prediction, from which to extract

statistics.

For small ensembles (less than several hundred points), it is illusory to get reliable prediction

intervals, and it is recommended to estimate uE as the standard error of an ensemble and use

variance-based validation methods as described above. Note that for very small ensembles (smaller

than 10 points) further complications arise, as the estimation of uE is itself very uncertain, and

getting calibration/tightness diagnostics might be unrealistic. [Sect.VC]

For large ensembles, one has the choice to use either intervals- and/or variance-based validation

methods. In the case of intervals-based validation, a set of target probability levels P can be

tested in order to validate the shape of the prediction distribution. This multiple intervals-based

calibration test is much more stringent than a variance-based validation.

Often, ML prediction ensembles are used for active learning more than for estimating prediction

uncertainty. In such cases, the confidence curve is an interesting tool: a continuously decreasing

confidence curve is sufficient to validate that a ML algorithm enables reliably to identify predictions
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with potentially large errors.

Predictive distributions. Some ML methods provide for each prediction a distribution (typically

normal) with is mean and dispersion parameters. As for large prediction ensembles, the full panel

of variance- and intervals-based validation methods is accessible. Additionally, calibration curves

are commonly used in this scenario to assess average calibration, but they do not enable to test

tightness [Sect.VB]. Note that a failure of intervals-based validation might be due either to the

choice of distribution and/or to its estimated parameters, which complicates the diagnostic.

III. CONCEPTS, DEFINITIONS AND NOTATIONS

A. Concepts and definitions

In order to validate the calibration of a prediction model or algorithm, one needs a validation

set, composed of predicted values, their dispersion assessments, and reference values to compare

with. Dispersion assessments can take the form of predictive distributions, prediction ensembles

or statistical summaries, typically uncertainties.

Uncertainty. Let us first recall the definition of uncertainty in metrology35: “a non-negative

number that quantifies the dispersion of the values being attributed to a quantity of interest” (QoI,

noted V ). Depending on the statistic used to quantify the dispersion, one distinguishes between

standard uncertainty (noted uV thereafter), for which the dispersion is estimated by a standard

deviation35, and expanded uncertainty (noted UV,P thereafter), for which the dispersion is estimated

by the half range of a probability interval, typically at the 95% level (UV,95).
26 It is important to

note that designing a probability interval from a standard uncertainty requires information on the

QoI distribution, while no additional information is required for an expanded uncertainty.36

Error. In the UQ validation framework, the quantity of interest is the prediction error, i.e.

the difference between a predicted value and a reference value. Different error sources might be

characterized by specific uncertainties (numerical, parametric, model, aleatoric, epistemic...).18 The

prediction error should aggregate all the underlying error sources and, in absence of ambiguity,

will be referred to simply as the error. The prediction uncertainty, which is the uncertainty on the

prediction error, should thus provide a scale for the dispersion of prediction errors. This offers us

a rationale for its validation, as presented in Sect. IVA.

Calibration. The calibration-sharpness (CS) framework22 provides definitions for major con-

cepts. Calibration estimates the “statistical compatibility of probabilistic forecasts and obser-

7

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
09

57
2



Accepted to J. Chem. Phys. 10.1063/5.0109572

vations; essentially, realizations should be indistinguishable from random draws from predictive

distributions”22 where a probabilistic forecast or probabilistic prediction, provides a distribution

over the values that can be taken by a QoI. In this framework, calibration is generally under-

stood as average calibration, i.e. the calibration estimated over the full validation set. It is well

understood that average calibration is insufficient to guarantee useful predictions.20,23

Sharpness. In the optimization framework of UQ methods, sharpness metrics are used to

identify more concentrated predictive distributions. Sharpness is defined as “the concentration

of a predictive distribution in absolute terms; a property exclusive to the forecasts”.22 Sharpness

metrics are typically average dispersion statistics (mean prediction uncertainty or variance,5,23 or

mean prediction interval width30,37), that do not involve the reference values. As such, sharpness

is barely relevant to UQ validation.

Tightness. Stronger calibration concepts have been introduced to palliate the limitations of

average calibration to describe the small-scale reliability of predictions to observations: individual

calibration (calibration over each element of the validation set);38 group calibration (calibration over

pertinent groups of the validation set);30 adversarial group calibration (calibration over randomly

generated groups of the validation set);30 and local calibration (calibration over groups mapping

a pertinent feature).20 Local calibration has to be understood as a form of group calibration30 or

multicalibration31, based on the sub-setting of a continuous feature into adjacent or overlapping

intervals. Its purpose is to identify local or small-scale departures from calibration which might

have a diagnostic interest. When the mapping feature is prediction uncertainty, local calibration

is tightly related to reliability diagrams (agreement of uncertainty with the dispersion of errors),

which is also referred to as perfect calibration.24

As sharpness cannot be used to characterize this small-scale reliability, I propose to use instead

tightness as a dedicated concept to characterize the small-scale adaptation of UQ predictions to

reference values. More widely, a set of predictions can be considered to be tight if it satisfies

the requirements of any of the stronger calibration concepts (individual, group, local or perfect

calibration). This offers a convenient shortcut for propositions such as group calibrated, locally

calibrated or perfectly calibrated.

Note that it is tempting to assume that tightness implies average calibration. However, sta-

tistical uncertainty on calibration statistics for small groups might lead to scenarios where one

accepts tightness while rejecting average calibration. As for sharpness, it is therefore important

for tightness to be conditional to average calibration: a probabilistic prediction method cannot be
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tight if it is not (average) calibrated.

B. Notations

Prediction. Let us consider a QoI, V , for which one wants to make predictions with some form

of confidence assessment. For a probabilistic prediction, the predictive distribution on V can be

characterized by its quantile function qV (p), where p is a probability (the quantile function is the

inverse of the cumulative distribution function).

However, few UQ methods provide predictive distribution functions, and empirical approxi-

mations q̃V are more often accessible from ensembles or samples, representative of the predictive

distribution. In such cases, the standard uncertainty uV is estimated by the standard deviation of

the sample,35 and the expanded uncertainty UV from the empirical quantiles39,40

UV,P =
1

2
(q̃V ((1 + p)/2)− q̃V ((1− p)/2)) (1)

where, to conform with usual notations, P is the percentage corresponding to p (P = 100p).

The most frequent scenario in the computational chemistry UQ literature is to have a single

statistical summary – very commonly the standard uncertainty uV and more rarely the expanded

uncertainty UV,95.
26 The consequences of the absence of predictive distribution on the CS validation

framework are explored below.

Validation. For the sake of validation, predictions of V , {Vi}Mi=1, are made for a series of M

test systems for which one has reference values {Ri}Mi=1. For each validation system i, one needs at

least one UQ object among qV , q̃V , uV or UV,P as defined above. Validation is made by assessing

the statistical compatibility between the errors Ei = Ri − Vi and the corresponding dispersion

statements.

The minimal validation set is thus composed of errors and the corresponding UQ estimators,

for instance {Ei, uEi
}Mi=1, where uEi

= uVi
if the reference data are not uncertain. When the ref-

erence values are themselves uncertain, this has to be propagated to the errors. For instance, if

Vi has a standard uncertainty uVi
and Ri a standard uncertainty uRi

, the uncertainty on Ei is

obtained by combination of variances uEi
=

√
u2
Vi
+ u2

Ri
(considering that Vi and Ri are statis-

tically independent).35 Alternative combination schemes have to be considered for other types of

uncertainty.20 Note that if the uncertainty on the reference values contributes significantly to the

uncertainty on E, failure of validation tests might be difficult to interpret, as they might occur as

well from the predictor as from the reference data.
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Prediction intervals are at the center of the CS validation framework. A P% error prediction

interval can be estimated from the qE(p) quantile function or its empirical variant (q̃E(p)) as

IEi,P = [qEi
((1− p)/2) , qEi

((1 + p)/2)] (2)

If one assumes the symmetry of intervals around Ei, expanded uncertainties can also be used

directly, i.e.

