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Abstract

We consider a wave equation with a structural damping coupled with an undamped wave equation located
at its boundary. We prove that, due to the coupling, the full system is parabolic. In order to show that
the underlying operator generates an analytical semigroup, we study in particular the effect of the damping
of the “interior” wave equation on the “boundary” wave equation and show that it generates a structural
damping.
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1 Introduction

Assume () is a smooth domain of R? with a boundary 92 that is the union of two connected components I'g
and I';. We consider the coupling between two wave equations:

Opu — vAQiu — Au=0 in (0,00) X £,
u=0 on (0,00) x T,
u=mn on (0,00) x I'y,
O — KA — pApOen = =10, 00u — Opu in (0,00) x T'y.

(1.1)

The constants of the above system are nonnegative: v, s, € RT. The equations on I'; can be seen as Ventcel
boundary conditions and can model a thin layer structure at the boundary, see [6l Appendix A]. For sake of
completeness, we present in Appendix [A]a formal way to see how such a system can be obtained. The operator
Ay denotes the Laplace—Beltrami operator. We have also denoted by n the unit exterior normal of €2 and by 9,
the normal derivative.

If we take v = p = 0 and k > 0, then corresponds to an hyperbolic system and the energy of the
system is constant in time. By adding the dampings —vAdyu and —upAy0n (with v, € R%), we modify
the nature of the equations. These terms correspond to a Kelvin-Voigt model for a viscoelastic material: the
corresponding stress depends not only on the strain but also on its time derivative (see, for instance, [13] and
references therein). In particular, if ¥ > 0 and g > 0 (and xk > 0), then the underlying semigroup is analytic
(see [8, Theorem 3.3]). The same result holds for k = 0 and p = 0 (see [8, Theorem 3.4]).



Note that these damping terms have also an effect on the asymptotic behavior in time of the system. Since
v, Kk, € RY, the underlying semigroup of is contractive, and if ¥ > 0 or p > 0 then the semigroup is
strictly contractive (see [8, Theorem 3.1]). Finally, if v > 0, x > 0 and p > 0 then the semigroup is exponentially
stable (see [8, Theorem 3.2]).

In this article, we consider the case

v>0, k>0 and pu=0. (1.2)

This means that the wave equation in €2 has a structural damping whereas there is no damping in the wave
equation on I'y. For this case, it is proved in [9] that the corresponding semigroup is of Gevrey type. Our aim
is to improve this result by showing that this semigroup is analytic. Let us introduce some notation in order to
state our main result. We set

D(A) = HYTy), A= —klAyy:D(A)) — L3(T). (1.3)
Note that (see [4, Prop. 6.1 pp. 171] and [I1]) for o > 0,
D(AT) = H**(I'1), D(AT) =H**(I'),

where H*(I'1) denotes the Sobolev space of order s. Note that since I'; is without boundary, the dual of H*(I'y)
with respect to L?(I'y) is H—*(I';). Using this notation, we can write with the condition under the
following form
Opu — vAOyu — Au =0 in (0,00) x Q,
u=0 on (0,00) x Iy,

u=mn on (0,00)x I, (1.4)
Oun + A1n = —v0, 0w — Opu  in (0, 00).
We can also write the above system as
U U

d |0 Owu
fad — 1.5
dt | n A n (15)

] o

by introducing

# {wnwame) € HA(@) x 120) < D (A1) D (4") 5w = onTh wr =0 onTo}, (1)

D(A) = {(ul,ug,nl,ng) eEHN (H2(Q) x H*(Q) x D (A?M) x D (A?M)) ; ug =12 on 'y, ug =0 on 1"0},

(1.7)
Uy u9

A (%) d:cf VAUQ + Au1 ) (18)
Uit 2
72 —Aym — vOpug — Opuy

We are now in a position to state our main result:

Theorem 1.1. The operator A is the infinitesimal generator of an analytic and exponentially stable semigroup
on H. In particular,

su )\H )\I—A_lH < co. 1.9
AeCl'@+| []( ) o0 (1.9)

In the above statement we have used the notation

Ct={AeC; Re(\) >0}. (1.10)



Remark 1.2. As explained above, Theorem is related to [9] where they consider the same system and show
that the semigroup generated by A is of Gevrey class. Here we improve this result by exploiting the damping in
Q and by showing that through the coupling, it leads to a damping in the wave equation on 'y that is sufficient
to obtain an analytic semigroup. We can also refer to the work [7] where the authors consider general damping
terms for wave type equations and study the reqularity of the corresponding semigroups.

