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H I G H L I G H T G R A P H I C A L  A B S T R A C T

• Crop residues are renewable biomass for
biochar production.

• Effects of biochar on anaerobic digestion
(AD) efficiency are reviewed.

• The role and mechanism of biochar in
anaerobic digestion system are
scrutinized.

• Limits and prospects for biochar appli
cation in the real world are highlighted.

• AD is found to be cost-effective to
convert organic waste into renewable
energy.
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A B S T R A C T

Anaerobic digestion (AD) is a viable and cost-effective method for converting organic waste into usable 
renewable energy. The efficiency of organic waste digestion, nonetheless, is limited due to inhibition and 
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instability. Accordingly, biochar is an effective method for improving the efficiency of AD by adsorbing in
hibitors, promoting biogas generation and methane concentration, maintaining process stability, colonizing 
microorganisms selectively, and mitigating the inhibition of volatile fatty acids and ammonia. This paper reviews 
the features of crop waste-derived biochar and its application in AD systems. Four critical roles of biochar in AD 
systems were identified: maintaining pH stability, promoting hydrolysis, enhancing the direct interspecies 
electron transfer pathway, and supporting microbial development. This work also highlights that the interaction 
between biochar dose, amount of organic component in the substrate, and inoculum-to-substrate ratio should be 
the focus of future research before deploying commercial applications.   

1. Introduction

Recent increases in the consumption of fossil fuels have had a
negative impact on the sustainable development of society and the 
economy, as a result of the energy crisis. Anthropogenic activities also 
produce large volumes of bio-waste, which pose severe threats to the 
environment. In order to address these issues, scientists are currently 
investigating technologies that convert massive bio-based wastes into 
renewable energy which can replace fossil fuels (Varbanov et al., 2022). 
Among alternatives, anaerobic digestion (AD) is not only considered a 
potential approach to recover energy released from bio-wastes but is 
also widely used to treat municipal solid waste, domestic wastewater, 
agricultural residues, and industrial wastewater (G. Wang et al., 2020c). 
AD is a cost-effective way to manage biodegradable waste because it 
produces biogas and digestate (Yuan et al., 2022). Biogas derived from 
AD can be utilized to replace fossil fuels straight away (Bui et al., 2022), 
but it also can be converted into bio-methane for fueling vehicles or be 
used in the gas grid (Shinde et al., 2021), while digestate may be used as 
soil amendment (Panuccio et al., 2019). Compared to alternative 
organic waste treatment methods, AD has additional benefits like 
removing pathogens, limiting odor and greenhouse gas emissions, as 
well as adaptability to various substrates (Jin et al., 2021). Due to these 
benefits, the AD process is one of the most beneficial waste management 
strategies and it has been widely implemented on both a small scale, 
especially in developing countries and rural regions, and on a large scale 
in industrial zones (Chiappero et al., 2020). 

AD process is a natural approach that is carried out in an anoxic 
environment by numerous archaea and microscopic organisms. Impor
tantly, in the anaerobic digester, four consecutive stages, including 
methanogenesis, acetogenesis, hydrolysis, and acetogenesis must be 
completed along with the division of the macromolecular into mono
mers effectively broken at the phase of hydrolysis (Xiao et al., 2021a), in 
order for organic matter to be converted into biogas, which is mainly 
composed of carbon dioxide (CO2) and methane (CH4) (Amin et al., 
2021). The anaerobic consortia in the AD system undergo biological 
degradation concurrently in order to share vitality via the exchange of 
electrons or hydrogen amongst relevant species (Khalid et al., 2021). 
Even though the digestion of different kinds of waste does not affect the 
environment, it has a low methane production, which may lead to 
several instabilities during the process (Ryue et al., 2020). Furthermore, 
several issues such as the dynamic nature of micro-organisms and the 
biodegradability of food waste could even restrict the efficiency of the 
process and the methanogenesis reactions (Yu et al., 2021). Alterna
tively, microbial activity is always disrupted by unfavorable factors in 
the AD process, resulting in inefficient energy recovery (Cardona et al., 
2020). Therefore, to support metabolic practice, it is necessary to up
grade anaerobic bacteria as an alternative approach by incorporating 
them into the biochemical process of anaerobic digestion (Van Steen
dam et al., 2019). Indeed, the porous surface of supporting materials 
such as biochar provides an ideal substrate to which microorganisms can 
adhere, increasing biowaste digestibility as well as minimising the 
startup time for digestion (Wu et al., 2022). As a result, carbonaceous 
additives have been employed to improve AD stages and address the 
aforementioned issues (Xiao et al., 2021b). Based on the ability to in
crease CH4 production by promoting methanogenesis, acidogenesis, and 

hydrolysis along with the compatibility with the ecosystem (Kumar 
et al., 2021) (Xiao et al., 2019), conductive carbonaceous substances 
including biochar, carbon cloth, and granular activated carbon are 
preferred over non-conductive carbonaceous substances (Gahlot et al., 
2020). Biochar is advantageous, as compared to other additives, in view 
of its diverse physicochemical properties which are controlled by several 
factors like methods of modification or activation, synthesis tempera
ture, and types of feedstock (Hassan et al., 2020). According to recent 
studies, biochar had specific features including plentiful oxygen- 
containing functional groups (M. Kumar et al., 2020b), good capa
bility of conducting electricity (Ambaye et al., 2020), low density and 
high porosity, relatively high specific surface area (M. Kumar et al., 
2020c), and high capacity of exchanging cation (Chen et al., 2022). It 
was revealed that biochar possesses the unique capacity to stimulate the 
activity of live microorganisms (Khalid et al., 2021). Biochar also pos
sesses solid carbonaceous features since it is the predecessor of activated 
carbon, produced during the thermochemical conversion of organic 
matter in an inert (oxygen-free) environment (Yücedağ and Durak, 
2022). Beyond applications in AD, carbon sequestration and a wide 
range of other useful properties make biochar a popular choice for 
environmental remediation, soil amendment, waste management, and 
functional material preparation (Wan et al., 2020). 

The fact shows that biochar can be generated from a variety of 
biomass materials such as municipal solid wastes, sewage, energy crops, 
and agricultural residues. As reported, the annual production of crop 
residues in China is 600–800 Tg, with rice straw, corn straw, wheat 
straw, and rapeseed straw accounting for a significant proportion (J. 
Chen et al., 2019). In India, crop wastes are produced in excess of 500 
million tons (Mt) each year, in which surplus crop residues are between 
84 and 141 Mt/year, with fiber and cereal crops accounting for around 
23 % and 58 % of total crop residues respectively (Pawar and Panwar, 
2020). In 2020, the EU-27, except the United Kingdom, was reported to 
generate 127 million dry tons of crop waste (Scarlat et al., 2019). Based 
on six kinds of crops including corn rice, wheat, sunflower, barley, 
rapeseed, and oats, it was predicted that the annual global crop residue 
production would be roughly 3700 million dry tons (Scarlat et al., 
2019). Burning a large quantity of crop residue has detrimental effects 
on humans, notably on young children and pregnant women who are 
susceptible to cardiovascular and respiratory diseases (Pawar and Pan
war, 2020). Therefore, turning leftover crop residues into biochar and 
other carbon materials is a potential method to reduce CO2 emissions 
released into the environment while simultaneously enhancing other 
advantages (Yetri et al., 2020; Kumar et al., 2022). Indeed, biochar is a 
cost-effective product, so it could be employed as an additive to improve 
the AD system’s performance as mentioned above. In addition to using 
biochar in conventional AD systems to handle decomposable organic 
waste, there is a growing interest in utilizing biochar in advanced AD 
systems to treat refractory organics. However, understanding of the 
biochar production process from crop residues and its application to the 
AD systems, as well as the critical mechanisms and core interactions 
between biochar and components in the AD systems are limited. On this 
basis, this current work presents unique insights into biochar production 
from crop residues, as well as its application in the AD system, with the 
objective of identifying significant difficulties pertaining to the mecha
nisms of biochar in regulating and affecting the performance of the AD 