IEi,P = [−UEi,P , UEi,P ] (3)

A contrario, it is not possible to design a prediction interval form a standard uncertainty uEi

without making hypotheses on the error distribution. Being mostly dominated by model errors,

computational chemistry error distributions are often non-normal,28,29 which prevents the use of

simple recipes (such as the 2σ rule). Making unsupported distribution hypotheses would add a

fragility layer to the validation process, complicating the interpretation of negative validation tests.

This prevents the application intervals-based validation to sets of standard uncertainties, and the

use variance-based methods, such as reliability diagrams24 of z-scores (zi = Ei/uEi
) statistics20,

has been proposed as an alternative.

Intervals- and variance-based CT validation methods are presented in Sect.V.

C. Synthetic datasets

The methods presented below are illustrated on synthetic validation sets {Vi, Ei, uEi
}Mi=1

, with

M = 1000. V is sampled uniformly in the interval [−2, 2] . The SYNT01 and SYNT04 errors are

obtained from a probabilistic model

Ei ∼ D(0, uEi
) (4)

where D(µ, σ) is a probability density function with mean µ and standard deviation σ. These

datasets are tagged as consistent, as errors and uncertainties are statistically consistent and should

provide positive calibration and tightness tests. The other sets (SYNT02 and SYNT03) do not

derive directly from this probabilistic model and are labeled as non-consistent.

SYNT01: heteroscedastic consistent set, where the errors are generated from a zero-centered

normal distribution Ei ∼ N(0, uEi
) with a standard deviation depending on V , through

uEi
= 0.01(1 + V 2

i ).

SYNT02: heteroscedastic non-consistent set, with errors sampled from a normal distribution

Ei ∼ N(0, < uE >) and the same uncertainties as in SYNT01.
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SYNT03: homoscedastic non-consistent set, with errors taken from SYNT01 and constant

uEi
=< uE >.

SYNT04: homoscedastic consistent set, with errors taken from SYNT02 and constant uEi
=<

uE >.

IV. BASIC GRAPHICAL METHODS

Considering a minimal validation set {Ei, uEi
}Mi=1

, it is possible to draw simple graphs to check

that uncertainty quantifies correctly the dispersion of errors. One has to consider two cases: (1)

uE varies notably over the validation set (heteroscedastic set); and (2) uE is (nearly) constant

(homoscedastic set).

A. Heteroscedastic validation sets

The consistency between errors and uncertainties (Eq. 4) is based on an asymmetrical relation,

which can be summarized as follows

large |E| =⇒ largeuE (5)

small uE =⇒ small |E| (6)

i.e. large errors should occur only from predictions with large uncertainties and predictions with

small uncertainties should be associated with small errors. The asymmetry results from the fact

that small errors might arise as well from predictions with small uncertainty as from predictions

with large uncertainty. In consequence, one should not expect a strong correlation between absolute

errors and uncertainties (see Sect.VA3) and there is not much to learn from plots of |E| vs uE.

Basic plot. When uE depends notably on the validation point, one can simply plot E vs uE

to check how the dispersion of E scales with uE .2 An example is shown in Fig. 1(a), where guiding

lines y = ±kx; k = 1−3 have been added to facilitate the appraisal of the expected linear scaling.

One sees indeed for the consistent dataset SYNT01 that larger errors are associated with larger

uncertainty values, giving a typical fan-like structure to the data cloud. The symmetry of the cloud

with respect to the y = 0 axis is furthermore a good indication that the errors have no noticeable

bias.
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Figure 1. (a) Simple (uE , E) plot for dataset SYNT01; (b) same plot augmented with running quantiles;

(c) idem for dataset SYNT02 with running extrema.

Improvements. The proper scaling of E with uE can be difficult to appreciate visually for small

datasets. A little more sophisticated approach consists in adding an estimator of the local range of

E on the graph. This might be done by using a sliding window to estimate either the extrema or the

limits of a 95% probability interval. The latter method is called running quantiles and is depicted

in Fig. 1(b). In this implementation, the sliding window contains a fixed number of points n (not

a fixed width of uE), which is automatically estimated by using the Rice formula for histograms

n = 2M1/3. One sees in Fig. 1(b) that the quantile lines oscillate around the y = ±2x lines, which

can be expected from the properties of the normal distribution used to generate the SYNT01

dataset. In the case of the non-consistent SYNT02 dataset, Fig. 1(c) shows clearly the absence

of scaling between E and uE (the larger errors occur anywhere along the uE axis). This trend is

underlined in this plot by running extrema lines, which are easier to compute than quantiles, but

oscillate more strongly (strong dependence to outliers) and might be more difficult to interpret.

An alternative representation, plotting log(|E|) vs. log(uE), is used in the literature.3 It is moti-

vated by the fact that, for a normal error distribution with mean 0 and variance σ2, the probability

density function of the logarithm of absolute errors has its mode at σ. In these conditions, one

should observe a strong concentration of points along the identity line for statistically consistent

validation sets and a running mode line should lie close to it. It is important to understand the

logic behind this type of plot, but I did not develop it further here because (i) it is less intuitive

than the (uE, E) plot, (ii) it requires the estimation of the mode (or some high density levels of

the data cloud) which limits the application to large datasets, and (iii) it is sensitive to deviations

from the zero-centered normal error distribution which complicates the interpretation of a negative
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Figure 2. (a,b) (V,Z) plots for dataset SYNT01 and SYNT03 with added running quantiles; (c) (index, Z)

plot for SYNT03.

diagnostic.

B. Homoscedastic validation sets

The problem when uE is constant is that the (uE, E) plot proposed above cannot be used. In

such cases, the expected scaling can be appreciated by using z-scores Z = E/uE and plotting them

against a relevant feature of the dataset, for instance the points index or the QoI V . The latter

is good to appreciate systematic trends in scaling and relate them to a range of predicted values.

Note that it might be difficult or impossible to spot z -score problems on such plots if they are not

localized in V space.

The guiding lines are now horizontal (y = ±k; k = 1 − 3), and, as above, a simple (V, Z)

plot can be improved by running statistics. The running quantiles lines should run parallel to

the guiding lines. An example is shown in Fig. 2(a) for an heteroscedastic consistent dataset

(SYNT01). In Fig. 2(b) for a homoscedastic non-consistent dataset (SYNT03), the envelope of the

data clearly deviates from the guiding lines. Although calibration is difficult to assess, one might

safely conclude to a lack of tightness. Note that the diagnostic depends on the choice of a plotting

ordinate. Fig. 2(c) presents the same dataset as a function of the point index. The non-reliability

of the uncertainties is difficult to appreciate on this plot, as the running quantiles follow more or

less the guiding lines, although with large oscillations when compared to the SYNT01 case.
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C. Remarks

• These simple graphical methods should help to detect frank departures from calibra-

tion/tightness. They cannot be used to validate these properties. In cases where one cannot

easily reject the consistency between errors and uncertainties, calibration and tightness have

to be assessed by quantitative methods described below.

• They are applicable to both standard (uE) and expanded (UE,p) uncertainties, albeit with

different interpretations of the guiding lines.

• The z-score based plot (uE, Z) could also be used for dataset with non-constant uE [e.g.

Fig. 2(a)], but in such cases, I think the (uE, E) plot enables easier diagnostics [e.g. Fig. 1(b)].

• To lessen the dependence of the running statistics on a specific validation set, one might think

of a bootstrapping41,42 approach to estimate mean running statistics and their uncertainty.

However, this might be a little far fetched for this simple qualitative visualization.