Remark 1.3. It is worth noting that the approach considered here has been already used in other articles devoted
to fluid-structure interaction systems. In that case, the system written in ) corresponds to the Stokes equations
whereas on the boundary T'1, one can consider the wave equation or the beam equation, see [2], [1, [3]. In
that cases, we showed how the viscosity of the fluid affects the wave or the beam equation and obtain that the
corresponding semigroups are analytic for a wave equation and of Gevrey class for a beam equation.

The outline of the article is as follows: in the next section (that is Section , we define and study several
operators associated with and more precisely on the resolvent equation associated with A. We introduce
in particular the operator V) corresponding to the wave equation on I'; with the damping operator Ly due to
the coupling with the wave equation in 2. We obtain some estimates of V/\_1 in Secti by first introducing
an approximation of V. Then in Section [4] we use these estimates to show Theorem In Appendix [A] we

give a formal derivation of our model.

2 Definition and properties of some operators

In this section, we define several operators associated with the resolvent equation. The first operators, Uy and
Wy, correspond to the wave equation in §). The operator L) is a Dirichlet to Neumann operator that allows
us to describe the influence of the wave in €2 on the wave at I'y. We decompose this operator with the help of
Ly and several operators K /(\1), K /(\2), K, and R). The operator V) corresponds to the operator of the wave in
I'; where we include the action on the wave in 2. We show that this operator is invertible and we estimate its
inverse in the next section.

2.1 The operator U,

Let us consider the system
{ Nuyg— WA+ 1DAuyp=f inQ, 2.1)

uynf=0 onToUTYy.

In the lemma below, we recall that this system is well-posed for A € CT so that we can consider the operator
U, defined by

Unf = un g
Lemma 2.1. Assume A € C*. Then, for any f € L*(Q), the system (2.1)) admits a unique solution uy s €
H?(Q). Moreover, there exists C > 0 such that for any A € C* and for any f € L*(),

AP llua, £l 2y + (14 IAD lu £l z2@) < ClIfIlL2@)- (2.2)

In particular,
C
Un € L(LX(Q), H2(Q) N Ho(Q)), UMl 2220y, m20)nm @) < R

Proof. The existence and uniqueness of uy s € H*(Q) for f € L?(2) and A € C* follows from classical results

on elliptic equations: the case A = 0 reduces to the standard Laplace equation, whereas for A # 0, we first use
the Lax-Milgram lemma on the variational formula

/<<V+1> Vu-VU—FAuv) daczl fodz (ve HiQ).
0 A Ao



Using that Re X > 0, ReA™ > 0, we deduce the existence and uniqueness of a solution uy s € HJ(S2) of the
above system and the H? regularity of uy, ¢ is a consequence of the ellipticity of the Laplace operator.
To obtain (2.2) we first take the inner product of (2.1)) with Auy ¢ and the real part of the result yields

Re A\ fl13 20y + (VIAIP + ReA) [Vn 11720y = 12 IXeuns 2 -
Combining this relation with the Poincaré inequality, we deduce that
A1V £l 20y < Cllf 220 (2.3)
Then, taking the inner product of with —(vA+1)Auy s and considering the real part of the result, we find
VReA[IAVux £1172 () + A+ 1 [[Aur 1720y < I lz2 (@) WA + 1 [ Au fll2 () + A 1V s 720 -
The above equation and yield
WA+ 1] [|Aux sllr2 ) < Ol fllzz)-

Hence, the required estimates of ||ux ¢ || g2(q) follows from H?-elliptic regularity of the Laplace operator and the
estimate of ||uy, f| 12(q) is then obtained from ([2.1)). O

2.2 The operators W,
Let us now consider the system:

Nwy, — (WA +1)Awy, =0 in Q,
wx, =0 on Iy, (2.4)
Wy, =n onl}y.