2022). Chemically, the breaking of weaker connections such as C-OH 
linkages and hydrogen bonds causes lignin decomposition during py
rolysis, and as the temperature increases, stronger links, like the β-O-4 
bonds, are broken (Yang et al., 2021). During the first low-temperature 
stage of pyrolysis, hydroxyls, aldehydes, guaiacyl, styrenes, and toluols 
are often produced (Ong et al., 2021a). The second phase of pyrolysis 
produces P-hydroxy-phenols, cresols and catechols at a higher temper
ature. Once the β-O-4 bonds are broken, free radicals are released, 
initiating lignin depolymerization (Gul et al., 2021). These radicals can 
combine to generate chemicals such as 2-methoxy-4-methylphenol and 
vanillin. A chain propagation is also initiated by the creation of a large 
number of important radicals. It was shown that biochar can be gener
ated over 350 ◦C via radicals’ random repolymerization, as shown in 
Fig. 2 (Fang et al., 2021). In addition, Ahmad et al. (2021) showed that 
intermediate pyrolysis, slow pyrolysis, and rapid pyrolysis are based on 
residence duration, heating rate, pressure, temperature, and other fac
tors for biochar production from crop residues. The yield of biochar 
produced by rapid pyrolysis is typically low; for example, at a reaction 
temperature of 480 ◦C, only a 17 % yield of wood biochar was obtained 
(James et al., 2022). Slow pyrolysis requires a longer residence time up 
to a few hours or days and a slower heating rate (ranging from 0.1 to 
10 ◦C/min). The high solid yield from slow pyrolysis is one of the rea
sons for its widespread use in biochar generation. Fast pyrolysis, on the 
other hand, generates more liquid and gas, including syngas components 
such as H2, and CO, as well as pyrolysis bio-oil, at higher temperatures 
and faster heating rates (Yaashikaa et al., 2020). Bio-oil yields from 
intermediate pyrolysis are higher as compared to those from fast py
rolysis, however, this process is rarely used to make biochar because of 
the higher yields of gas and liquid products. 

Torrefaction is a thermochemical method with operating tempera
tures between 200 ◦C and 300 ◦C, a long residence period (>1 h), a lower 
heating rate less than 50 ◦C/min, with a small amount of oxygen or no 
oxygen supply at atmospheric pressure (Haris et al., 2021). Torrefaction 
is also known as mild pyrolysis; for lignocellulosic biomass it also entails 
devolatilizing hemicelluloses, lignin and cellulose as a function of tem
perature. At first, biomass degrades between 150 and 200 ◦C by devo
latilization of surface moisture, bound water and light volatiles often 
associated with cellulose (Chen et al., 2021a). After that, hemicelluloses 

Fig. 1. Techniques for biochar production from biomass residue.  

system and proposing effective solutions for overcoming those 
difficulties. 

2. Biochar production techniques and characteristics

2.1. Biochar production techniques

Biomass produced from agricultural activities is abundant, implying 
a high potential for the development of bio-based materials. For 
example, every kilogram of grain that is harvested creates 1–1.5 kg of 
straw (Bheel et al., 2021), representing one of the most plentiful agri-
cultural wastes in the world. Lignocellulosic biomass, the main 
component of crop residues, generally contains lignin from 15 to 25 %, 
hemicellulose from 20 to 40 %, and cellulose from 30 to 50 %. Such a 
high lignin in crop residues could promote the production of biochar 
with high content of fixed carbon and high yields (Lee et al., 2020). 

A variety of traditional and modern methods were used in the last 
several decades to convert crop residues into biochar. Apart from batch 
processes, the continuous process was identified as one of the potential 
thermochemical biomass processes for energy conversion due to its 
greater flexibility towards biomass feedstock and higher biochar pro-
duction of 25–35 % (Pawar and Panwar, 2020). The use of an auger-type 
reactor can increase the biochar yield and its quality, and improve the 
maximum efficiency of conversion (Jalalifar et al., 2020). There are 
multiple techniques for generating biochar such as gasification, pyrol-
ysis, hydrothermal carbonization, and torrefaction, as shown in Fig. 1 
(Zhang et al., 2019b). 

The process to produce biochar has considerable impact on both the 
yield and final characteristics of the biochar. During the conversion 
process, the biomass devolatilizes semi-volatile and volatile elements in 
the form of gas and liquid products, leaving a solid biochar residue 
(James et al., 2022). Due to devolatilized vapors re-condensing on the 
primary char surface, heterogeneous reactions can result in the creation 
of additional char, which increase the biochar output, depending on the 
residence duration and temperature. One of the oldest and most popular 
methods to generate biochar is pyrolysis, heating in an environment of 
low or non-oxygen. In addition to biochar production, gas and liquid can 
be used as energy sources to power various applications (Escalante et al., 



begin to pyrolyze around 200 ◦C, with depolymerization and deacety
lation processes occurring (Adeleke et al., 2019). Deacetylation leads to 
the formation of acetic acid, which could catalyze the low-order car
bohydrates’ depolymerization as well as the degradation and conden
sation of lignin (Ivanovski et al., 2022). During biomass torrefaction, the 
softening of lignin begins between 160 and 190 ◦C, in which the division 
of α- and β-aryl-alkyl ether bonds occurs between 150 and 300 ◦C, while 
the splitting of aliphatic side chains occurs at approximately 300 ◦C. 
Finally, the elimination of methoxyl groups, also known as demethox
ylation, is caused by linkage cleavage at higher temperatures. When the 
reaction temperature exceeds 300 ◦C, substantial depolymerization oc
curs, which signifies a shift to pyrolysis (Ong et al., 2021b; Chen et al., 
2021a). Accordingly, torrefaction products have a high potential energy 
recovery, ranging from 80 to 90 %, and a mass yield in the range be
tween 70 and 80 %; thus, the energy density might be enhanced by 30 % 
(Haris et al., 2021). 

Thermal gasification is believed to be a viable technique to integrate 
the generation of bioenergy with biochar from various biomass wastes 
(Hoang et al., 2022). Biochar produced by gasification often contains a 
significant quantity of carbon and refractory minerals, the latter of 
which depends on the mineral content of the raw biomass (Haris et al., 
2021). The yield of charcoal obtained through gasification is sometimes 
assumed to be lower, about 200 g/kg, than that obtained through py
rolysis of 200–500 g/kg because during gasification some of the volatile 
matter and fixed carbon present oxidizes, leading to lower mass yields. 
However, the presence of alkaline earth metals and alkali species (Ca, K, 
Mg, Na) in the feedstock often catalytically enhances the gasification 
process and produces a biochar of potentially higher value than a bio
char made via pyrolysis at the same temperature (Lee et al., 2020). 
Recent advances in gasification processes release less CO2 and equip
ment setups are more compact and thermally efficient. Nevertheless, 
gasification has less biochar output and greater emissions of hazardous 
gases including NOx and SOx than pyrolysis. This leads some to favor 
pyrolysis over gasification for biochar production (Elkhalifa et al., 
2019). 