V. QUANTITATIVE METHODS

A. Statistical framework

1. Average calibration

Intervals-based testing. In the CS framework, a method is considered to be calibrated if the

confidence of its predictions matches the probability of being correct for all confidence levels,5,43

which can be reformulated as “prediction intervals should have the correct coverage”.23

It is convenient here to deal with prediction errors instead of predicted values, and one defines

the prediction interval coverage probability (PICP) as44

νp,M =
1

M

M∑

i=1

1 (Ei ∈ IEi,P ) (7)

where 1(x) is the indicator function for proposition x, taking values 1 when x is true and 0 when

x is false, and IEi,P is a P = 100p% prediction interval for Ei. Hence, estimating a PICP simply

amounts to count the number of times a validation error falls within the corresponding prediction

interval.
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Using PICPs, a method is calibrated if23

lim
M→∞

νp,M = p, ∀p ∈ [0, 1] (8)

In practice, one has a limited amount of validation data to test the equality, and a standard

procedure to validate νp,M is to estimate a 95% confidence interval on the statistic, I95(νp,M), and

to test if it contains p:

p
?∈ I95(νp,M), ∀p ∈ [0, 1] (9)

The stacked notation p
?∈ I is used as a shorthand for “does p belong to I ?”. Note that in the

CC-UQ literature one often has to accept a weaker form of calibration, based on a single p value

(0.95).

νp,M is the bounded ratio of two integers (0 ≤ νp,M ≤ 1) and is known in the literature as

a binomial proportion.45 The finite set of realizable values for νp,M depends on M , and it might

not contain a given value of p. There are many methods to estimate I95(νp,M), with competing

features such as optimal coverage or minimal range, and the choice of the best one is debated

among experts. The main difficulty is that some properties of the confidence interval are sharply

oscillating with M , so that the best choice might depend on M . However, all the experts agree

that the textbook method (known as the Wald method), based on a normality hypothesis, has to

be avoided.

An exploratory comparison20 over a set of methods available in the R language46 showed that

it is reasonable in the present setup to choose between the Agresti-Coull47, Clopper-Pearson48 and

continuity-corrected Wilson49 methods. The latter is my standard choice in this study.

A limitation of PICP testing is the saturation of the coverage at the upper limit: if a prediction

interval for p < 1 achieves a coverage probability νp,M = 1, one gets no information on the

amplitude of the mismatch with the target probability. As a complementary diagnostic, I find

useful to consider the ranges ratio (RR), i.e. the ratio of the mean range of predicted intervals

over the range of the empirical interval at probability p:

Rp =
1

M

∑M
i=1

(
I+Ei,P

− I−Ei,P

)

Q̃E ((1 + p)/2)− Q̃E ((1− p)/2)
(10)

where I
+/−
X is the upper/lower limit of a prediction interval IX and Q̃E is the empirical quantile

function of errors, estimated over the validation set (not to be confounded with q̃E which is defined

for individual predictions). Deviations of Rp from unity quantify the mismatch amplitude. The

effect of the validation set size on the value of Rp can be estimated by bootstrapping.41,42
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A second limitation of PICP testing appears when one has no sufficient information to design a

reliable prediction interval. This occurs, frequently, when only standard uncertainties are available,

in absence of information on the underlying error distribution. In such cases, one should turn to

variance-based validation.

Variance-based testing. The underlying probabilistic model for variance-based testing is given

by Eq. 4.Hence, for homoscedastic data, the consistency between errors and uncertainty can readily

be checked by comparing the error variance to the squared uncertainty

Var(E)
?
= u2

E (11)

To extend this equation to heteroscedastic data, let us assume that the errors are drawn from

a distribution D(0, σ) (Eq.??) with a scale parameter σ distributed according to G(σ). The

distribution of errors is then a compound distribution, more specifically a scale mixture distribution.

The variance of the compound distribution is obtained by the law of total variance, i.e.

Var(E) = 〈VarD(E|σ)〉G +VarG (〈E|σ〉D) (12)

The first term of the RHS can be estimated as the mean squared uncertainty < u2
E >. For

unbiased errors, the second term of the RHS should be small to negligible, but in a general case, its

estimation requires binning of the errors according to the corresponding uncertainties, estimating

the mean error in each bin and taking the variance of the mean errors over the bins. Accuracy of

this procedure depends on the sample size and binning strategy, and the main limitations of this

technique are the same as advanced by Scalia et al.4 for the application of reliability diagrams (see

Sect.VA2). Besides these technical complications, the test for unbiased errors would thus be

Var(E)
?≃
〈
u2
E

〉
(13)

which does not account for the essential pairing between errors and uncertainties, and could enable

fortuitous agreements, i.e. an equality does not guarantee that the probabilistic model (Eq. 4) is

respected by the data

For heteroscedastic data, it seems thus more reliable to use scaled uncertainties, or z-scores

Zi = Ei/uE,i, which account for the pairing between errors and uncertainties, and for which Eq. 13

becomes

Var(Z)
?
= 1 (14)

Note that this test is is valid for both homoscedastic and heteroscedastic data.20 In the hypothesis

of unbiased errors, one should also have < Z >= 0. Formally, Var(Z) can be linked to the Birge

ratio used in metrology to test statistical consistency.50–52 See AppendixA for more details.
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Following the same logic as for PICPs, practical validation of Var(Z) relies on the test

1
?∈ I95 (Var(Z),M) (15)

where I95 (Var(Z),M) can be estimated by an adapted bootstrapping method (BCa, ABC...) to

avoid the normality-based textbook method.53 A faster, but slightly less accurate method to esti-

mate I95 (Var(Z),M) is based on the estimation of Var(Var(Z)) introduced by Cho et al.54, using

the central moments of the Z sample

Wz = Var(Var(Z)) =
1

M

(
µ4 −

M − 3

M − 1
µ2
2

)
(16)

where µk = 1/M
∑M

i=1
(Zi−µ)k and µ is the arithmetic mean of Z. In absence of further information

on the distribution of Var(Z), a normality hypothesis leads to the test

1
?∈ Var(Z)± t97.5,M−1

√
Wz (17)

where x±y denotes the upper and lower bounds of the interval, and tP,ν is the P % quantile of the

Student’s-t distribution with ν degrees of freedom. The symmetry of the testing interval might be

problematic for small M values, but in most scenarios tested in PER2022, this method performed

nearly as well as the best bootstrapping methods and better than the worst ones.20 And it is much

faster !

Statistical power. The efficiency of the tests described above depends on the size of the vali-

dation set. The power of the test is the probability to correctly reject the hypothesis that a PICP

or Var(Z ) value is compatible with its target value. A power threshold (typically 0.8) is defined

to determine a minimal sample size.

Fig. 3 reports the minimal sample sizes necessary to reach a power of 0.8 for differences be-

tween a PICP value νp,M and its target value p (see also PER202220 (Fig. S2) for an alternative

representation). For instance, a sample size of M ≃ 200 is necessary to achieve a power of 0.8 in

differentiating a PICP value of ν0.95,M = 0.90 from its p = 0.95 target. Rejecting safely a difference

|νp,M − p| = 0.01 would take more than 2000 points for the same target. The situation worsens for

smaller target values (above 0.5, which is a symmetry point): for ν0.5,M = 0.45, one needs about

800 points to reject the compatibility between νp,M and p.

As a guiding rule, similar sample sizes are required to test Var(Z).
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Figure 3. Minimal sample size required to achieve a power of 0.8 when testing a PICP value νp against

its target p. The continuity-corrected Wilson method is used to estimate the confidence interval on νp.

2. Tightness

As evoked previously, using the tests presented above on a validation set provides only an aver-

age calibration diagnostic, which is not sufficient to guarantee the desired tightness of prediction

intervals, i.e. the small-scale reliability of the probabilistic predictions.

Local calibration. A simple way to assess tightness is to split the dataset into Ng groups of sizes

{mj , j = 1, Ng} and test the average calibration for each group. For PICPs, one should therefore

test

p
?∈ I95(νp,mj ,j), ∀p ∈ [0, 1], j = 1, Ng (18)

with a similar formula for Var(Z).

The focus is here on the design of contiguous or overlapping groups partitioning some relevant

feature. In this case, tightness is similar to local calibration. In contrast to randomly generated

groups used for adversarial group calibration, local calibration enables a diagnostic of tightness

problems in specific areas of the grouping feature. For continuous grouping features, several designs

can be considered: contiguous groups, overlapping groups or a sliding window. For the kind of

datasets we are considering in this study, the features of choice to design groups are typically the

predicted value V and the prediction uncertainty (uE or UE,p) for heteroscedastic validation sets.

This approach leads to the local coverage probability (LCP),20 local Z variance (LZV)20 and local
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range ratio (LRR) analyses used in the graphical representations described below.