By using Lemma[2:I] and a standard transposition method, the above system is well-posed and the operator W)
defined by
W)ﬂ? d:ef WH,n
satisfies
Wy € L(H??(I'1), H2(Q)) N L(HY2(Ty), L3(Q)) N L(HY?(Ty), HY(Q)). (2.5)
In order to get estimates in the corresponding norms, we first note that
—Awy, =0 in £,
wo, =0 on Iy, (2.6)
wo,, =7 on Iy,

and there exists a constant C > 0 such that

||w0,n||H2(Q) <C ||77||H3/2(1"1) ; ||w0,nHH1(Q) <C H77||H1/2(1“1) ) HU’O,n”m(Q) <C ||7’||H*1/2(1"1) : (2.7)
Then, we write
W,y = Wo,n + A2y (2.8)
where
{ Nzyg— WA+ 1Az, =—dwy, inf, (2.9)
2y =0 on'gUTI'.
We can apply Lemma with , and we deduce that for any s € [0, 2], there exists C' > 0 such that
A onmllireqy < Clllg-ve,, (€ H-/2(D0), (2.10)
In particular, combining the above relation with , there exists C' > 0 such that for any A € CT,
||WA||L(H—1/2(F1),L2(Q)) & (2.11)
and
1Wanll oy < € (Il gasaqry + A Il ) - (2.12)



2.3 The operators L)

We define
L,\U = 8nw/\,7] = 5nW/\77’ (2'13)

where wj ,, is the solution of (2.4). From (2.5), we have
Ly € L(HY(y), HY*(T))). (2.14)
Taking the inner product of the first equation of (2.4)) by wy 7 and using (2.5)), we obtain for 1 € HY2(I'y)

WA+ D) (LD ) 1720y 1 /2(ry) = A2/ w7 dr + (VA + 1)/ Vwyy - Vg dx (2.15)
Q Q
and in particular, we can extend L) as
Ly € L(HY2(Ty), H-Y2(T))). (2.16)
In the case A = 0, we deduce from (2.15))
<L07777A77H—1/2(F1),H1/2(F1) = /vao’n - Vg 7 dx

and the following result:

Proposition 2.2. The operator Ly € L(H'/?(T'y), H-'/2(T'1)) is self-adjoint and there exists py > 0 such that
<L077777>H*1/2(F1),H1/2(F1) > 01”77‘@11/2@1) (ne€ Hl/Q(Fl))- (2.17)
Taking the inner product of the first equation of (2.6) by 2y 57 we deduce that

/ Vwo,y, - VZxzg de = 0. (2.18)
Q

Using the decomposition (2.8)) into (2.15)) and (2.18)), we deduce
(I/)\ + 1) <L)\777’?]>H—1/2(F1)7H1/2(F1) = (l/)\ + 1) <L0777?]>H—1/2(F1)7H1/2(F1)

+)\2/wmm dx+(u)\+1)|)\|2/Vz>\m~VTﬁ dr. (2.19)
Q Q

2.4 The operators Kf\l), K/(\Q), K, and R,
Next, using (2.5) and (2.10), we define for n € H~1/%(Ty),

<K§\1)’I7, ?7]/>H1/2(F1)’H71/2(F1) d:ef /Q WA W\ 77 dl‘, (2.20)
K L B VN v 2.21
(B, 0) 2 ey, H-1/2(ry) A 2 - VZyg du, (2.21)
Ky 2KV + Kk, (2.22)
and
Ry Lo+ |APKP. (2.23)

Therefore (2.19) can be written as
(WA + 1)Ly = (WA + 1) Lo + XKV + (A + DIAPKP = vALy + A2K) + Ry, (2.24)

We have the following properties on Kjy:



Lemma 2.3. For A € CT, Kil), Kg\z) € L(HY2(Ty), H/2(T)) and there exists a constant C > 0 such that
for any A € CT,

&) sy <0
H 2 lg r1>>+‘| A

H=1/2(Dy),H/( LOH=1/2(Dy),HY/2(Ty))

and
<K§\1)7777]>H1/2(F1),H*1/2(F1) > 0, <K§\2)77777>H1/2(I‘1),H*1/2(I‘1) >0, (neH '*Ty)).