Hydrothermal carbonization (HTC) of biomass is a thermal tech
nique that occurrs in subcritical liquid water under high pressure, above 
the water saturation pressure, and moderate temperature from 180 ◦C to 
220 ◦C (Gul et al., 2021). In comparison with slow pyrolysis, hydro
thermal carbonization produces biochars that are acidic, contain higher 
carbon content, have a higher surface charge, and more oxygen- 
containing functional groups than biochars from the same biomass 
(Haris et al., 2021). During hydrothermal treatment, the division of 
C–O–C and C–C linkages, condensation, alkylation and de- 
methoxylation are considered to be the most prevalent reactions. 
Initially, during HTC, the β-O-4 bonds and αC-βC connections are 
broken, but aromatic bonds are not substantially affected. Volpe et al. 
(2020) demonstrated how the char structure of lignin changes during 

HTC, when the temperature increases, lignin degradation intensified. At 
higher temperatures, it was observed that HTC char had a stronger 
crystalline structure. Also, functional groups began to disappear, leaving 
just –OH groups when the temperature exceeded 350 ◦C. Lignin HTC 
produced more charcoal than lignin pyrolysis; however, the product 
formed was less stable due to higher volatile matter content (Gul et al., 
2021). The fundamental advantage of hydrothermal carbonization in 
comparison to other thermochemical procedures is its ability to process 
wet biomass without expensive drying steps beforehand. Some other 
benefits of this method could be the effectiveness of cost, high biochar 
yields, simple operation, and quality of the product (Zhuang et al., 
2022). 

Compared to other types of methods for generating biochar, pyrol
ysis is often touted as the most environmentally favorable and requires 
the smallest infrastructure. Pyrolysis is versatile in handling different 
types of feedstock under diverse working circumstances, which allows 
for the development of the desired final product qualities (Parascanu 
et al., 2019). Therefore, pyrolysis receives the greatest attention among 
the numerous thermal approaches, and is regarded as the best technique 
for producing biochar from dry feedstocks that have a moisture content 
of less than 10 % (Chiappero et al., 2020). Meanwhile, HTC is gaining 
popularity for its ability to process wet biomass (A. Kumar et al., 2020a). 

2.2. Biochar characteristics 

2.2.1. Physical properties 
Biochar is a viable additive to improve AD because it can work as a 

sorbent for hydrophobic inhibitors, support for microbial colonization, a 
reactant to enhance in situ biogas, as well as a conductor to directly 
transfer electrons among species (Lü et al., 2020). Furthermore, based 
on the ash composition in biochar, putting it an anerobic digester can 
enhance the concentration of trace metals and alkalis, resulting in 
improved performance of the process (Pan et al., 2019b). Biochar’s 
porous structure and surface area serves as a living environment for 
microorganisms (Wang et al., 2022). However, heating rate, reaction 
temperature, and feedstock all affect biochar characteristics, including 
the fixed carbon content, nutrient content and availability, cation ex
change capabilities and pH (Ghodake et al., 2021). The characteristics of 
biochar are closely linked with its potential to sequester inhibitors 
present in the AD system (Günal et al., 2019). 

Biochar may enhance AD by acting as an absorbent substance to 
inhibit hydrophobicity, a provider for bacterial colonization, reactant 
for producing biogas and a bridge for promoting interspecies electron 
transfer (Zhao et al., 2020). The efficacy of biochar to improve AD is 
determined by biochar features like surface functional groups, ash 
content, specific surface area and porous structure. The interplay be
tween these physical–chemical characteristics and the specific microbial 
community are key considerations. For example, Pseudomonas sp was 

Fig. 2. Mechanism of biochar formation from cellulosic biomass.  



role of electrical conductivity in the syntrophic oxidation of volatile 
fatty acids contained in sewage sludge and sawdust-derived biochar was 
further assessed by Wang et al. (2019). Because of the presence of redox- 
active structures, biochar was observed to enhance volatile fatty acid 
degradation and microbial activity through direct interspecies electron 
transfer (DIET). 

Biochar possesses a high capacity for electron transfer due to the 
arrangement of electrochemical functional groups along with conju
gated π electrons on its condensed aromatic surface (W. Zhao et al., 
2021c). Biochar was considered an electron conduit to promote DIET 
and enhance the electron exchanging process between methanogens 
accepting electrons and bacteria donating electrons (J. Wang et al., 
2021c). Even though electron transfer could be enhanced by the biochar 
aromatic structure produced at higher pyrolysis temperatures (He et al., 
2019), it might be decreased due to the degradation of oxygen- 
containing functional groups into H2O, CO, and CO2 (Zhang et al., 
2019a). The optimized transfer of electrons in biochar is ultimately 
governed by both the graphitized structures and functional groups. Prior 
work shows that higher pyrolysis temperatures may benefit straw- 
derived biochar prioperties, but the impact on increasing pyrolysis 
temperature for sawdust-based biochar was not as important (Nze
diegwu et al., 2021). 

Biochar’s redox characteristics were identified as a critical parameter 
in the AD process (G. Wang et al., 2019a). According to Chacon et al. 
(2020), some factors like the presence of metal oxides, metals and free 
radicals as well as biochar surface functional groups could govern its 
redox features. For example, phenolic C-OH fractions were found as the 
essential functional groups accountable for their electron-donating ca
pacity, whilst quinoid C––O fractions were recognized as the major 
functional groups responsible for their electron-accepting capacity 
(Kumar et al., 2021). These fractions determined the biochar’s overall 
electron exchange capacity. In terms of the inorganic elements present 
in biochar, redox-active metals commonly exist in biomass feedstocks, 
and in a variety of oxidation states, functioning as electron acceptors and 
donors (Dieguez-Alonso et al., 2019). The level of engagement in the 
electron exchange capacity was determined by types of metal, oxidation 
state changes, coordination as organo-mineral complexes and metal 
oxide dispersion on the surface of biochar (Ren et al., 2020). Further
more, an oxidation technique could increase the relevant biochar sur
face functional groups (M. Kumar et al. (2020d)); however, the 
oxidation approach should preserve additional key functionalities 
without causing conversion into the redox-inactive –COOH functional 
groups as well as removal as carbon dioxide (Chacon et al., 2020). 

Biochar conductivity and related microorganisms in the AD process 
were affected by the pH (Yin et al., 2019). In this instance, the pH of 
biochar should be alkaline because the ash content and the volatilization 
of functional groups were acidic. It was found that the pH of biochar 
made from crop residues not only varied widely depending on the source 
of feedstock, ranging from 6 to 11.4, but was also significantly affected 
by pyrolysis temperature. Biochar made from rice husk at 300 ◦C, for 
example, had a lower pH of 6.5; but as the temperature rose to 500 ◦C 
and 600 ◦C, its pH increased from 9.5 to 9.8 (Shi et al., 2019). Maize and 
straw-derived biochar had an alkaline pH of 9.8 at 300 ◦C, 10.5 at 450 ◦C 
and 11.4 at 600 ◦C (Haris et al., 2021). Biochar raised the alkalinity of 
the AD to a pH of at least 6, increasing microbial activity for rapid CH4 
production and adaptation to the initial loading shock (Goswami et al., 
2022). Under acidic circumstances (with pH = 5.3), biochar consider
ably improved the methanogenesis phase, accordingly enhancing the 
operating conditions with higher total solids and organic loading (Ren 
et al., 2020). Moreover, biochar also possesses redox capacity, which 
allowed to accept or release electrons. 

