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Introduction

Damage localization is the second pillar of vibration-based Structural Health Monitoring (SHM) that is well-explored in the literature, e.g., see [START_REF] Ulriksen | Damage localization for structural health monitoring: An exploration of three new vibration-based schemes[END_REF]. Among the many strategies for damage localization which are model-based [START_REF] Bernal | Damage Localization from the Null Space of Changes in the Transfer Matrix[END_REF][START_REF] Ulriksen | Shaped input distributions for structural damage localization[END_REF], data-driven [START_REF] Döhler | Subspace-based damage detection under changes in the ambient excitation statistics[END_REF][START_REF] Viefhues | Statistical subspace-based damage detection with estimated reference[END_REF][START_REF] Greś | Subspace-based mahalanobis damage detection robust to changes in excitation covariance[END_REF][START_REF] Laflamme | Damage detection and localization from dense network of strain sensors[END_REF], or a combination thereof [START_REF] Allahdadian | Towards robust statistical damage localization via model-based sensitivity clustering[END_REF], methods that appreciate the uncertainty in the estimated parameters are particularly appealing from the practical standpoint. Their advantage is that they account for statistical estimation errors related to noise and short data length in the damage diagnosis problem. Such methods include statistical tests on Kalman filter innovations [START_REF] Döhler | Change detection and isolation in mechanical system parameters based on perturbation analysis[END_REF], non-parametric change detection tests based on novelty detection [START_REF] Worden | Damage detection using outlier analysis[END_REF], or parametric subspace tests [START_REF] Döhler | Subspace-based damage detection under changes in the ambient excitation statistics[END_REF][START_REF] Viefhues | Statistical subspace-based damage detection with estimated reference[END_REF][START_REF] Greś | Subspace-based mahalanobis damage detection robust to changes in excitation covariance[END_REF]. Model errors stemming from the uncertainty of the model parameters and the geometry of FE models also pertain to the damage localization problem, which is then often considered in a model updating context [START_REF] Simoen | Dealing with uncertainty in model updating for damage assessment: A review[END_REF][START_REF] Tatsis | A hierarchical output-only bayesian approach for online vibration-based crack detection using parametric reduced-order models[END_REF]. These errors, however, are not treated in this work.

An inherent challenge for the majority of damage localization methods is the ability to localize small-scale damage. A practical strategy to approach it, is to perform high spatial resolution measurements e.g., with optical strain sensors, and employ features that are highly sensitive to local damage, like strain mode shapes [START_REF] Anastasopoulos | Identification of modal strains using sub-microstrain fbg data and a novel wavelengthshift detection algorithm[END_REF][START_REF] Anastasopoulos | Damage identification using modal strains identified from operational fiber-optic bragg grating data[END_REF][START_REF] Anastasopoulos | One-year operational modal analysis of a steel bridge from high-resolution macrostrain monitoring: Influence of temperature vs. retrofitting[END_REF]. Evaluation of those features, however, is usually deterministic and suffers from the uncertainty stemming from finite data length and measurement noise. While some damage localization strategies, like the statistical sensitivity-based subspace method family [START_REF] Döhler | Subspace-based damage detection under changes in the ambient excitation statistics[END_REF][START_REF] Viefhues | Statistical subspace-based damage detection with estimated reference[END_REF][START_REF] Greś | Subspace-based mahalanobis damage detection robust to changes in excitation covariance[END_REF], account for the uncertainty in data-driven features in decision about the location of damage, they are not yet adapted to distributed strain measurements and the related damage-sensitive features. This paper fills this gap and develops a strain-based residual for the sensitivity-based subspace damage localization. The statistical properties of the residual are analyzed and its sensitivity w.r.t. parameters of a finite element model is developed. The performance of the resulting statistical hypothesis test for damage localization is illustrated through an experimental modal testing that is conducted on a steel I-beam.

Statistical damage localization with strain features

In this section the parametrized dynamic model for the dynamic strain data is introduced, and the statistical properties of the employed damage localization metric are developed.

Strain vibration modeling

Let θ ∈ R p be a parameter vector that contains p damage-sensitive parameters of the structural elements of interest. This parametrization is defined after the specific monitoring problem at hand, such that θ contains parameters of the dynamic system whose sensitivity to damage is non-zero and which fully parametrize the considered damage, e.g., Young's modulus and density of elements, crack parameters (width, length), among others.