Proof. The bound on Kg\l) comes from ([2.20]) and (2.11]) and the bound on K /(\2) comes from (2.21)) and (2.10). O
Lemma 2.4. There exists a constant C > 0 such that the operator Ky defined by (2.22) satisfies for any

AeCt:
I+ Ex)nlle2eyy = Inlleze,y  (n € L*(T)), (2.25)
1Kl g2y < Clnllg-12eyy  (n € HTV2(T)), (2.26)
Il 12y < CINT + Kl e,y (n € HY2(Th)), (2.27)
I+ K)nllr2ay) = Inlle@,y  (n € LP(Th)), (2.28)
1K a2y < Clinllg-12e,y  (n € H2(TL)), (2.29)
Il gy < CNI + E3)nllgiee,y (0 € HY3(TY)). (2.30)

Proof. Relations (2.2F)), (2.28), (2-26) and (2.29) are consequences of Lemma [2.3] For (2.27), we use (2.25)) and
(2-26):

Inllgrrrz2er,y < I+ Kl gz, + 1B gz, < T+ B0l gaee,) + Clnllg-12 @)
<+ K/\)77||H1/2(F1) +C (I + K>\>77||L2(F1) <O+ K/\)77HH1/2(F1) :

We deduce ([2.30) similarly. O
Lemma 2.5. There exists a constant C > 0 such that the operator Ry defined by (2.23)) satisfies for any A € C*:

1Bxnl g71/2 0,y < € (Ill sz oy + N Inlla-120ry)) - (2.31)
Proof. This is a consequence of (2.14) and Lemma O
2.5 The operator V),
Let us define
VA ENT+ A+ (v + 1)Ly (2.32)
From ([2.24)), we have
Vi =N (I + K)) +vALy+ A1 + Ry. (2.33)

First, we can show the following result

Lemma 2.6. For any A\ € C*, the operators V : D(A?M) — D(A}M)' and V) : D(Ai’/4) — ’D(A}M) are
isomorphisms.
Proof. We divide the proof into three cases:

Case 1: ReA > 0. For any g € D A4 ! one has to show the existence and uniqueness of n € D A% such that
1 1

Van 1 1
- - — = q. 2.34
3 (AI+)\A1+<V+)\)LA>77 g (2.34)



From ([2.24)), the above relation can be written as

1 1
<)\I+>\A1+<y+/\>L +>\K1)+(u+ )|/\| K(Q) =g.

We then consider the variational formulation of the above relation

~ 1/ 12 2~ 1
A (77777)L2(F1) + X (A / 77"41/ ,,7) L) + (l/ + )\) <L0777mH*1/2(F1),H1/2(F1)
A (K)ot (u+ ) NP (En3) = s asey (T€DAY). (235)

From Proposition [2.2] and Lemma [2.3] and using that Re A > 0, we can apply the Lax—Mllgram lemma and
we deduce the existence and uniqueness of n € D(AL/?) satisfying ([2.34). From , we deduce that An €
’D(Al/4) and thus that n € ’D(A3/ ). If moreover, g € D(4; 1/4 ), then we deduce from 4) that A1n € D(A1/4)
and thus that n € D(A5/4)

Case 2: ReA =0, A\ # 0. From Lemma [2.3| and Proposition there exists ¢ € (0,%) (depending on \) such
that

1
V(Lo 1) - 2qr ey > | tane) (mim + (kS >n,n)L2(m) : (2.36)
We define § = ¢ if ImA > 0 and = —¢ if Im A < 0 so that
i0 - _
Re () =225 >0, Re(Aei?) = —|A[sine < 0.
A Al
Now, we replace (2.34]) by

0 'LH
ewg = (/\ewI + %Al + (ue + A) L)\) n=g. (2.37)

The corresponding variational formulation is

0 0
i0 € 1/2 1/2~
A (M) 2,y + ~ (A n, Ay 77) L2( N + <V€ + A) (Loms M) g-1/2(ryy, 11/2(1y)

A (Kn.7) O ) (D) = . eD(A"%).
+ Ae PN/ LQ(F1)+ ve IA° (K31 . (9 517200y, 11/2(1y) (77 (47)