From the above analysis, it can be concluded that biochar properties 
are heavily influenced by the biomass origin, pretreatment, biochar 
production conditions and post-treatment or activation steps. Additional 
effort is required to manage the combined effects of these important 
factors in order to increase and maximize the target response’s biochar 

found to adapt better to biochars that enhance alkalinity, and those with 
Ca- and Mg-based buffering capacities (Zhao et al., 2020). 

The specific surface area of a biochar influences the ability of mi-
crobes to establish residency on the biochar’s surface and within its pore 
spaces (Gao et al., 2019). Depending on the feedstock and pyrolysis 
temperature, the observed specific surface area values of biochar can 
vary widely from below 100 to over 1000 m2/g (Leng et al., 2021). 
Specific surface area was also demonstrated to be a critical feature in 
enhancing biochar’s adsorption ability as specific surface area is rele-
vant to the distribution of biochar pore size (Kumar et al., 2021). In turn, 
specific surface area is roughly correlated with microbial activity; Zhao 
et al. (2020) concluded that microbes can attach to both biochar surface 
and internal pores by electrostatic interactions, promoting reproduction. 
The specific surface area of biochar from crop residues can be increased 
by modifying the surface, particularly with chemical treatments such as 
acid, ionic liquids, and alkaline, along with physical operations like 
ultrasound and milling (Tu et al., 2020). For instance, Cao et al. (2019) 
showed that when pyrolysis temperature reached 600 ◦C, the surface 
area of biochar produced from ball-milled wheat straw was 130.14 m2/ 
g, which was larger than that of biochar from raw wheat-straw of 6.89 
m2/g. 

Along with specific surface area, porosity and pore size may impact 
biochar’s AD performance. As AD could provide living environments for 
microorganisms in both anoxic and oxic settings, the ability to access the 
biochar’s surface is a function of the pore size and tortuosity (Zhao et al., 
2021b). In an effort to understand the potential interactions between 
organisms and biochar, Wang et al. (2020d) explored how the distri-
bution of biochar pore size impacts AD environments. The authors found 
that microorganisms were able to locate a suitable environment to grow 
based on pore dispersion. In addition, biochar’s mechanical strength is 
partly governed by its density; a biochar with high compressive strength 
required raw feedstocks with high density concentration and high lignin 
content. Physical properties of biochar from crop residues could also be 
provided in a study of Chen et al. (2022). 

2.2.2. Chemical properties 
Cation exchange capacity (CEC) refers to the ability of biochar to 

exchange cations with organic or inorganic substances. Having a high 
CEC value showed a high level of the surface negative charge, which 
permitted the removal of a significant number of cations (Lago et al., 
2021). Thus, CEC appears to be proportional to surface oxidized func-
tional groups (Zhu et al., 2020). The existence of surface functional 
groups including hydroxyl, amino, and carboxylic, often expressed as 
atomic proportions of H/C, N/C and O/C, primarily depends on the 
feedstock and tends to decrease as pyrolysis temperature increases (Das 
et al., 2021). The H/C ratio is believed to measure the degree of biochar 
aromatization, whereas the O/C is an indicator of functional groups, 
which contributed to biochar hydrophilicity and high values of CEC 
(Venkatesh et al., 2022). In addition, a rise in pyrolysis temperature was 
found to have a detrimental impact on the amount of acidic functional 
groups as well as the CEC (Chiappero et al., 2020). A high CEC may 
enhance NH3 inhibition and promote CH4 production by shortening the 
microbial lag stage. Goswami et al. (2022) revealed that biochar played 
a beneficial role in the AD system of sewage sludge while Su et al. (2019) 
reported that biochar reduced NH3–N (by about 1500 mg/L) in the AD of 
food waste. Similarly, Chen et al. (2021b) indicated that biochar sup-
plementation may prevent the accumulation of NH4

+ during AD. In 
addition, some have suggested that electrical conductivity could be used 
to evaluate the conductivity capabilities of biochar, which are known to 
be critical for microbial syntrophic activities (Gabhi et al., 2020). 
However, others have shown that the electrical conductivity of biochar 
was as insignificant as the electrical conductivity of digestate, depending 
on the microbial strains’ composition and metabolism (Kumar et al., 
2021). Moreover, conductive compounds like humic chemicals can act 
as electron transporters that donate and receive electrons in an effort to 
accelerate direct electron transfer across species (Xu et al., 2020). The 



3. Biochar application in anaerobic digestion

Although instability in the AD system can be controlled by opti
mizing technical and operating settings, such stability can be compro
mised if the metabolic intermediates of a substrate limit the activity of 
microorganisms in the digester. AD is a robust approach for treating 
organic waste using bacterial and archaea species. Generally, size and 
volume of pore, surface microstructure, hydrophobicity and ion- 
exchange capacity are the most common biochar properties to tune 
when utilizing biochar during the AD process. These properties impact 
biochar’s potential for immobilizing microorganisms, improving cation 
exchange, increasing alkalinity of AD, stimulating biofilm formation, 
and enhancing electrical conductivity, which can support the DIET 
phenomena. 

3.1. Improving biogas production 

Hydrolysis is the breakdown of large compounds, such as macro
molecules, into smaller compounds, under alkaline (OH-) or acidic (H+) 
conditions, and is the first step in the AD process. The addition of bio
char could be used to improve the hydrolysis of low biodegradable 
substrates (Khalid et al., 2021). Due to the high amounts of protein, 
nitrogen, and organic matter in the feedstock, fatty acids and ammonia 
can accumulate during AD (Latifi et al., 2019), such that biogas yield can 
vary with inoculum/substrate ratios. Indeed, the use of a suboptimal 
inoculum/substrate ratio could make methanogen bacteria act sub
optimally, leading to a reduction in biogas and methane performance 
(Owamah et al., 2021). Thus, it is necessary to determine the optimum 
inoculum quantity to maximize biogas yield. Anaerobic co-digestion of 
other wastes is considered as a method to address the above-mentioned 
problems (Kumar et al., 2021), because the optimal inoculum/substrate 
ratio could provide a balance about feedstock needed by anaerobic 
microorganisms, dilute toxic and inhibitory substances, and increase the 
digestion rate (Latifi et al., 2019). In addition, biochar could alleviate 
natural difficulties by suppressing microbial growth and improving cell 
density through finely accessible substances in high electrical conduc
tivity blends. During the AD process, there is a significant increase in 
digestate chemical oxygen demand (COD) in biochar, indicating the 
biodegradation of natural materials (Tayibi et al., 2021b). The rate of 
organic matter hydrolysis in the presence of biochar increased during 
AD. The higher carbon concentration due to biochar may degrade via 
solitary inorganic carbon digest hydralases activating the hydrolysis 
process, which were found to increase macromolecular biological 
accessibility and power generation (Yang and Wang, 2019). The activity 
of hydrolytic germs can be improved by adding biochar. However the 
actual efficacy of biochar’s impact on hydrolysis is associated with 
various factors including technology and implementation. 