Reliability diagram. To compare the uncertainty to the error, Scalia et al.4 considered the

proposition of Levi at al.24 to use a generalization of Eq. 11 in order ascertain the conformity of

the empirical error variance with the predicted one, i.e.

Var
(
E|u2

E = σ2
)
= σ2, ∀σ2 (19)

where, for each value of σ2, the variance is estimated on those points of the validation set having

σ2 as predicted variance. The practical implementation of this scheme, resulting in a so-called

reliability diagram, requires binning of uE values into intervals of σ. For each bin one plots the

standard deviation of the corresponding errors, noted SD(E), vs the root of the mean squared

value of the selected uE data, noted RMS(uE). Its applicability, as for Eq. 12, is limited by low bin

counts, notably for small validation sets or those with highly skewed uncertainty distributions.4

Note that this formulation is closely related to the LZV analysis, but instead of estimating Var(Z)

for binned values of uE, one estimates Var(E), with the same caveat about the neglect of pairing

between E and uE values as for Eq. 13.

Levi et al.24 demonstrated the advantage of their method over the intervals-based approach

of Kuleshov et al.23. I want to emphasize here that both methods do not test for the same

“calibration”. The former one tests for tightness (Levi et al. speak of perfect calibration), where

the latter one tests for average calibration. I think that one interest of the tightness concept is to

make such a distinction more legible.

Statistical power. The sizes of the groups should ideally be large enough to retain sufficient

testing power, which in some cases might limit the number of groups and the resolution of the

tightness analysis. For small validation sets, the use of overlapping groups, and notably a sliding

window design, enables to preserve diagnostic resolution without loosing too much testing power.

Smaller groups mean wider confidence intervals for local statistics, and one might find situations

where the average calibration is rejected, while it seems locally acceptable for all or most of

the groups. In such cases, it is unlikely that the power of local tests is high enough to reach

conclusions. As mentioned above, predictions which are not average calibrated cannot be accepted

as tight. Nevertheless, even in absence of enough power, the presence of trends in the local statistics

remains of diagnostic interest.
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3. Ranking-based validation

These methods evaluate how the amplitude of errors is associated with different uE values.

They are mostly used in applications such as active learning, where uncertainty is used to select

predictions with potentially large errors.33,34 They are not applicable to homoscedastic validation

sets.

Correlation coefficients. The rank correlation coefficient (RCC) between uE and |E| has been

advocated by Tynes et al.34 over the linear correlation coefficient (LCC) as a validation statistic.

The LCC and RCC are intuitively expected to be positive if the larger absolute errors are associated

with larger uncertainties and null if there is no correlation between both properties. For instance,

a consistent dataset such as SYNT01 gives a RCC of 0.49, while SYNT02 gives a null value. Tynes

et al.34 report values between 0.2 and 0.65 for various ML-UQ datasets in computational chemistry.

These are rather weak correlation coefficients, but a perfect correlation coefficient (RCC=1) would

result from an unlikely perfect predictor (an oracle) such as uE ∝ |E|. However, such a validation

set with perfect ranking might still fail calibration tests, as the scaling between uE and E is not

accounted for in the RCC value. One might therefore conclude on the absence of tightness from a

null RCC, but nothing can be inferred about calibration or tightness from a non-null value.

Note that the R2 score from a linear regression with intercept55 might be used to the same

effect. In this case the R2 score is the square of the LCC. The user should however be warned that

there are several definitions of the R2 score, one of them using a linear regression without intercept.

This one does not relate to the correlation coefficient. Unfortunately, this is the only version of

the R2 score statistic implemented in a popular machine learning package,56 with a notable risk to

be misused.

Confidence curves. A confidence curve is established by estimating a statistic of error sets

pruned from those points with uncertainties larger than a threshold.4 Technically, this is a ranking-

based method, as the ordering of the data plays a determinant role.

For instance, if one defines a threshold uk by removing the k% largest uncertainties (this applies

also to expanded uncertainties), on gets a normalized confidence statistic as

cS(k) = S (E | uE < uk) /S(E) (20)

where S is an error statistic (typically the Mean Absolute Error). A continuously decreasing con-

fidence curve reveals a desirable association between the larger errors and the larger uncertainties.

Usually, an oracle curve is plotted as reference,4 generated from an hypothetical dataset with
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perfect correlation between uE and |E| [see Fig. 5(c)]. This reference is not realistic for the type

of error distributions expected here. As an alternative, I proposed57 to generate a reference curve

cS(k; Ẽ, uE) from a pseudo-error set Ẽ sampled from a distribution with mean 0 and standard

deviation uE

Ẽi ∼ D(0, uEi
) (21)

The sampling is repeated to provide a stable mean reference curve and a confidence band (at the

95% level). To avoid any ambiguity with the oracle, I refer to this curve as a probabilistic reference.

The difference between oracle and probabilistic reference curves can be seen in Fig. 5(c). The effect

of the choice of D has been studied elsewhere.57 To summarize, it does not practically affect the

reference curve itself, but mostly the width of the confidence band. A normal distribution is a

reasonable choice in absence of specific information about D.

An essential point is that comparing the confidence curve cS to the oracle reference does not

provide information about calibration nor tightness. In fact, any transformation of the uncer-

tainties that does not affect their rank would result into exactly the same confidence curve. By

contrast, pairing the confidence curve with the probabilistic reference can be considered as a proper

variance-based tightness validation method. Interestingly, it provides two kinds of diagnostics: (1)

a continuously decreasing confidence curve validates the use of the predictive uncertainties for

active learning, regardless of calibration; and (2) a confidence curve in agreement with the prob-

abilistic reference validates the tightness of the uncertainties. Its main weakness when compared

to a local calibration method or to a reliability diagram is to depend explicitly (but weakly, as

discussed above) on the choice of a probabilistic model. For the same reasons as discussed earlier,

this tightness diagnostic has to be conditioned on a positive average calibration test.

B. Graphical representations

In practice, it is often more informative to plot the statistics and their confidence intervals than

to perform the validation tests. Several plots have been proposed in the literature to check average

calibration (e.g. calibration curves, PIT histograms)5,22,30. They were tested in PER2022 and I

found that they were of limited interest to the typical scenarios of computational chemistry UQ.

They might nevertheless become handy in the cases where one has full probabilistic predictions,5

but are not presented here as they do not provide tightness diagnostics.
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Figure 4. (a,b) Local coverage probability (LCP) analysis of the SYNT01 and SYNT03 datasets for

95% prediction intervals based on the normality of the error generation process (UEi,95 = 1.96uEi
); (c)

Local range ratio (LRR) analysis for the SYNT03 dataset; (d) LCP analysis of SYNT03 with recalibrated

uniform prediction intervals estimated from the errors.

1. Local coverage probability (LCP) and local range ratio (LRR) analyses

The local values of νp,mj ,j and I95(νp,mj ,j) can be plotted against the location of the group

centers and compared to p. The same plot can represent a series of p values of interest (for

instance, 0.5, 0.75 and 0.95). For a self-contained calibration/tightness diagnostic, the values for

average calibration can also be displayed in the right margin of the plot.

Application to a 95% prediction interval (based on UE,95 = 1.96uE) for the SYNT01 set is

shown in Fig. 4(a), where one can see that the error bars based on I95(νp,mj ,j) for all groups along

uE overlap the target probability, indicating a good tightness of prediction intervals. In the right

margin, average calibration is also attested by the PICP value for the full dataset. These prediction

intervals are therefore calibrated and tight.
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In contrast, the same analysis for the SYNT03 dataset [Fig. 4(b)] shows unambiguously a lack

of tightness (average calibration is not optimal either considering the PICP value of 0.930(8)). It

is clear from this graph that the constant uncertainty used for these data is only adapted for a few

groups along V . Moreover, the PICP values for the overestimated uncertainties saturate to 1.0,

and we get no idea of the amplitude of the miscalibration from the LCP analysis. Plotting the

local relative range (LRR) statistic Rp provides us with this information [Fig. 4(c)]. For the small

uncertainties, underestimation is by a factor about 2.0, while for the large ones, the prediction

interval’s width is overestimated by a factor about 2.3. Note that the LRR analysis did not

use a sliding window because the excess computing time due to repeated bootstrapping does not

contribute to the diagnostic. The computation overload is much less stringent for the LCP analysis,

which does not use bootstrapping for confidence intervals estimation.