We can apply the Lax-Milgram lemma since Lemma Proposition and ([2.36) yield

00
Re (Ae”) ||77||L2(F1) + Re < > H A ‘ L2y + <V0059+Re ()\>> (Lom,m) g-1/2(ry),m1/2(1y)
1

i0 i 2
Re (Aeif (K(l) ) 0) + Re [ £- /\2(K(2) ) >SIH€H‘41/2 ‘
+Re (Ae') (K 'n.m ey T veos(9) + Re | = | J AT (KX ey~ AL Ty

The proof follows then as in Case 1.
Case 3: A=0. For any g € D(Ai/ )’, one has to show the existence and uniqueness of n € D(Ag/ ) such that

Von = (A1 + Lo)n=g.

Using Proposition 2.2 we can again apply the Lax-Milgram lemma and conclude as in Case 1. O



3 Estimation of V)\_1

In the previous section, we have defined V) by (2.32) (see also (2.33))) and we have shown that it is invertible.
We now estimate its inverse. First, we introduce the notation

Cr={XeC; [\ >a}. (3.1)
The main result of this section is the following:

Theorem 3.1. There exists a > 0 such that for X € CL and for 0,5 € [—1/4,3/4] with 0 < 6 + 8 < 1, the
following estimate holds
sup |)\‘2_29_26HA§)V)\71A?H[;(Lz(pl)) < +00. (32)
recs

In order to prove Theorem we consider the following “approximation” of Vy:
Vi N1+ K)) + 2pAAV% + Ay + Ry (3.3)
Comparing and the above relation, we have
Vi — Vi = AS, (3-4)

where
S Ly — 20417 D(AVY = D(AY?Y. (3.5)

Using Proposition there exists p > 0 small enough such that S is a positive self-adjoint operator. In what
follows, we fix p > 0 so that it satisfies this property. We are going to estimate the inverse of V), see Theorem
to prove Theorem

First, we recall the following result that can be found in [2, Lemma 3.4].

Lemma 3.2. There exists a constant Cy such that for all A € CT,

|21+ 2001 4 | L > Co (NP lnllzecey + IAvmlieen)  (n € D(AY). (3.6)
1

Theorem 3.3. There exists a > 0 such that for all A € CI the operator Vy : D(A?M) — D(Ai/zl) is an
isomorphism and for 0,8 € [—1/4,5/4] such that 0 < 8 + 8 < 1, the following estimates hold

sup [A27207 20 AV AT | £ e, ) < oo, (3.7)
xect
2-20-2 o ()t 48
sup |\[220-28 HAl (v;) AP < +o0. (3.8)
xect L(L2(T'1))
Proof. We write (3.3) as
= (I + Ky [3 4200412 + 4)] - Ky [2004]7 + 41] + Ra. (3.9)

From Lemma and Lemma there exists a constant ¢ > 0 such that

|7+ K2 [\ 4+ 20241 %0 + v | > e (IAPIAY Dl sz + 147 Bllzaery) - (3.10)

LQ(F») '

H1/2(F1)

Combining Lemma and Lemma we obtain a constant C > 0 such that for A € CT,

|53 [20012 4+ aa ]

[l

1/4
1Rl sy < € (1] 41

H1/2(Iy) L2(Ty)



Using an interpolation inequality and the Young inequality, we deduce from the above estimate that

|5 [oorat® L By < G (AP 1A all ey + 14T nllscr, )

H/2(T,

and thus, with (3.9) and (3.10), we deduce that for a large enough, and for A € C/,

|V > C (INPIAY e,y + 147 nll ey ) (3.11)

Hl/2(1"1)

Since B . 7
Vi =N (1+ K3+ 2o0AY? + Ay + Ran,

and since K} satisfies the same properties as K, we also deduce that for « large enough, and for A € C/,

> C (ARIAY llee,) + 147 nllzacr, ) - (3.12)

vy ’
H M grraeyy =

From (3.11)), we deduce that Vj : D(A“;’M) — D(Ai/4) is a closed operator and has a closed range: if (1,),, is
a sequence of D(A?/ *) such that (17}\77”> is convergent, then (3.11]) yields that (7))

D(A?/ *) and we deduce that (7n),, is convergent in D(A?/ %) which yields the result.