Moving beyond hydrolysis and further into the AD process, aceto
genesis converts germicidal acid hydrolysates like sugars, amino acids, 
and fatty acids into alcohol, NH3, volatile fatty acids (VFA). Aceto
genesis converts CH3OH, propionate, and lactate into easily convertible 
molecules, which are then transformed into CH4 (Amin et al., 2021). 
VFAs generated as intermediates during the AD process appear to lower 
the pH (Wainaina et al., 2019). Syntrophic acetogens and methanogens, 
which transform VFAs into methane and CO2, often mitigate this impact 
(Qiu et al., 2019). Nevertheless, when the organic content of easily 
biodegradable wastes is high, meaning the VFAs generation rate exceeds 
the consumption speed, VFA accumulation may occur, resulting in a 

decrease in pH and perhaps the failure of AD (Xiao et al., 2020a). AD 
systems can easily enter an unstable state owing to VFA accumulation or 
organic overload. The excess of VFA in the AD process, for example, 
would slow down methanogenesis and even damage the anaerobic 
process (G. Wang et al., 2021b). Thus, biochar can be effectively 
employed as an additive to foster VFA degradation in the AD process to 
alleviate the issue of VFA inhibition (Fig. 3a) (W. Zhao et al., 2021c). 
The literature revealed that the biochar addition alleviates methano
genesis inhibition and efficiently restores biogas generation, as well as 
decreases the lag time and increases the yield of CH4 with the superior 
electron transfer capability of biochar playing a vital part. Electroactive 
bacteria would be enhanced by the continual addition of biochar, and 
prospective VFA metabolism may change from a thermodynamically 
disadvantageous interspecies hydrogen transfer approach to a DIET (C. 
Wang et al., 2021a). As a result, the matrix pH could be quickly recov
ered to 7 in the AD system by the use of biochar following a large organic 
loading shock, whereas the pH in the AD system without biochar fell to 
below 6 because of fast acidification (C. Wang et al., 2021a). Indeed, by 
adding sawdust derived from biochar, Wang et al. (2021) accomplished 
methanogenic recovery of a strongly acidified AD process with high VFA 
accumulation (58 g COD/L). This research also revealed that biochar 
addition may improve the pH level from 6.7 to 7.2 during the meth
anogenic lag time before increasing CH4 synthesis. Therefore, the bio
char addition to the AD process could significantly enhance the balance 
between methane and acid generation rates, resulting in a 38.0 % 
reduction in the lag stage of methanogenesis and a 70.6 % increase in the 
production of methane (C. Qi et al., 2021a) (Fig. 3b). 

Aside from the biochemical reasons, the strong buffering ability of 
biochar played an important role in the VFA inhibition release occurring 
in AD systems, particularly when the organic loading was high (Ma 
et al., 2020). The abundant presence of basic functional groups, alkaline- 
earth metals such as Ca, Mg, and alkali metals such as Na, K in the 
biochar was the key to maintaining the buffering capacity, resulting in a 
significant increase in system alkalinity and a near-neutral pH level 
(Altamirano-Corona et al., 2021). Wei et al. (2020) observed that adding 
maize stover-based biochar which was rich in alkaline earth metals into 
primary sludge AD improved the generation of methane and removal of 
solids. Consequently, increased total alkalinity ranging from 3500 to 
4700 mg/L CaCO3 and pH were detected in biochar-adjusted reactors, 
implying that biochar possessed a considerable buffering capability. 
Recent research conducted by Giwa et al. (2019) investigated how 
biochar addition had an effect on alkalinity throughout the continuous 
steady operation. Both the control reactor and the commercial biochar- 
amended reactor maintained sufficient total alkalinity at an organic 
loading rate of 2.02 gVS/L/d. Nonetheless, due to significant VFA 
accumulation, the control reactor experienced a rapid drop in CH4 
generation. Two biochar-supplemented reactors, on the other hand, 
obtained stable performance at below 6.0 gVS/L/d without any increase 
in alkalinity. The effect of biochar on the anaerobic digestion of fruit 
waste was also investigated, which revealed that the addition of biochar 
increased methane generation and the breakdown of VFAs (Ambaye 
et al., 2020). A lack of certain nutrients or trace minerals in the substrate 
could also promote a rise in VFAs, which inhibited microbial activity in 
the AD process (Chiappero et al., 2020). Thus, employing biochar as a 
source of trace metals, was presumed to stabilize the AD system. Meng 
et al. (2020) determined that a biochar dosage of 10 % to 20 % improved 
CH4 generation as effectively as the inoculum addition method during 
the batch solid-state anaerobic digestion system. In the presence of a 
high concentration of accumulated acetate, it was also shown how the 
buffering capacity of biochar enhanced methanogenesis. 

A number of studies on the application of biochar in the AD process 
were conducted with the aim of reducing methanogenesis inhibitions 
caused by acid and NH3 accumulation (Christou et al., 2021). Recently, 
it was reported that DIET between Geobacter metallireducens and Meth
anosarcina barkeri was enhanced with biochar (Abbas et al., 2021). The 
electron recovery of CH4 generated from ethanol was improved by 86 % 

characteristics. In terms of physical application, the biochar surface area 
and porosity enhance the exposure to vapor, CO2 gas agents, and mix-
tures at temperatures above 700 ◦C (Anto et al., 2021). Biochar also 
enhances water-holding ability, cation exchange capability and carbon 
content (Jeyasubramanian et al., 2021). Thus, biochar addition can 
improve a continuous AD process with an increased organic loading 
speed as well as a shorter hydraulic retention time. 



when biochar was used, compared to the 77 % when using activated 
carbon (Abbas et al., 2021). In addition, the impact of bio-derived car
bons on the co-digestion system was assessed and a biochar-based DIET 
method was proposed by Wang et al. (2019) (as illustrated in Fig. 3b). In 
the acetogens metabolization, the electrons from the disintegrated VFAs 
might be immediately transported to specific methanogenic archaea 
through the conductive bio-originated carbon substances. Developing an 
improved biological interspecies electrical link in AD with the addition 
of bio-derived carbons accelerants might successfully increase the VFAs 
consumption, hence relieving acid accumulation inhibition as well as 
generating a favorable habitat for methanogenesis (Z. Wang et al., 
2019b). In an investigation by Pan et al. (2019a), the influence of several 
biochar varieties on the AD of chicken manure was examined at a 
temperature of 35 ± 1 ◦C. Fruitwood, wheat straw, were pyrolyzed with 
up to 5 wt% dried chicken manure at varying temperatures. Compared 
to AD reactors without biochar, the reactors outfitted with nine different 
forms of biochar all generated more CH4, especially using biochar py
rolyzed at 550 ◦C, the average total output of CH4 was 294 mL/g VS, 
which was 69 % higher than that without biochar. 

In conclusion, VFA inhibition can be mitigated by adding biochar in 
the presence of a high number of easily degradable wastes. The 
considerable fluctuation in the microbial diversity of biochar-adjusted 
AD reactors has a crucial role in enhancing the AD system’s efficiency 
without inhibiting VFA or free ammonia. The alkaline nature of biochar, 
which imparts its pH buffering ability, can help to avert VFA inhibition. 
Under acid stress, porous biochar is able to support the development of 
biofilm as well as protect selectively enriched functional microorgan
isms which are tightly associated with it (Chiappero et al., 2020). 
Furthermore, the addition of biochar can accelerate the syntrophic 
oxidation of VFA, mitigating the effects of acidogenic product inhibition 
(D. Zhao et al., 2021a). The porous characteristic and large specific 
surface area of biochar could promote the bacteria and archaea colo
nization, leading to an improvement in AD performance (Kumar et al., 
2021). Beyond these advantages, biochar addition enhances methano
genesis enzyme activity, which in turn can increase the production of 

methane (Q. Qi et al., 2021b). According to the authors’ knowledge, 
crop straw-based biochar shows better performance in improving 
methane generation in thermophilic AD, whereas better performance is 
observed using woody biochar in mesophilic AD. Under the same con
ditions, biochar particles with a smaller size produce more methane than 
larger particles. However, excessive biochar use can result in a decrease 
in methane generation, as discussed in the following section. 