The same dataset can be used to illustrate how the statistics from a validation set enable to

make calibrated predictions without ensuring tightness.24 Expanded uncertainties UE,p are esti-

mated from the quantiles of the errors set, for p = 0.25, 0.5, 0.75, 0.95 and used to build uniform

prediction intervals for all the points. The LCP analysis in Fig. 4(d) shows that calibration is good

at all the levels (the PICP values in the right margin are consistent with their probability targets),

but that tightness is not ensured at any level, as most LCP intervals do not overlap their target

probability.

2. Local Z variance (LZV) analysis and reliability diagram

A similar representation can be used for the local validation of Var(Z) (LZV analysis). For

the SYNT01 dataset [Fig. 5(a)], the test is fully consistent with Var(Z) = 1, which is not the case

for the SYNT02 dataset, for which Var(Z) varies between about 0.5 and 7, with an average value

of 2.7. Note that for large validation sets, the use of a sliding window might present the same

computation overload as for the LRR analysis, unless replacing the bootstrapping methods by the

Cho method to estimate confidence intervals.

For comparison, the reliability diagram for SYNT01 and SYNT02 is presented in Fig. 5(b).

The curve for SYNT01 follows closely the identity line, meaning that all levels of uncertainty

describe correctly the dispersion of the corresponding errors (tightness). A contrario, the flat line

for SYNT02 reveals the lack of consistency between errors and uncertainties. For the LZV analysis,

the mismatch factor of the prediction uncertainty can be estimated locally by the square root of

Var(Z). With the reliability diagram, the same information can be obtained by taking the ratio
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Figure 5. (a) Local z -score variance (LZV) analysis of the SYNT01 and SYNT02 datasets; (b) reliability

diagrams; and (c) confidence curves with oracle and probabilistic references.

between SD(E) and RMS(uE).

For the same datasets, I plotted also the confidence curves [Fig. 5(c)]. As the curve for SYNT02

is non-decreasing, one can conclude readily to an absence of tightness. Comparing the confidence

curve for SYNT01 to the oracle does not bring any information about calibration nor tightness. It

seems to be far from the oracle, but still, the continuously decreasing curve is a positive feature.

Comparison with the probabilistic reference let us unambiguously conclude that the errors match

the probabilistic model relating them to uncertainties. Considering the good value of Var(Z) for

this dataset, one might also conclude to a good tightness.

C. The problem of small probabilistic ensembles

It was assumed in Sect. III B that probabilistic predictions were made through distributions or

prediction ensembles that were implicitly large enough to enable an accurate estimation of statis-

tical summaries or empirical quantile functions used for validation. However, it is not uncommon

to find applications where uncertainties are obtained as the standard deviation of small ensembles,

typically with less than 10 values (see examples in Sect.VI). Estimation of quantiles from such

small ensembles is not possible, barring recourse to intervals-based validation, and I would like to

consider here how ranking- and variance-based validation methods perform in this context.

To illustrate the problem, let us consider a normal error distribution N(0, σ) from which n

samples are drawn to estimate σ. Let us note sn the standard deviation of the ensembles. The

distribution of sn for repeated sampling follows a scaled chi distribution with n − 1 degrees of
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freedom

√
n− 1sn/σ ∼ χn−1 (22)

When considering a validation set one has therefore a variance source for uE entangled with the

variance of E, which makes the validation equation Var(E/uE) = 1 irrelevant. Kacker et al.51

formulated this in other terms by showing that the Birge ratio should not be used to estimate the

statistical consistency of GUM35 type A uncertainties. In fact, when uncertainty is estimated by

the standard deviation of a small ensembles, the ratio of the mean error to the standard error is a

t-score (or t-statistic)

T =< E > /(sn/
√
n) (23)

In the case of a normal error distribution, T has a Student’s-t distribution with n − 1 degrees of

freedom, and its variance is

Var(T ) = (n− 1)/(n− 3) (24)

When n increases, the Student’s-t distribution converges to the standard normal, and one recovers

Var(T ) = 1.

We are thus left with two questions:

1. For average calibration, how does Eq. 24 hold for non-normal distributions ? This point is

studied in AppendixB and summarized here. Deviations from Eq. 24 for a large range of

distribution shapes can mostly be neglected for n ≥ 10. For smaller ensembles, one should

allow for a wider range of Var(T ) values, that can be extracted from Fig. 12. For instance,

for n = 5, Var(T ) values around 2, between 1.7 and 2.4, could be accepted.

2. Which diagnostics can be used for tightness assessment ? This point is explored in Ap-

pendixC. The main conclusion is that all plots against uE (e.g. (uE, E) plots, LZV analysis

vs. uE or reliability diagrams) are strongly perturbed by statistical noise and should not be

used. A LZV analysis vs. V is more useful in this context.

My recommendation for probabilistic predictions based on small ensembles (n < 30) would thus be

(1) to check average calibration through Eq. 24, possibly adapted for n < 10, and (2), conditional

to average calibration, to check tightness through a LZV analysis vs. V .
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VI. EXAMPLES

I present below several case studies based on datasets extracted from the computational chem-

istry literature. The first one, PRO2022,19 was already presented in PER2022 (under the PRO2021

tag). It is reconsidered here to show the interest and limits of the (uE,E), LRR plots and confi-

dence curves. In the same spirit, two other examples treated in PER2022 are also briefly treated

together (PAN2015 and PAR2019). A recent dataset extracted from the ATOMIC-2um protocol58

is introduced, along with two cases dealing with uncertainties extracted from small ensembles of

predictions: LIN202159 from five repeats of a Free Energy Perturbation protocol and ZHE202233

from an ensemble of eight neural networks (NN) predictions in a query by committee (QbC)32

protocol.

A. PRO202260

I revisit here the treatment I made of these data in PER202220. Proppe and Kircher19 com-

pared two models to estimate a prediction uncertainty for the logarithm of reaction rates and

provided expanded uncertainties UE,95 for both models. The data are dimensionless. (UE,95,E)

plots [Fig. 6(a,b)] show unambiguously that model b is much better than model a, in the sense that

there is a better match between the scale of errors and uncertainties, notably for smaller uncer-

tainties (below 0.2). However, one notices (as already done by Proppe and Kircher) that in both

cases a single point is located outside of the y = ±x interval, which suggests an overestimation of

UE,95.

In fact, average calibration provides a PICP value of ν0.95 = 0.995(5) for both methods. The

sampling uncertainty is too small for the confidence interval I95(ν0.95) to include the target value

(0.95). It is striking that, despite the difference observed in the (UE,95,E) plots, both models

are identically calibrated, illustrating the shortcomings of considering average calibration without

considering tightness.

When PICP values are close to their upper limit, a LRR plot should be used to get a quantitative

appreciation of the overestimation of UE,95 (in PER2022, in the absence of the LRR analysis, a

LZV analysis using uE = UE,95/2 was done). One can see on Fig. 6(c) that Model a provides

prediction intervals that can be up to eight times too wide, while this does not exceed a factor two

for model b.

Despite their considerable difference in calibration, both models have identical confidence curves
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Figure 6. Calibration/tightness study for error Models a and b of the PRO2022 dataset: (a,b) (UE,95, E)

plots for Model a and Model b; (c) LRR analysis (8 groups); (d) confidence curves. All data are unitless.

[generated using uE = UE,95/2, Fig. 6(d,e)], a reflection of the fact that both uncertainty sets have

the same ranking (the Spearman (rank) correlation coefficient between both uncertainty sets is 1).

However, the probabilistic reference curves enable to confirm the diagnostic that Model b is much

closer to a good tightness than Model a. For Model b, it appears that the problem lies essentially

in the small uncertainties. Despite the non-perfect calibration, one sees that both models provide

uncertainties that would be suitable for active learning.