Using [5, Corollary IL.17 (iv), p.28], we deduce from and that Vy is invertible. Moreover,
these relations also imply and for (6,8) = (1/4,—1/4) and (0, 3) = (5/4,—1/4). By interpolation,
this yields and for (0, —1/4), 6 € [1/4,5/4]. By a duality argument, we obtain and for
(—=1/4,5), B € [1/4,5/4]. Then, by interpolating and between (1/4 4+ k,—1/4) and (—1/4,1/4 + k)
for k € [0, 1], we deduce the result. O

» is a Cauchy sequence of

We are now in a position to prove Theorem

Proof of Theorem[3.1] The proof is the same as the proof of Theorem 3.6 in [2]. The main idea to use (3.4)
and (3.5) in order to compare V/(l and Vx\fl. The key point in the proof of Theorem 3.6 in [2] is the relation

Re(A(, \N/AQLa(Fl) > 0. Here, we can show this relation by using (3.3)), combined with (2.22) and (2.23)): for any
¢ € D(Ay),

Re(Val, AC) r2(ryy = Re AAC|Zar,) HIAP Re MC, KV O 20y +INNC KD ey + AP Re MC, K¢ raqryy
+ 20 AP A ¢l e ) + ReAIAY % ¢l 2 r,) + Re MG LoC)rary)  (3:13)

and we conclude by using Lemma [2.3] and Proposition [2:2 O

4 Proof of the main result

We are now in a position to prove Theorem Assume
F = (f1,f291.92) € H*() x L*() x D (4}/") x D (4}"). (4.1)
First, we show that we can solve the following equation for A € C*:
(M—-A)U=F. (4.2)

Writing
U= (Uh U2, M, 772)7



the above equation can be written as

)\’U,l — Uy = f1 in Q,
)\UQ — VAUQ — Aul = f2 in Q,
u; =ue =0 on Iy,

4.3
up =1n1, uz =12 onl'y, ( )
Am —mn2=g1 in T}y,
Ao + Ay + vOpug + Opuy = g2 in I'y.
Step 1. Here we show
C*t C p(A). (4.4)
In order to do this, we deduce from the first two equations of (4.3) that
ANuy — \WAuy — Aug = Afo + Afy
and
Nup — WAu — Auy = Afy — vAf1L + fo
so that
ug = Wina + Uy (/\fg + Afl) (4.5)
and
Uy = W)\nl + Uy (>\f1 — I/Afl + fz) . (46)
Combining similarly the last two equations of (4.3]), we find
N2+ Ainz + (WA 4+ 1)0nuz = Aga — A1g1 — On f
and
N1+ Ay + (VA + 1)0puy = Ag1 + g2 — vOn fi.
Now, we use (4.5, (4.6, (2.13]), and (2.32]) to write the two previous equations as follows
Vane = Ag2 — A1g1 — Onf1 — (WA +1)0,Ux (A fa + Af1), (4.7)
= Ag1 + g2 — vonf1 — (WA + 1)0,Ux (N1 — vAf1 + f2). (4.8)

From (4.1) and Lemma we deduce that the right-hand side of (4.7]) and (4.8) are respectively in D(A}/ ty
and D(Ai/4). Thus from Lemma E there exists a unique solution (11, 72) € D(Ai’/4) X ’D(Ail)’/4) of (4.7) and
(4.8). Then (4.5)), (4.6, combined with Lemma and (2.5) yield (uq,us) € H2(2)?. We have solved (4.2))

Step 2. We now show the estimate (1.9). Let us consider « from Theorem m From the above step, using
the continuity of the resolvent, we already have

-1
Aecil,l&ga [Al H(AI —A) HE(H) < 00.
It is thus sufficient to show )
)\Sellé (Al H()\I —A) HL(H) < 00 (4.9)
to obtain . In order to do this, we use to write
o =~V 0 fr — (WA + 1)V 0,U (Af1) = Mud + 1)V 0,Un fo — VT Argr + AV ga. (4.10)
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From Theorem [3.1] (with (6, 8) = (1/4,—1/4) or (6, 3) = (1/4,1/4)) and Lemma 2.1} we have