3.2. As absorbent 

Biogas is a mixture of hydrogen sulfide (H2S) (0.1–4 % v/v), CO2 
(36–50 % v/v), CH4 (45–70 % v/v), as well as other gases according to 
the chemical elements of the feedstocks (Kapoor et al., 2020). However, 
the abundance of CO2 along with other impurity gases can lower biogas’ 
calorific value and limit its economic viability. Furthermore, high H2S 
levels can oxidize steel pipelines and pose a risk to human health and the 
environment if emissions are improperly managed. Because of its large 
specific surface area, high porosity, polar and hydrophilic nature, bio
char has a high immobilization and adsorption capacity (Dissanayake 
et al., 2020). Biochar is also an efficient in situ adsorbent of CO2 and 
obtaining partially upgraded biogas (W. Zhao et al., 2021c). The addi
tion of biochar to AD could enhance the CH4 concentration to over 90 %, 
which can be explained from two perspectives and absorption mecha
nism of CO2 by using biochar (Wei et al., 2020). First, CO2 adsorbed 
directly by hydrophobic sites on biochar raises the relative CH4 con
centration (W. Zhao et al., 2021c). Second, biochar could foster the 
syntrophic growth of CO2, decreasing organic acid oxidizing bacteria 
and methanogens present in biochar (Pan et al., 2019b). Furthermore, 
CO2 could be isolated as carbonate or bicarbonate due to the base cat
ions that were released by biochar. Indeed, the CO2 adsorption capacity 
of biochar can reach dozens to hundreds of milligrams per gram odd as- 
used biochar (W. Zhao et al., 2021c). However, the difference in the CO2 
adsorption capacity of biochar is found to have much dependence on the 
biochar physicochemical properties, including the content of functional 
groups, and aromaticity (Lee et al., 2021). Thus, various modifications 

Fig. 3. (a) - Chemical and physical mechanism in using biochar for improving the stability of anaerobic digestion system; (b) - Methanogenesis pathway of anaerobic 
digestion process with the support of biochar through direct interspecies electron transfer mechanism (Z. Wang et al., 2019; Yu et al., 2022) (VFA for short of volatile 
fatty acids; FAN for short of free ammonia) (W. Zhao et al., 2021c). 



specific surface area and maximum NH4
+-N adsorption at the liquid stage 

increased CH4 generation by 35 %. Also, biochar demonstrated an 
exceptional capability of adsorbing toxicants such as nonylphenols, 
phenols and heavy metals (Kumar et al., 2022; Ambaye et al., 2021). 
According to Wang et al. (2020a), adding 15 g/L biochar to an AD 
system containing phenol shortened the methanogenic lag time (from 15 
d to 1.1–3.2 d), allowing the maximum rate of methane generation to 
increase by 1.6–2.5 times. Current research has focused on chemical 
modification as well as biochar activation in terms of adsorbing various 
inorganic/organic pollutants; however more investigation is needed to 
determine how biochar affected the adsorption of the the toxicants in the 
environment. 

To summarize, absorbing ammonia through using biochar in the AD 
process considerably increases biogas production because of its high 
specific surface area and acidity. As a result, in the AD system, a high 
specific surface area of biochar leads to a significant decline in ammonia 
content (Cai et al., 2022). Furthermore, the microporous structure of 
biochar is also an important factor in providing a good living environ
ment for microorganisms, such as methanogens, and building colonies 
that can help FAN inhibition recovery. The acidities of biochar can also 
be raised by the acid functional groups, which are required to remove 
FAN adsorption and maintain the system buffering ability (Pan et al., 
2019a). Given the ongoing operation, biochar may adsorb the metabo
lites that are accumulated or produced, releasing the inhibitory effect 
and enhancing the stability of the system. 

3.3. Enhancing microorganism metabolism 

Immobilizing microorganism is critical to balance the optimum 
nutrition as well as to sustain the activity of the biocatalyst during the 
AD process. In addition to providing active sites for the adsorption of 
ammonium, hazardous contaminants, and gaseous wastes, the eco- 
compatibility and porous structures that form on the surface of bio
char provide a refuge for microbial adhesion. The adsorption occurring 
on the pore surface of biochar along with entrapment can both naturally 
immobilize microbes. Biochar is advantageous at the bacteriological 
level during AD in stabilizing cell and bacterial growth. The high specific 
surface area and porosity of biochar increase the immobilization of 
microorganisms and aid in the attachment of functional microorgan
isms, which accounted for the significant difference in microbial di
versity between biochar-amended AD reactors (Miao Chen et al., 
2021a). Additionally, a considerable specific surface area along with 
porous structures of biochar encourage methanogenic archaea and 
syntrophic acetogenic bacteria to colonize, allowing for total organic 
carbon removal and an increase in the rate of AD reaction. By the use of 
scanning electron microscopy, microorganisms including hydrophobic 
microbiota and methanogenic archaea were reported to easily thrive in 
the biochar pore (Pytlak et al., 2020). Porous biochar showed a greater 
abundance in methanogenesis archaea (including Methanosarcina, 
Methanosaeta, Methanobacterium, Methanosarcina, Methanolinea) than in 
the bacterial population (Kumar et al., 2021). Sequencing analysis 
revealed that the addition of biochar significantly increased the variety 
and number of microbial groups in reactors compared to non-biochar- 
added reactors (Miao Chen et al., 2021a). The AD process of food 
waste could be enhanced by using biochar against process inhibitors, 
forming a surface area for methanogenic microorganism colonization, 
fostering the digestate quality via retaining nutrients, reducing the mi
crobial lag stage to its optimal value, and helping the system’s buffering 
capacity. Furthermore, minerals such as Mg, Na, K, P, and N leached 
from biochar enhanced syntrophic metabolic processes among various 
bacteria, which could be another explanation for the improved digestive 
performance (Ambaye et al., 2021). Complementary work suggested 
that biochar was able to selectively enhance the bacteria involved in the 
AD system (Qin et al., 2020). Adding biochar to AD in another study 
boosted methanogenesis enzyme activity such as dehydrogenase 
enzyme and coenzyme F420, hence improving methane generation (Q. 

on the surface, such as functional group grafting, element impregnation 
and chemical activation were suggested to improve biochar’s adsorption 
capability to remove CO2. The CO2 removal effectiveness of amine- 
activated biochar which was treated by ultrasound, for example, was 
nearly 7 to 9 times that of raw biochar (Dissanayake et al., 2020). 
Moreover, the biochar modification by other methods aiming to increase 
the functional group content and surface basicity of the biochar due to 
the diffusion of chemical elements into the internal structure of the 
biochar matrix, resulting in the increase in the pore width and genera-
tion of new pores, and improvement of the CO2 adsorption (Dissanayake 
et al., 2020). 