B. BAK2022

Like its predecessor (ATOMIC61,62), the ATOMIC-2um method58 provides uncertainties on its

predictions by a composite protocol. A set of 184 predictions has been compared to ATcT26

reference values. The corresponding data (R, UR,95, V and UV,95) have been collected from Table

S20 of the reference article.
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Figure 7. Calibration/tightness study for the BAK2022 dataset: (a) (UE,95, E) plot; (b) LCP analysis (4

groups); (c) confidence curve.

On the (UE,95, E) plot [Fig. 8(a)], the errors are well contained between the y = ±x lines with

a few outlying points. The seems however to be a slight bias of the errors towards the negative

values that might compromise the hypothesis of symmetric prediction intervals. I checked that

the correction of this bias does not improve the calibration/tightness results, so I worked with the

original data.

The uncertainties have been calibrated by Bakowies to target a 95% coverage in subsets of a

large dataset (more than 1100 values), with an overall coverage of 97.2%.58 From the more limited

dataset used here, I get a compatible value of 0.97(1), which does not exclude the 0.95 target

[Fig. 8(b)], although the LCP analysis shows a trend for overestimation of the small uncertainties.

A confidence curve, built using uE = UE,95/2 confirms this diagnostic [Fig. 8(c)]. It shows a very

good tightness, except for the bottom 25% of the uncertainties, where the curve drops and makes

an excursion out of the probabilistic reference band.

Globally, these diagnostics confirm that the uncertainties estimated by the ATOMIC-2um pro-

tocol are globally and locally reliable, with a small trend to be conservative, notably for the smaller

uncertainties (below ca. 0.7 kcal/mol). Note that in this range, the calculated uncertainties are

in average four times larger than the reference uncertainties. It is therefore unlikely that the

overestimation problem comes from the reference uncertainties.
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C. PAN2015 and PAR2019

BEEF-based CC-UQ methods are calibrated through a parameters uncertainty inflation (PUI)

scheme14,16 that implies strong functional constraints which play against their tightness.63,64 As the

calibration is quantified by the mean prediction variance, there is no guarantee that the prediction

uncertainty is reliable for any single prediction.

PAN2015. This validation set of 257 formation heats and their standard uncertainties pre-

dicted by the mBEEF DFT has been extracted from a 2015 article.65 I previously analyzed this

dataset16,20, showing an inconsistency between the prediction uncertainties and the errors ampli-

tudes. A variance-based analysis has been performed in PER2022, showing a correct calibration

with Var(Z) = 1.28(20). However, the LZV analysis with respect to the prediction uncertainty

revealed an absence of tightness, with Var(Z) values varying between 3 and 0.5. To complement

this analysis, an (uE, E) plot and a confidence curve are reported in Fig. 8(a,b). The (uE, E) plot

shows that uncertainties do not quantify correctly the dispersion of errors, but the most striking

plot is certainly the confidence curve. As it is non-decreasing, it clearly reveals that errors and

uncertainties are not statistically consistent. I find this representation to be the most interesting

when compared to those presented in my earlier studies of this dataset.16,20

PAR2019. As another example of BEEF-generated uncertainties, I considered in PER2022 a

small set of 35 harmonic vibrational frequencies issued from an article by Parks et al.66. For this

set, one has Var(Z) = 0.42(13), a negative calibration test. The data are too sparse to attempt

a LZV analysis. Fig. 8(c,d) reports the (uE, E) plot and confidence curve. Both plots enable to

conclude to an absence of tightness, the confidence curve showing again an inconsistent ranking

between absolute errors and uncertainties.

These examples clearly confirm that a method designed for average calibration on a learning

set should not be expected to produce reliable prediction uncertainties.

D. Small-ensemble predictions

1. LIN2021

In a recent study on the prediction of binding free energies by the Free Energy Perturbation

(FEP) protocol, Lin et al.59 provided a set of data including reference experimental values, FEP

values and FEP uncertainties for relative binding free energies (RBFE) and absolute binding free
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Figure 8. (a,c)(uE , E) curves for cases PAN2015 and PAR2019; (b,d) corresponding confidence curves.

energies (ABFE). The RBFE dataset contains results for two versions of the FEP method, and I

kept here the first one (Full FEP protocol) for which more data are provided (M = 333). Predicted

values and uncertainties on the FEP procedures were produced by taking the mean and standard

deviation of five repeats of the protocol (n = 5). To check the statistical consistency of the errors,

one should therefore divide the reported standard deviations by
√
n.

The errors and their distribution are shown in Fig. 9(a). The errors have a quasi-normal distri-

bution with a notable and unsuitable trend. The (uE, E) plot [Fig. 9(b)] shows that the errors seem

unrelated to the uncertainties and that the uncertainties are too small to explain the dispersion of

the errors. Confirming this point, the variance of t-scores is much too large (Var(T ) = 120 vs. 2

for n = 5). The confidence curve [Fig. 9(c), “Orig. data”] shows a very slow and shaky decrease, far

above the reference curve, confirming a weak link between errors and uncertainties. The reported

uncertainties for the FEP procedure should therefore not be interpreted nor used as prediction

uncertainties. They should probably not be used either to identify predictions with large errors.
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Figure 9. Calibration analysis for dataset LIN2021. (a) Error distribution vs V (the error bars represent

2uE); (b) (uE , E) plot with running quantiles; (c) confidence curves for the original dataset and the

corrected one; (d) same as (a) for the trend-corrected error set; (e) same as (b) for the trend-corrected

error set; (f) LZV analysis for both sets.

A linear trend correction, without modification of the uncertainties, improves notably the er-

ror distribution in terms of bias [Fig. 9(d)], but is insufficient to compensate for miscalibration

[Fig. 9(e)]. The variance of the t-scores is reduced to Var(T ) = 57, still far above the target value.

The confidence curve is not improved either [as they share the same uncertainty set, both curves

share the same probabilistic reference; Fig. 9(e)], and the LZV plots for the original and corrected

data confirm the diagnostic.

The experimental uncertainty is reported to be about 0.4 kcal/mol for the kind of experimental

data used as reference.67 Combining quadratically this value with the original uncertainties results

in a significant but insufficient decrease of Var(T ), to 6.1 (I95 = [5.1, 7.1]) for the original data and

3.5 (I95 = [2.8, 4.2]) for the corrected ones.
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Model errors are not accounted for in the FEP procedure, and one might conclude they have a

non-negligible contribution to the error budget.

2. ZHE2022

A recent article by Zheng et al.33 provides formation enthalpies and uncertainties for two data-

driven methods, AIQM1 and ANI-1ccx. The uncertainties were obtained by a query by committee

(QbC) strategy,32 and taken as the standard deviation (SD) of the results for an ensemble of n = 8

neural networks (NN). Zheng et al. consider that NN SDs provide uncertainty quantification on

the methods predictions and used them to detect unreliable simulations, outliers and suspicious

reference data. Two validation sets {Ei, uEi
}Mi=1

with M = 472 were gathered from the source article

for AIQM1 and ANI-1ccx, by aggregating data for ∆Hf and removing systems with missing values.

As in the QbC protocol the prediction value is taken as the mean of the n NN predictions,32

one should divide the reported standard deviations by
√
n for consistency. However, the authors

used the standard deviation (which would be the uncertainty estimate for a single NN prediction)

throughout their article, so I used it also to define uE . Furthermore, no information is provided

about the uncertainty on the experimental data used as reference, and I ignore them in a first step.

As a first diagnostic, one plots E vs uE for both methods [Fig. 10(a,b)]. It is clear for the

AIQM1 dataset that a large part of the uncertainties are too small to explain the amplitude of the

errors. The consistency seems slightly better above 1 kcal/mol. One can safely reject calibration

for this dataset, which is confirmed by the value of Var(Z) = 59, to compare to the 1.4 target.

Note that the scaling of the standard deviation by the 1/
√
8 factor would increase this value by

a factor 8. The situation is somewhat better for the ANI-1ccx method [Fig. 10(b)], where the

cumulative quantile curves follow grossly the guidelines. However, one has Var(Z) = 4.3 for this

dataset, which leads to reject calibration.