H)\A}/‘lV;Wnﬁ + A+ 1),41/41/;13”% (Afl)HLQ(F : < Ol fill gz » (4.11)
1
[Persna vt <IN DUl < Ol (412)
AV YA ‘ <C HA3/4 ‘ 413
H 1 Va 191 L2(r) 1 91 L2y’ ( )
AZA Ay ‘ <C HA1/4 ‘ . 414
H ! x g2 L2(Ty) L9 L2(Ty) ( )
Combining (4.10) with (4.11)—(4.14), we deduce that
M2l 17y < CIF gy (4.15)

Moreover, we deduce from (4.10) and from (4.3]) that
M= =V 0 fi — WA+ DVT0,UN (Af1) — MuA+ DV 0,Unfo + g1 — Vi P A1gr + AV tge. (4.16)

Similarly as above, we apply Theorem ((with (0,8) = (3/4,-1/4) or (0,5) = (3/4,1/4)) and Lemma
and we deduce

||/\771||D(A§/4) SO Fly - (4.17)
Now, coming back to (4.5), we obtain

[Auzllp2(q) < IAWAD2| 12(q) + ||/\2UAf2||L2(Q) + [AUAA 1l 12(q) -
Combining the above relation with (2.11]), Lemma and (4.15)), we deduce
H)‘UQHL?(Q) <C (||)\772||H71/2(r1) + ||f2HL2(Q) + ||f1HH2(Q)) SCO[[F|ly -
Finally, (4.3)) and (4.5)) yield
[Autll g2y < IWanz2ll gz (o) + AN f2ll 20y + 1UAAfil 2y + (1 f1ll 2 -
Combining the above relation with (2:12), Lemma[2.1] and (4.3)), we deduce
s gy < C (Il oy + 12y + 1 Fell gy + 161 )
<C (||/\771||H3/2(r1) + H91||H3/2(r1) + ||/\772||H—1/2(F1) + ||f2HL2(Q) + ||f1HH2(Q)) :

Combining this with (4.15)) and (4.17)) yields

ALl 2y < CHIE 5, -

We thus deduce (4.9) and therefore (1.9). Combined with (4.4]), this allows us to conclude the proof of Theo-
rem
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A Appendix

In this section, we present a formal way to derive the system (1.1)) and in particular the Ventcel boundary
conditions. The approach is the same as in [6, Appendix A] and we write this part only for sake of completeness.
We consider for any § > 0 small enough,

ws:={x+sn; se(0,0), xely}

and we assume that -
QnNnws =T45.

We define the domain 5 by .
Qs := QU ws.

Then, we consider the following system coupling two wave equations:

Opu — vAQu — Au=0 in (0,00) X §,
Opv — kAv =0 in (0,00) X wg,
u=wv on (0,00) x Iy, (A1)
On(VOiu +u) = kOpv  on (0,00) x T'y, ’
u=0 on (0,00) x Ty,
Opv =0 on (0,00) x dws \ Ty

In the above system, the two wave equations are coupled at the interface I'; through standard transmission con-
ditions. Note that we choose to consider a Neumann boundary condition on the dws \ I'y. Similar computations
for a Dirichlet boundary condition lead to a slightly different model.
First we use a standard formula for the Laplace operator in T'; as follows (see, for instance, [12, p.220,
formula (5.59)]):
Av = 0?v 4+ (divn)d,v + Ayw  on Ty,

Then using Taylor’s formula and the Neumann boundary condition on dws \ 'y, we deduce
0 = Opv(x 4 6n) = Oyv(x) + 60%v(x) + O(6%) onTy.
We thus deduce from the wave equation on ws and from the two above relations that

OtV — KA = —g@nv +O(5) on (0,00) x T'y.

Then using the transmission conditions, and denoting by n the trace of v on I'y, we deduce
1
Oun — kApn = —gan(uatu +u)+0() on (0,00) xI'y.
Neglecting the remainder, we recover the Ventcel condition in (L.1). Note that in this system, we take 6 = 1
since this constant does not play any role in the proof of our main result.
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