The vibration behavior of the monitored linear time-invariant structural system with m degrees of freedom is described by the differential equation

M θ z(t) + C θ ż(t) + K θ z(t) = f (t) (1) 
where t denotes continuous time, and M θ , C θ , K θ ∈ R m×m denote mass, damping and stiffness matrices that respectively depend on parameter θ. Vectors z(t) ∈ R m and f (t) ∈ R m contain the continuous-time displacement degrees of freedom (DOF) and the unmeasured external forces, respectively. Let system (1) be observed by sensors measuring a dynamic strain at r DOF of the structure, collected in an output vector

y(t) ∈ R r y(t) = C s Bz(t) + ṽ(t), (2) 
where ṽ(t) ∈ R r denotes the sensor noise, the matrix B ∈ R r×m denotes the strain-DOF transformation matrix and the matrix C s ∈ R r×m selects the respective type of the strain output at the measurement DOF. When defining the states x(t) = [z(t) T ż(t) T ] T ∈ R 2m , the structural system model (1) with output equation (2) yields the continuous-time state space model

ẋ(t) = A θ c x(t) + w(t), (3) 
y(t) = Cx(t) + v(t), (4) 
where the parametric state matrix A θ c ∈ R 2m×2m , the observation matrix C ∈ R r×2m and the process noise

w(t) ∈ R 2m are A θ c = 0 I -(M θ ) -1 K θ -(M θ ) -1 C θ , C = C s B 0 , w(t) = 0 M -1 f (t),
where the model order is n = 2m. When sampled at discrete time instants t = kτ , where τ is the time step and k is an integer, the resulting discrete-time state space model is given by [START_REF] Juang | Applied system identification[END_REF] and can be identified from data with e.g., subspace identification methods [START_REF] Reynders | System identification methods for (operational) modal analysis: Review and comparison[END_REF][START_REF] Brownjohn | Ambient vibration re-testing and operational modal analysis of the humber bridge[END_REF][START_REF] Magalhães | Explaining operational modal analysis with data from an arch bridge[END_REF][START_REF] Pereira | The role of modal parameters uncertainty estimation in automated modal identification, modal tracking and data normalization[END_REF]. Matrix B depends on the type of FE model used and is classic in the FE modeling-related literature. As a simple example, its development for a 1D Bernoulli beam is recalled in Appendix A.

Damage residual

Based on features extracted from measurement data in the baseline (reference) and in the current test state, the goal of damage localization is to determine the location of damage based on an FE model of the considered structure and its vibration response collected after the damage occurs. The localization is achieved through a statistical analysis of a damage residual, formulated in a way such that a small change of the (unknown) θ from its assumed nominal value θ * induces a change therein. The damage localization problem boils down to a statistical decision about which entry of θ is linked to the deviation of the residual from its nominal behaviour.

Let ζ be a data-driven residual to locate damage. In this work the residual based on a Mahalanobis distance of normalized output-covariance Hankel matrices from [START_REF] Greś | Subspace-based mahalanobis damage detection robust to changes in excitation covariance[END_REF][START_REF] Greś | Hankel matrix-based mahalanobis distance for fault detection robust towards changes in process noise covariance[END_REF] is used; in principal, however, any data-driven and damage-sensitive Gaussian function can be adopted for this purpose, e.g., see [START_REF] Döhler | Subspace-based damage detection under changes in the ambient excitation statistics[END_REF][START_REF] Viefhues | Statistical subspace-based damage detection with estimated reference[END_REF]. To define the residual, let Ĥθ * ref ∈ R qr×qr and Ĥθ test ∈ R qr×qr be the estimates of an output covariance Hankel matrices corresponding to the system in the nominal and the test state respectively, where q denotes the number of time shifts to compute the data covariances. The estimate of ζ is defined on the respective estimates as

ζ = √ N vec( Ĥθ test Ẑ † test Ẑref -Ĥθ * ref ), (5) 
where Ẑref ∈ R n×qr and Ẑtest ∈ R n×qr are the normalization factors defined from an SVD of the juxtaposed Hankel matrix estimates truncated at order n