As the R2 score based on a linear regression without intercept used by the authors does not

inform us on the correlations between uE and |E|, I estimated the rank correlation coefficients for

the CHNO subset and found 0.37 and 0.42 for AIQM1 and ANI-1ccx, respectively. These values

are within the range reported by Tynes et al.34 for uncertainty datasets used in active learning

(0.2 - 0.65). One might thus conclude that there is a rather strong relation between the QbC

uncertainties and the prediction errors. This is assessed by the confidence curves [Fig. 10(c,d)].

Let us however note that these curves show a sharp decrease for the first fifth of the k axis and

progressively switch to a slower decrease, or even a plateau for ANI-1ccx. This would mean that
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Figure 10. Calibration analysis for dataset ZHE2022: (a,b) (uE,E) plot with running quantiles for

methods AIQM1 and ANI-1ccx (the oracle is derived from AIQM1); (c,d) confidence curves; (e) reliability

diagrams.
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the consistency between errors and uncertainties is visible only for the 20% larger uncertainties.

The departure of the confidence curves from the the probabilistic reference confirms the absence

of calibration and tightness, with a better performance for ANI-1ccx.

Despite the absence of calibration, one might check the reliability of both sets on a reliability

diagram [Fig. 10(d)]. Both sets have similar and slightly off reliability for the larger uncertainties

(above 1 kcal/mol). Below this value, the ANI-1ccx performs better than AIQM1, with a nearly

constant offset from the identity line. In contrast, the reliability curve for AIQM1 deviates from

the identity line to reach a plateau, indicating a poor reliability of small uncertainties.

The median of the standard uncertainties derived68 from the Active Thermochemical Tables

(ATcT, ver. 1.112)69 would be about 0.1 kcal/mol (the mean is about 0.17 kcal/mol). Adding

quadratically a uniform contribution of 0.1 kcal/mol to the QbC uncertainties reduces Var(Z) to

29 and 4.1 for AIQM1 and ANI-1ccx, respectively. Experimental uncertainty alone is thus far from

explaining the missing uncertainty and there should be a significant contribution of model errors.

This is acknowledged by Zheng et al., who observed that some predictions with large errors have

small QbC uncertainties.

This analysis confirms the findings of recent studies about the overconfidence of ensemble NN

UQ protocols.4,5 It is clear from the present analysis that the QbC uncertainties cannot be consid-

ered as prediction uncertainties, mostly because they are not integrating model errors. However,

as clearly demonstrated by Zheng et al. and observed on the confidence curves, they seem well fit

for the purposes of active learning and outliers detection.

VII. AVAILABLE SOFTWARE

Except for simple graphical diagnostics presented in Sect. IV, extensive coding might be required

to implement the CS/CT validation methods. To my knowledge, three toolboxes are freely available

that implement some of these methods.

• Uncertainty Toolbox. “A python toolbox for predictive uncertainty quantification, calibra-

tion, metrics, and visualizations”.30 The toolbox focuses on regression tasks in ML-UQ. It

implements, among other, calibration and sharpness statistics, adversarial group calibration

and some re-calibration methods.

• scoringutils “The scoringutils package provides a collection of metrics and proper scoring

rules and aims to make it simple to score probabilistic forecasts against the true observed
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values.” Issued in 2022, this R package deals with predictive probability distributions repre-

sented as sample or parametric distributions.70,71

• ErrViewLib. Coded in R,46 the package implements functions for simple graphical checks

(plotEvsPU) and calibration/tightness analysis (plotLCP, plotLRR, plotLZV, plotRelDiag

and plotConfidence). It is not ML oriented and does not presently treat prediction en-

sembles. All the plots of the present study have been generated with ErrViewLib-v1.5d

(https://github.com/ppernot/ErrViewLib/releases/tag/v1.5d), also available at Zen-

odo (https://doi.org/10.5281/zenodo.6783307). Alg. 1 presents a skeletal example

to generate a (uE, E) plot and a LCP analysis for an heteroscedastic synthetic dataset.

The UncVal graphical interface to explore the main UQ validation methods provided by

ErrViewLib is also available on GitHub (https://github.com/ppernot/UncVal), either as

source code or as a Docker container.

Algorithm 1 Example of R script using ErrViewLib.

l ibrary ( ErrViewLib )

N = 1000

s2 = rchisq (N, df = 4) # Random variance

uE = 0.01 ∗ sqrt ( s2/mean( s2 ) ) # Re−s c a l e uncer ta in ty

E = rnorm(N, mean=0, sd=uE) # Generate e r ror s

ErrViewLib : : plotEvsPU (uE , E)

U95 = 1.96∗uE # U95 f o r normal law

ErrViewLib : : plotLCP (E, U95 , ordX = U95 , prob = 0.95 , ylim = c ( 0 . 5 , 1 ) )

VIII. DISCUSSION AND CONCLUSION

This article presents a comprehensive panel of simple and more complex graphical and statistical

methods to test the calibration and tightness of probabilistic predictions. Tightness has been

introduced as a concept to evaluate the small-scale reliability of probabilistic predictions. As for

sharpness, its use is conditional to average calibration. The full validation of the reliability of

probabilistic predictions requires thus the estimation of (average) calibration and tightness.

The tool set presented in PER2022 for intervals- and variance-based validation has been com-
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Diagnostic Applicability Validation

qE uE UE,p Homosc. Heterosc. Calibrat. Tightness

Average

PIT hist. � X X � � � X

Calib. curve � X X � � � X

PICP � X � � � � X

Var(Z) � � X � � � X

Cor(uE ,|E|) � � � X � X X
∗

Local

LCP/LRR � X � � � �
†

�

LZV � � X � � �
†

�

Reliab. diag. � � X X � �
†

�

Confid. curve (oracle) � � � X � X X
∗

Confid. curve (prob.) � � X X � �
†

�

Table I. Summary of the applicability of uncertainty validation methods for calibration and tightness. ∗

A negative diagnostic invalidates tightness. †The local validation methods apply to calibration for very

large validation sets only. For small validation sets, both average calibration and tightness have to be

validated (see Sect. III A).

pleted by easy to implement graphical checks and by ranking-based methods (correlation coeffi-

cients, confidence curves) used in machine learning4. A summary of the applicability and validation

capacity of all the methods is presented in Table I.

We have seen that the ranking-based methods are not able to give a positive validation diagnos-

tic, but they might be used to ascertain a negative tightness diagnostic. Note that ranking-based

methods find their utility in active learning, where the main purpose of an uncertainty is to identify

cases susceptible of large errors. From a set of average-calibrated methods, on should prefer the

one with the best sharpness or confidence curve, but we have no guarantee that it might have a

good tightness. Besides, ranking-based methods cannot be used for homoscedastic datasets (i.e.

validation sets for which all predictions have the same uncertainty). We are thus left with intervals-

and variance-based validation methods, the choice of which is guided by available information.

When predictions are represented by analytical distributions or large ensembles, all methods

are available. Either for calibration or tightness validation, testing for the adequacy of a set of
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intervals with different coverage probabilities will be more demanding than testing for variance,

as the latter is less dependent on the shape of the distribution. However, unless the distribution’s

shape is very far from normal, e.g. with a strong asymmetry, variance-based methods should be

adequate.

In many instances, the literature about computational chemistry uncertainty quantification

reports only statistical summaries, i.e. standard uncertainties or expanded uncertainties at the

95% level. In such cases, the choice of validation method is imposed: standard uncertainties should

be handled by variance-based methods and expanded uncertainties by intervals-based methods. Of

course, in cases where expanded uncertainties were derived from standard uncertainties by a known

expansion factor, inverse transformation to standard uncertainties can give access to variance-based

methods.