Aside from volatile fatty acids, ammonia, particularly free ammonia 
(FAN), was also identified as a key factor adversely affecting AD oper-
ation. Owing to the high ammonia concentration originating from 
nitrogen-rich components, the inefficient digesting performance of high 
protein wastewater was shown to be related to the imbalance of protons 
transmission induced by the fast FAN diffusing via cell membrane (Cai 
et al., 2022). When the C/N rate of the substrate was less than 15 such as 
cattle manure, microalgae and food waste, sludge, the digestion system 
was frequently threatened by ammonia inhibition (Cai et al., 2021). 
Besides, NH3 could enter the cell structure, inducing a proton imbalance, 
whereas high NH4

+ content might cause harm to the structure of en-
zymes. Moreover, a high quantity of FAN hindered methanogenesis, 
leading to volatile fatty acids accumulation and poor CH4 production 
(Ambaye et al., 2021). Therefore, the high buffering ability of biochar 
could result in good resistance against FAN (Wei et al., 2020). Biochar 
has an outstanding adsorption ability in terms of removing heavy 
metals, ammonia, and other toxins that could considerably hinder 
methanogenesis (W. Zhao et al., 2021c), and it also provides resistance 
to toxicity damage in the AD system (Antonangelo et al., 2021). From a 
theoretical perspective, toxins might be absorbed by the surface of 
biochar (Ambaye et al., 2021). In general, there are four adsorption 
mechanisms for ammonia nitrogen, including physical adsorption, 
electrostatic attraction, complexation, and ion exchange (Masebinu 
et al., 2019). All these adsorption processes were influenced by biochar 
parameters (specific surface area, types of functional groups and quan-
tity, and porosity) and digesting conditions (pH and cation concentra-
tion) (T. Wang et al., 2021d). 

Physical adsorption is favorably associated with specific surface area 
and porosity. Based on the findings of Wei et al. (2020), biochar’s 
porosity and conductivity were observed to improve DIET as well as aid 
in transferring electrons. Remarkably, the average ammonia nitrogen 
adsorption capacity of biochar without modification was around 50 mg/ 
g. Because oxygen-containing functional groups (including chromene, 
lactol, carboxyl, pyrone, lactone, ether, quinone, carbonyl, anhydride 
and phenol) existed and dissociated, the surface of biochar was often 
negatively charged (Cai et al., 2022). The negative surface charge was 
found to be positively associated with biochar’s surface polarity, 
affecting its capacity for adsorbing chemicals. In addition, it was re-
ported that there is a strong relationship between negative surface 
charge and pH (Tan et al., 2020). Indeed, the pH of the digestive system 
affected biochar adsorption by influencing the biochar’s surface charge 
and NH4

+-N formation. The pH of the system could be increased by the 
addition of biochar. However, according to Chen et al. (2021c), when 
the biochar addition is above a particular threshold, the volumetric 
biogas generation rate will decrease (Indren et al., 2020). Excessive 
biochar addition may harm the digestive system in two ways. Firstly, the 
pH of biochar used in this work was high – ranging from 6.8 to 11.3. 
Based on the NH4

+-N chemical equilibrium, the high pH of biochar might 
increase the conversion of NH4

+ to NH3. This would be detrimental to the 
AD system since NH3 is more toxic compared to NH4

+ (Wei et al., 2020). 
Secondly, when NH4

+-N content was low, adding a considerable amount 
of biochar would result in a nitrogen supply shortfall. The reason is that 
NH4

+-N is a nitrogen source for microbes, so it could limit the growth and 
metabolism of microorganisms (Cai et al., 2022). In a study by Yan et al.
(2021), it was found that woodchip-derived biochar with a higher



by Tayibi et al. (2021a), in which they land-applied liquid digestate with 
residue biochar after the AD process on a wheat field. They found that 
the simultaneous use of liquid digestate with residue biochar could 
enhance wheat growth up to 67.8 % compared to soil alone. Although 
the industrial and commercial applications of biogas and digestate 
produced from the biochar-asissted AD system have considerable po
tential, the barriers relating to policy, market, shortage of competent, 
and technologies should be addressed so that this technology can be 
deployed more widely to reduce net CO2 emissions, green our energy 
sources, and protect the environment. 

4. Limitations and prospect

Recently, there has been an increase in studies concentrating on the
combination of biochar and AD aiming to alleviate difficulties connected 
with the AD process. Nonetheless, there are challenges preventing the 
advancement of this method. 

Table 1 
The application of biochar in AD process.  

Biochar 
type 

Operating conditions Obtained results after 
adding biochar 

Reference 

Wood 
pellet 

30 days for the entire 
AD with added biochar 
of 7.5–15 g/L at 55 ◦C of 
thermophilic 
temperature 

CH4 concentration is 
sharply increased, and 
biochar dosage and size, 
methanogenic pathways, 
and AD scale-up are the 
most affected factors on 
CH4 concentration. 

(Zhang 
et al., 
2020b) 

Wheat 
straw/ 
Soft 
wood 

30 days for the entire 
AD with added biochar 
of 10 g/L at 35 ◦C of 
mesophilic temperature 

Wheat straw produces 
higher CH4 concentration 
and better vS removal 
compared to softwood 

(Kaur et al., 
2020) 

Corn 
stover 

23 days for the entire 
AD with added biochar 
(66.6 g/L) at 37 ◦C 

Max CH4 yield = 342.1 
mL/gVS with enriched M. 
harundinacea 

(Zhou 
et al., 2020) 

Wood 
chips 

14 days for the entire 
AD with added biochar 
of 0–10 g/L at 55 ◦C of 
thermophilic 
temperature 

Lower volatile fatty acids, 
enhanced stability of the 
AD process, and higher 
CH4 concentration could 
be achieved after adding 
biochar 

(Lim et al., 
2020) 

Wood 
chips 

55 days for the entire 
AD with added biochar 
of 15 g/L at 55 ◦C of 
thermophilic 
temperature 

CH4 concentration is 
increased by 54 % at the 
optimal condition, and 
CH4 production depends 
much on biochar dosage. 

(Zhang 
et al., 
2020a) 

Waste 
forest 

49 days for the entire 
AD with added biochar 
at 55 ◦C 

Max CH4 yield = 328 mL/ 
g COD, CH4 production 
rate increased 269 % in 
the first 16 days and finer 
particle size of biochar 
produces more CH4 

(Zhang 
et al., 
2020b) 

Saw dust Entire AD with added 
biochar at 35 ◦C 

Max CH4 yield = 452 mL/ 
g vS CH4 production gets 
the maximal rate with 
biochar pyrolyzed at 
500 ◦C. 

(G. Wang 
et al., 
2020b) 

Corn 
straws 

34 days for the entire 
AD with added biochar 
at 35 ◦C 

Max CH4 yield = 118.29 
mL/gVS with enriched 
Methanobacter 

(J. Li et al., 
2019) 

Pomelo 
peel 

Entire AD with added 
biochar at 22 ◦C and 
load of 0.5 g/L 

Increase in the removal 
ability of sulfamethazine 
by more than 30 %, and 
CH4 yield ≈ 0.2 L/g COD 

(Cheng 
et al., 2021) 

Rice straw Entire AD with added 
biochar at 55 ◦C 

CH4 yield increased by 
133.7 % 

(Yue et al., 
2019) 

Sawdust Entire AD with added 
biochar at 35 ◦C and 
load of 15 g/L 

Decrease in lag times by 
10.6 days, increase in CH4 

production by 1.78 mL/d. 