Ĥθ * ref Ĥθ test = Ûs Ûker Ds 0 0 Dker V T s,ref V T s,test V T ker,ref V T ker,test , (6) 
as 

Ẑref = Ds V T s,ref , Ẑtest = Ds V T s,
V T
s,test denote the right singular vectors. Note that the model order n is generally unknown; its selection, however, can be achieved by assessing a sudden decrease in the amplitude of singular values plotted in a decreasing order [START_REF] Bauer | Order estimation for subspace methods[END_REF], information criteria [START_REF] Cavanaugh | The akaike information criterion: Background, derivation, properties, application, interpretation, and refinements[END_REF], amongst many other approaches. A detailed development of the residual (5) can be found in [START_REF] Greś | Subspace-based mahalanobis damage detection robust to changes in excitation covariance[END_REF].

The statistical distribution of the residual (5) can be approximated as Gaussian for a sufficiently large data length N thanks to the asymptotic local approach to change detection [START_REF] Benveniste | The asymptotic local approach to change detection and model validation[END_REF]. In this approach, the close hypotheses

H 0 : θ = θ * (healthy state), (7) 
H 1 : θ = θ * + δ/ √ N (damaged state),
are formulated, where δ is an unknown change vector. Then the statistical delta method allows to characterize the distribution of the residual as asymptotically Gaussian, with the properties

under H 0 : ζ L -→ N (0, Σ ζ ), (8) 
under

H 1 : ζ L -→ N (J ζ θ * δ, Σ ζ ), (9) 
where J ζ θ * = ∂ζ ∂θ θ=θ * is the residual sensitivity with respect to the chosen parametrization evaluated at θ * , and Σ ζ is the residual covariance. The covariance of the residual (5) was developed in [START_REF] Greś | Hankel matrix-based mahalanobis distance for fault detection robust towards changes in process noise covariance[END_REF] and is independent whether the outputs are displacements or strains. The sensitivity of the residual w.r.t. parameters of an FE model, however, must take into account the strain transformation matrix B in the development of the related derivatives, which is illustrated in the next section.

Sensitivity of the strain-based residual w.r.t. model parameters

A link between the residual and the parameters of FE model is established by a first-order sensitivity analysis. First, a derivative of the residual w.r.t. the modal parameters of the system is obtained, and second, the modal parameters are derived w.r.t. the chosen parametrization θ. For this purpose, define η as a collection of m natural frequencies and m strain mode shapes such that

η = f 1 . . . f m Re(φ s 1 ) . . . Re(φ s m ) Im(φ s 1 ) . . . Im(φ s m ) , (10) 
where Re(•) and Im(•) denote the real and the imaginary part of a complex variable, and the i-th natural frequency f i and the observed strain mode shape φ s i of the system write

f i = |λ ci | 2π , φ s i = Cψ i , (11) 
with λ ci being the continuous-time eigenvalue of A θ c and ψ i the corresponding eigenvector. Parameters contained in η can be either estimated using data-driven modal analysis techniques, or be obtained from an FE model; in the context of damage localization the latter was suggested in [START_REF] Allahdadian | Towards robust statistical damage localization via model-based sensitivity clustering[END_REF] and is used in the remainder of this work.

Let J ζ

η * = ∂ζ ∂η η=η * denote the sensitivity of the residual w.r.t. modal parameters evaluated at some reference η * and let J η θ = ∂η ∂θ θ=θ * label the sensitivity of the modal parameters w.r.t. the FE model parametrization evaluated at θ * . The sensitivity of the residual then writes

J ζ θ * = J ζ η * J η θ * . ( 12 
)
The derivation of J ζ η * is classic [START_REF] Balmés | Statistical model-based damage localization: A combined subspace-based and substructuring approach[END_REF] and its detailed development can be found in e.g., [START_REF] Allahdadian | Towards robust statistical damage localization via model-based sensitivity clustering[END_REF]. The derivative J η θ * contains the partial derivatives of the modal parameters w.r.t. the model parameters and is of shape 

J η θ * =                      ∂f 1 ∂θ 1 . . .
                     θ=θ * . (13) 
The partial derivative of i-th strain mode shape w.r.t. j-th component of θ can be obtained by transforming the derivative of the corresponding displacement-based eigenvector of the system ∂ψ i ∂θ j such that