In the presented framework, calibration is validated on the full validation set, using prediction

intervals coverage probabilities (PICP) for the intervals-based approach and the variance of scaled

errors or z -scores (Var(Z)) for the variance-based approach. Tightness validation is based the same

tools, but applied to subsets or groups of the validation set to assess local or small-scale reliability,

leading to LCP analysis for the intervals-based approach and to LZV analysis for the variance-

based approach. The groups can be designed according to any relevant criteria, but using the

predicted value and the prediction uncertainty are two interesting alternatives. I have shown that

the latter case is closely linked to the reliability diagrams introduced by Levi et al.24. Note that

by using a new probabilistic reference, confidence curves have been promoted to a variance-based

validation method for tightness. Reliability diagrams and confidence curves can only be used for

heteroscedastic datasets.

A special care has to be taken for those cases where uncertainty is estimated as the standard

deviation of a small ensemble (n < 30). In such cases, the scaled errors are not z -scores, but

t-scores, for which the theoretical variance used for validation is (n − 1)/(n − 3) (for normal

predictive distributions) instead of 1 for z -scores. With this caveat in mind, it is possible to validate

calibration, but we have seen that tightness is very sensitive to the statistical noise characteristic of

small ensembles. In particular, the LZV approach with groups based on the prediction uncertainty,

or the reliability diagrams, will reject tightness. In this case, using the predicted value V as a

grouping feature for the LZV analysis is a better alternative.

The tools presented in this study are of interest primarily to CC-UQ researchers in order to

validate their methods to generate prediction uncertainties, but the most simple of them, such as
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the (uE, E) plot, can easily be applied by end users curious to evaluate and gain confidence in

uncertainties they might want to publish or reuse. UQ outputs failing to satisfy these validation

tests should be used with caution and not over-interpreted. They should not be used to infer

probability intervals for the true value of a property, as would be expected in the Virtual Mea-

surements framework.72 All the examples taken from the literature, as well as those presented in

PER2022 show that designing reliable prediction uncertainties is a very demanding process, which

leaves ample room for future developments in CC-UQ.
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APPENDICES

Appendix A: Var(Z ) vs. Birge ratio

Variance-based validation is an essential tool in absence of prediction intervals (see Sect.VA1).

I implemented it through the z -scores variance statistic Var(Z), where zi = Ei/uEi
is an error

scaled by the corresponding uncertainty. This statistic is closely related to the Birge ratio R2,

introduced in 1932 by Birge to test the statistical consistency of residuals of least-squares fits.50

Applying a modern metrological formulation,73 one gets

R2 =
1

ν

M∑

i=1

(
Ei

uEi

)2

(A1)

where ν is the number of degrees of freedom of the error set: if the errors are independent random

variables, ν = M ; if they are residuals from a fit, ν = M − p, where p is the number of fit

parameters. For a consistent set of errors and uncertainties, on should have R2 ≃ 1.

For sets of independent errors (ν = M), one has therefore

R2 =
〈
Z2

〉
(A2)

and

Var(Z) =
〈
Z2

〉
− 〈Z〉2 (A3)

≃ R2 (A4)

as 〈Z〉 ≃ 0 for unbiased errors.

Note that for normal error distributions, νR2 has a chi-squared distribution with ν degrees of

freedom, which enables hypothesis testing.73
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Distribution κ Var(T )

Beta(0.5,0.5) 1.5 5.5

Uniform(-1,1) 1.8 2.7

Exp1 2.18 2.4

Normal 3.0 2.0

Exp4 6.0 1.7

T3 ∞ 1.7

Table II. Dependence of V ar(T ) on the kurtosis of the generative error distribution for n = 5.

Appendix B: Calibration of t-scores

In order to assess the effect of the generative distribution on the t-score distribution and more

particularly on Var(T ), let us consider a set of distributions covering a large range of shapes

(summarized by their kurtosis value κ):

• Beta(1/2,1/2), (κ = 1.5)

• Uniform between ±1 (κ = 1.8)

• Exp4: exponential power (p = 4) (κ ≃ 2.18)

• Normal: standard normal, or Exp2, (κ = 3)

• Exp1: exponential power (p = 1), or Laplace (κ = 6)

• T3: Students-t(ν = 3) (κ = ∞)

Fig. 11 reports the distributions of the z-scores and t-scores statistics for the mean of samples of

n = 5 random draws from some of these generative distributions.

One can check that for the Normal error distribution, the t-scores and z -scores have the statisti-

cal properties described in Sect.VC. For other generative distributions, the t- and z -score distribu-

tions deviate from the normal references. In spite of this, Var(Z) is independent of the generative

distribution (and equal to 1 for those calibrated datasets), while Var(T ) depends strongly on the

generative distribution. More specifically, there seems to be a reverse dependence between Var(T )

and the kurtosis of generative distribution, as shown in Table II.

The impact of the generative error distribution on Var(T ) decreases when the sample size

increases (see Fig. 12). For practical purposes, one might consider the uniform and T3 distribution
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Figure 11. Distributions of z -scores and t-scores statistics for several generative distributions. The density

plots (full lines) are generated from 105 Monte Carlo realizations of the mean and standard deviation of

sub-samples of size n = 5. The dashed lines correspond to the Student’s-t distribution with n− 1 degrees

of freedom (red) and the standard normal distribution (blue). The MC densities have been scaled at the

mode of the corresponding reference distribution. The variances of the samples are given in the legend of

each plot.

as extreme cases, as the Beta(0.5,0.5) distribution, displaying a concentration at the extremities of

the variable range is not a very plausible predictive distribution, and there is not much variation

left beyond n = 10. One might therefore consider to test t-scores calibration by Var(T )
?
= (n −

1)/(n − 3). For smaller sample sizes (n < 10), one should allow for some margin around this

value, within the limits shown in Fig. 12. These limits can be improved if information about the

generative error distribution is available.
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Figure 12. Convergence of V ar(T ) as a function of sample size n for a set of generative error distributions.

The dots mark the (n− 1)/(n − 3) reference points.

Appendix C: Validation of tightness for small ensembles

Considering the inherent distribution of the standard uncertainties, testing if the uncertain-

ties provide a good scale for the errors might be strongly perturbed, notably for heteroscedastic

datasets where it is impossible to disambiguate structural uncertainty variability from the standard

uncertainty statistical noise.

1. Homoscedastic case

Considering the dataset for the normal generative distribution used in Fig. 11, which theoret-

ically corresponds to an homoscedastic model, one can still make a (uE,E) plot because of the

variability of the standard deviation [Fig. 13(a)]. From this plot, one would conclude on the absence

of tightness, as there is no correlation between mean values and standard uncertainties, which is

confirmed by the flat confidence curve [Fig. 13(b)]. The LZV analysis [Fig. 13(c)] shows that the

average calibration is indeed correct (Var(T ) = 2 for n = 5), but the local analysis with respect

to uE is not usable (a local analysis wrt. the calculated value might still be useful though). The

LZV analysis is confirmed by the reliability diagram [Fig. 13(d)].
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Figure 13. Calibration analysis for a set of sample means and standard deviations (n = 5) generated from

a normal distribution: (a) (uE,E) plot; (b) confidence curve; (c) LZV analysis; (d) reliability diagram.

2. Heteroscedastic case

For the SYNT01 dataset, the perturbation introduced by using mean and standard error of

ensembles (n = 5) can be appreciated in Fig. 14. Comparison of the (uE,E) plot [Fig. 14(a)]

to the one for the initial data [Fig. 1(b)] shows that the dataset is problematic. On the other

hand, the confidence curve is continuously decreasing [Fig. 14(b)], although it does not match the

probabilistic reference. As for the purely noisy example above, the LZV analysis wrt. uE reveals

a correct average calibration but fails at the local tests [Fig. 14(c)]. However, a LZV analysis wrt.

V does not reveal any problem [Fig. 14(d)].

The situation for n = 10 is slightly improved, however, the confidence curve and the LZV

analysis wrt. uE would still lead to reject tightness [Fig. 15].
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Figure 14. Calibration analysis for a set of sample means and standard deviations (n = 5) generated from

the SYNT01 dataset (arbitrary units): (a) (uE,E) plot; (b) confidence curve (Noisy data) compared to

the SYNT01 dataset (Clean data); (c) LZV analysis vs uE; (d) LZV analysis vs V .
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Figure 15. Same as Fig. 14 for n = 10.
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