(Q. Li et al., 
2021b) 

Rice husk Entire AD with added 
biochar at mesophilic 
temperature and load of 
10 g/L 

CH4 yield increased from 
27.8 to 96.4 % 

(Yu et al., 
2021)  

Qi et al., 2021b). 
In terms of supporting DIET cycles in order to activate the AD system, 

biochar’s electrochemical characteristics allow to act as a mediator in 
syntrophic metabolism by promoting interspecies electron transfer (G. 
Wang et al., 2020c). As an additive, biochar facilitates the exchange of 
cations, enhances the stability of biochar bacteria, enhances electrical 
conduction, improves biofilm adhesion and area, and increases AD 
alkalinity. DIET could further be improved between the AD system’s 
methanogen group and the syntrophic acetogen by the expansion of 
biochar. When the same microorganism structure and distinct AD per-
formance were considered, it was determined that the impacts of 
microorganism spatial dispersion could cause the various AD perfor-
mances (Qin et al., 2020). Biochar promoted microbe extracellular 
polymeric substance production in the biofilm formation, which boosted 
the microbe’s adherence to the biochar surface (Goswami et al., 2022). 
This technique is not only inexpensive but also simple for reducing 
methanogen loss and preventing rapid sludge granulation in the AD 
process. Indeed, affixing microbes to biochar could considerably reduce 
microbial contact distance; however, it might increase DIET between 
methanogens and electricigens. Li et al. (2021c) reported that biochar 
increased the capacity of Sporanaerobacter and Enterococcus, which 
supported the breakdown of fermentable substrates to transfer electrons 
to Methanosarcina. Furthermore, lag period was remarkably reduced by 
the biological interaction of Methanosarcinales and Methanosaetaceae 
with biochar (Yee and Rotaru, 2020). 

Further fundamental evidence for biochar’s ability to improve AD 
systems lays within microbial electrochemical cell studies. Based on the 
result by Yin et al. (Yin et al., 2019), adding biochar might contribute to 
DIET by replacing Thermincola spp. on the anode while increasing 
Methanothermobacter spp. on the cathode. The addition of conductive 
elements, such as biochar, supplied habitat for microflora as well as 
worked as electrical conduits. Acting as the conductive material, biochar 
could increase the generation and consumption of the organic inter-
mediate (e.g. butyric acid and propionic acid) in order to produce 
methane by fostering DIET between syntrophic microbes via electro-
active microorganisms’ selective colonization and the formation of 
abiotic conductive networks (Cui et al., 2021). For example, Wang et al. 
(2020a) demonstrated that the variety of the electroactive microbe 
Geobacter was significantly increased from 3.8 to 7.7 % up to 11.1–23.1 
% by adding biochar for promoting DIET and hence methane generation. 
Wang et al. (2021) also reported the same findings when observing that 
the abundance of electroactive bacteria, e.g. Geobacter, Desulfovibrio and 
Smithella, increased by 6 to 22 times by using modified biochar. Biochar 
had the potential to boost interspecies electron transfer in specific co- 
cultures as well as enrich syntrophic partners capable of DIET (L. Li 
et al., 2021a). Moreover, DIET could transport electron 106 times faster 
compared to indirect interspecies’ electron transfers (Qiu et al., 2019), 
leading to faster degradation of the substrate. To summarize, biochar 
can be employed as a medium for the growth, metabolism and breeding 
of microorganisms; nevertheless, it is not clear which strains engage in 
the DIET process in a biochar-mediated anaerobic environment, due to 
the lack of micromechanism understanding and electron intake by 
methanogens archaea, which are supplied by non-living creatures and 
extracellular microorganisms. The effects of biochar on AD performance 
are tabulated in Table 1. 

For some industrial-scale and commercial applications of AD system 
in CH4 production, Le Pera et al. (2021) reported that an industrial AD 
plant in Italy could provide 860 m3 of biogas per tonne of total volatile 
solids in the case of using organic municipal solid waste. Moreover, the 
average percentage of CH4 in produced biogas was around 59.09 %. In 
another industrial application, Ronga et al. (2020) conducted experi-
ments using pine wood chips-originated biochar for the AD system. As a 
result, liquid digestate and residue biochar after the AD process were 
used to fertilize tomato plants, showing a maximum yield of 72 tons/ha 
compared to the unfertilized case with liquid digestate and residue 
biochar (47 tons/ha). A similar application in France was also reported 



advantages (Antoniou et al., 2019). As per life cycle assessments of 
biochar production and application, it is demonstrated that AD systems 
amended by crop residues-originated biochar could provide environ
mental benefits compared to non-integrated processes (Kumar et al., 
2021). Another major concern is the low-carbon and sustainable treat
ment of the liquid and solid digestate generated by the AD process. 
Therefore, the optimal AD process, the biochar generation for applica
tion, related energy consumption and biogas creation, and so on, should 
be analyzed and demonstrated from the perspective of the complete life 
cycle and supply chain management. 

5. Conclusions

Biochar may significantly enhance the performance of anaerobic
digestion (AD) systems by increasing methane production, stabilizing 
system pH, supporting microbial communities, and sequestering pol
lutants. These improvements are attributed to biochar’s inherent prop
erties, including its high porosity and surface area, surface functionality, 
alkalinity, and favorable interactions with anaerobic bacteria that pro
mote biodegradation. Widespread commercialization requires further 
investigation to answer several key questions including: (1) Which 
fundamental biochar properties mediate system performance, and by 
what mechanisms? (2) Is there an optimal biomass-to-substrate ratio 
that enhances AD, or one that inhibits it? (3) What are the tech
noeconomic opportunities and limitations of this approach? 
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Chapleur, O., 2020. Integrative analyses to investigate the link between microbial 
activity and metabolite degradation during anaerobic digestion. J. Proteome Res. 19, 
3981–3992. 

Chacon, F.J., Sanchez-Monedero, M.A., Lezama, L., Cayuela, M.L., 2020. Enhancing 
biochar redox properties through feedstock selection, metal preloading and post- 
pyrolysis treatments. Chem. Eng. J. 395, 125100. 

Chen, J., Gong, Y., Wang, S., Guan, B., Balkovic, J., Kraxner, F., 2019. To burn or retain 
crop residues on croplands? An integrated analysis of crop residue management in 
China. Sci. Total Environ. 662, 141–150. 

Chen, W.-H., Lin, B.-J., Lin, Y.-Y., Chu, Y.-S., Ubando, A.T., Show, P.L., Ong, H.C., 
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Fiore, S., 2020. Review of biochar role as additive in anaerobic digestion processes. 
Renew. Sustain. Energy Rev. 131, 110037. 

Christou, M.L., Vasileiadis, S., Kalamaras, S.D., Karpouzas, D.G., Angelidaki, I., 
Kotsopoulos, T.A., 2021. Ammonia-induced inhibition of manure-based continuous 
biomethanation process under different organic loading rates and associated 
microbial community dynamics. Bioresour. Technol. 320, 124323. 

Cui, Y., Mao, F., Zhang, J., He, Y., Tong, Y.W., Peng, Y., 2021. Biochar enhanced high- 
solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic 
pathways. Chemosphere 272, 129863. 

Das, S.K., Ghosh, G.K., Avasthe, R.K., Sinha, K., 2021. Compositional heterogeneity of 
different biochar: effect of pyrolysis temperature and feedstocks. J. Environ. Manage. 
278, 111501. 
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