∂φ s i ∂θ j = C s B ∂ψ i ∂θ j , (14) 
where C s is the strain DOF selection matrix (2) and ∂ψ i ∂θ j can be obtained after using a finite difference, or an analytical approach [START_REF] Heylen | Modal analysis theory and testing[END_REF]. Note that for the displacement-based outputs, e.g., accelerations, the transformation of the derivative ( 14) is not required, and the employed damage localization approach boils down to the classic subspace-based test from, e.g., [START_REF] Allahdadian | Towards robust statistical damage localization via model-based sensitivity clustering[END_REF].

Damage localization strategy

To locate damage the Generalized Likelihood Ratio (GLR) test is used. The test is posed as a change detection problem, where it has to be decided which entries of the model parameter vector θ * have changed due to damage. This boils down to testing each j-th entry of the change parameter δ, i.e., δ j = 0 (no damage) against δ j ̸ = 0 (indicating damage), which yields the test statistic [START_REF] Allahdadian | Towards robust statistical damage localization via model-based sensitivity clustering[END_REF] where

t j = ζT Σ-1 ζ Ĵj Ĵ T j Σ-1 ζ Ĵj -1 Ĵ T j Σ-1 ζ ζ , (15) 
Ĵj = Ĵ ζ θ j *
is a column of Ĵ ζ θ * and corresponds to the sensitivity of the residual w.r.t. change of the j-th parameter. The test statistics t j is asymptotically χ 2 distributed with d = 1 degree of freedom and non-centrality parameter λ j [START_REF] Allahdadian | Towards robust statistical damage localization via model-based sensitivity clustering[END_REF] λ

j = Ĵ T j Σ -1 ζ Ĵj (δ j ) 2 (16) 
if δ j ̸ = 0 and the other entries of δ are null. When the latter assumption is not satisfied, e.g., when damage pertains to more than one element, or when testing an undamaged element while others are damaged, the non-centrality parameter does not follow ( 16) and a minmax test to locate damage should be used [START_REF] Allahdadian | Towards robust statistical damage localization via model-based sensitivity clustering[END_REF]. For a decision about the location of damage, the test value ( 15) is compared to a threshold corresponding to the quantiles of the theoretical distribution of the reference test statistics. The concept of the deployed damage localization procedure is presented in Figure 1.

Application

This section is devoted to the application of the proposed damage localization scheme on laboratory data collected from a steel beam. The beam was analyzed previously for the purpose of damage detection in [START_REF] Anastasopoulos | Identification of modal strains using sub-microstrain fbg data and a novel wavelengthshift detection algorithm[END_REF].

The beam is of an I-type, with an IPE 100 cross-section, it weighs 31 kg, is of 3 m length and 200×200×10 mm steel rectangular plates are welded at its ends. The beam is suspended at both ends with flexible springs to emulate free-free boundary conditions. The beam is excited with a white noise signal generated by an electrodynamic shaker. The excitation point is chosen to ensure that both the torsional and the bending modes can be excited during the test. The axial strain response is measured by 8 FBG strain sensors attached along the longitudinal direction at one side of the lower flanges of the beam. A FAZ Technologies FAZT-I4 acquisition system is used to collect the dynamic strains measurements with a sampling frequency of 1000 Hz. The experimental mock-up is depicted in Figure 2.

The damage is induced by placing a mass on the top flange at the three quarters of the length of the beam. Three damage scenarios are considered, namely

• adding a mass of 0.38 kg,

• adding a mass of 0.65 kg,

• adding a mass of 1.00 kg.

For the healthy state and for each damage scenario one experimental test is conducted, and, in total ments, 41 nodes and, consequently, 82 degrees of freedom (DOF). The length of the model is 3 m and the cross-sectional properties of each element follow the standard IPE 100 cross-section. Each beam element is modelled with Young's modulus of 210 GPa, Poisson's ratio of 0.3 and mass density of 7850 kg m 3 . A proportional damping is assumed, where the damping matrix is defined such that each mode has a damping ratio of 1%. The beam model with strain sensors is illustrated in Figure 3. Due to a limited number of sensors compared to the large size of FE model parametrization, the sensitivity of the residual with respect to some components of θ may be equal, or be very close. Thus, such parameter components are indistinguishable, and clustering of parameters in J ζ θ * is performed. For this purpose the hierarchical complete-linkage clustering of the normalized residual sensitivity after [START_REF] Allahdadian | Towards robust statistical damage localization via model-based sensitivity clustering[END_REF][START_REF] Mendler | Clustering of redundant parameters for fault isolation with Gaussian residuals[END_REF] corresponding to those parameters may be nearly identical, and have a similar effect on the residual. This can be observed in Figure 5 where, e.g., element 6 reacts even though the damage is located in the vicinity of element 35. Elements adjacent to the element corresponding to the location of the added mass also react, i.e., elements 36 and 5 for the damage case 1, and elements 34 and 7 for the damage case 2 and 3, possibly suggesting that damage spans across two elements and that the physical position of the added mass slightly shifts between the damage scenarios.

Conclusion

In this paper, a Gaussian residual based on a difference of Hankel matrices obtained from strain data collected in the reference and some test state of the structure was adopted for statistical sensitivity-based damage localization. Using strain measurements in the considered damage localization strategy was accounted for by developing a derivative of the strain mode shapes w.r.t. the system parameter, which was used for the sensitivity computation of the damage residual. The capabilities of the method were showcased on a laboratory data of a steel beam, where a small change in the mass of one element was clearly localized in the clustered parameter space. Consequently, the final decision about the location of damage is scoped to a visual inspection of the elements in a flagged cluster.
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 1 Figure 1: Damage localization scheme.

  , 4 data sets, each of length N = 239,000, are collected. The Hankel matrices are obtained from the healthy and the test data with p = 30. Subsequently, the normalization factors and the damage residual are computed while assuming that n = 40. The covariance of the residual is obtained from the sample covariance of both healthy and test Hankel matrices, which is computed by dividing the data to nb = 200 independent blocks. The considered damage localization strategy requires the FE model to obtain the sensitivity of the damage residual towards the physical parametrization. The considered model consists of 40 Bernoulli beam ele-
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 2 Figure 2: The experimental test setup (left). One of the FBG sensors (right).

Figure 3 :

 3 Figure 3: A sketch of the beam model with sensors.

Figure 4 :

 4 Figure 4: Dendogram showing hierarchical complete-linkage clustering of modal parameter sensitivities (top). Beam clusters (bottom).

  is used and 8 parameter clusters are distinguished. A dendogram showing the clustered parameters is illustrated in the top part of Figure 4 and the beam clusters are illustrated in the bottom part of Figure 4. Note that each cluster gathers parameters whose sensitivity towards the change in the residual ζ is similar. It is thus not assured that the parameters of the neighbouring elements are contained in the same cluster, since their sensitivity towards the change of ζ might not be close. What is more, due to the symmetry of the beam and the deployed sensor configuration, the element clusters are symmetric w.r.t. the vertical axis at the center of the beam, e.g., the first cluster contains elements {1-3,11} and {30,38-40}, see Figure 4. Subsequently, for each damage scenario, the statistical sensitivity test (15) is performed to locate damage. The test results are shown in the right part of Figure 5.

Figure 5 :

 5 Figure 5: Damage localization test statistics: damage case 1 (top), case 2 (middle), case 3 (bottom). Damage located in the vicinity of element 35.

  test , where Ûs ∈ R qr×n and Ûker ∈ R qr×qr-n are respectively the image and the left kernel of Ĥθ *

ref

Ĥθ

test , Ds ∈ R n×n and Dker ∈ R qr-n×qr-n are respectively the non-zero and the approximately zero singular values, and V T s,ref
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Appendix A Strain-displacement transformation matrix for 1D Bernoulli beam element

Matrix B depends on the type of the finite element (FE) model used. For a generic FE formulation, the reaction at an arbitrary point of an element writes

where N e is the shape function matrix and q e contains the nodal reactions. The axial strain in the 1D Bernoulli beam element writes

, where z denotes a distance to the middle axis of the beam and h denotes the transverse displacement. The B matrix for a system of l elements writes

where for t = 1 . . . l the t-th B e t yields

and N 1 , N 2 , N 3 , N 4 are the shape functions interpolating the nodal reactions.