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Reversal Collision Dynamics

A. Frouvelle∗ L. Kanzler† C. Schmeiser‡

Abstract
Motivated by the study of reversal behaviour of myxobacteria, in this article we are

interested in a kinetic model for reversal dynamics, in which particles with directions
close to be opposite undergo binary collision resulting in reversing their orientations. To
this aim, a generic model for binary collisions between particles with states in a general
metric space exhibiting specific symmetry properties is proposed and investigated. The
reversal process is given by an involution on the space, and the rate of collision is only
supposed to be bounded and lower semi-continuous. We prove existence and uniqueness of
measure solutions as well as their convergence to equilibrium, using the graph-theoretical
notion of connectivity. We first characterise the shape of equilibria in terms of connected
components of a graph on the state space, which can be associated to the initial data of
the problem. Strengthening the notion of connectivity on subsets for which the rate of
convergence is bounded below, we then show exponential convergence towards the unique
steady-state associated to the initial condition. The article is concluded with numerical
simulations set on the one-dimensional torus giving evidence to the analytical results.
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1 Introduction
The motivation of this paper comes from the kinetic equation investigated in [7], describing a
two-dimensional model of myxobacteria updating their direction according to mechanisms of
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alignment and reversal collision with their collision partner: two bacteria with roughly opposite
direction of movement may chose to reverse their orientation. We want to study the spatially
homogeneous version of this model restricted to reversal collisions only, that we describe now.

We denote by T1 the one-dimensional torus of length 2π, and for ϕ ∈ T1 (representing an
angle modulo 2π) we write ϕ↓ = ϕ+ π, the opposite angle. We denote by b(ϕ, ϕ∗) the rate at
which particles with angles ϕ and ϕ∗ undergo a reversal collision to become, respectively, ϕ↓
and ϕ↓∗. We assume that the particles are indistinguishable, and therefore b(ϕ, ϕ∗) = b(ϕ∗, ϕ).
As in [7], we denote by d(·, ·) the distance between two angles on the torus and we assume
that two particles only collide when the angle between their orientations is greater than π

2 ,
i.e. b(ϕ, ϕ∗) = 0 for d(ϕ, ϕ∗) 6 π/2. We also assume that the collision kernel b is symmetric
with respect to the reversal process: for all angles ϕ and ϕ∗, we have b(ϕ, ϕ∗) = b(ϕ↓, ϕ↓∗). The
dynamics is then given by the following kinetic equation, describing the evolution in time of a
distribution function f = f(t, ϕ) > 0:

∂tf =
∫
T1
b(ϕ, ϕ∗)

(
f ↓f ↓∗ − ff∗

)
dϕ∗, (1)

where as usual in kinetic theory, we use the notation f ↓ = f(t, ϕ↓) and f∗ = f(t, ϕ∗). This
equation preserves mass, and therefore we expect f to be a probability density for all time if
its initial condition is of mass 1.

We will now slightly generalize this to a more abstract setting. The goal is first to be able
to allow for different geometries, for instance if we consider the directions of the particles to be
on the unit sphere of Rd, undergoing reversal collisions whenever they are close to be opposite,
say by a defect angle α. Furthermore, we want to look at measure solutions, where the mass
may be concentrated at some points.

We consider a compact metric space S, endowed with its Borel σ-algebra (denoted by σ(S)
when needed), and with a measurable involution x ∈ S 7→ x↓ (that is to say (x↓)↓ = x for
all x ∈ S). If A is a subset of S, we denote its reversed set by A↓ := {x↓, x ∈ A}. We suppose
we are given a measurable and nonnegative collision kernel b : S × S → R+, symmetric and
invariant by the involution, in the sense that for all x, x∗ ∈ S, we have

b(x, x∗) = b(x∗, x) = b(x↓, x↓∗) . (2)

The set of nonnegative bounded measures on S will be denoted byMS and its members will
be called measures on S.

Given an initial datum fI ∈ MS (we do not suppose a priori normalization of the initial
mass), we are then interested in the evolution of a time-dependent measure f(t) ∈MS (which
we sometimes, in an abuse of notation, formally identify with its density f(t, x), x ∈ S),
undergoing reversal collisions

(x, x∗) −→ (x↓, x↓∗),
with rate given by b(x, x∗) > 0.
Definition 1. We say that f is, on the time interval [0, T ), a solution of the reversal collision
dynamics on S with initial condition fI , if for any Borel set A ∈ σ(S) the integral

∫
A df(t) is

a continuous function of time with initial value
∫
A dfI , differentiable on (0, T ) and satisfying

d
dt

∫
A

df =
∫∫

A↓×S
b(x, x∗)df df∗ −

∫∫
A×S

b(x, x∗)df df∗ on (0, T ). (3)
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The main object of this paper is to characterize the long-time behaviour of solutions of the
reversal collision dynamics (3), according to connectivity properties of the support of the initial
condition fI . Our main result, Theorem 8, gives that under minimal assumptions the solution
converges exponentially fast to a steady-state which can be easily described from the initial
condition fI . A simple corollary of this result in the case where b(x, x↓) > 0 for all x ∈ S as in
our motivating example reads as follows (this is a reformulation of Corollary 9):

Theorem. Let fI be a probability measure on S and µ = 1
2(fI + f ↓I ). We suppose b is lower-

semicontinuous and bounded, and such that b(x, x↓) > 0 for all x ∈ S. Then there exists a
unique global solution f to the reversal collision dynamics, and there exists a finite number of
sets Ti (only depending on b and µ) which are compact and such that for all i,

• either Ti 6= T ↓i and f converges exponentially fast (in total variation distance) to (1+ηi)µ

on Ti and (1− ηi)µ on T ↓i , where the constant ηi ∈ [−1, 1] and is given by ηi =
∫
Ti

dfI∫
Ti

dµ − 1,

• or Ti = T ↓i and in that case f converges exponentially fast (in total variation distance)
to µ on Ti.

Furthermore, the rate of convergence only depends on b and µ, and f is zero outside the sets Ti
for all time.

We do not enter in details here in the construction of the sets Ti, but they will be given as
connected components of a graph of interaction which can be easily determined from µ and b.

The motivating kinetic equation studied in [7] also includes alignment, which consists in
jumps in the angle variable towards the average direction of a pair of interacting particles
(in the same fashion as in the so-called BDG alignment model [1, 2], but without directional
noise). For special initial configurations, it is shown that the distribution of angles concentrates
on antipodal Dirac masses. In future work, we may hope to combine the results of the present
paper with the ideas from [3] in which, for alignment only, the Dirac masses are shown to be
locally asymptotically stable.

The model (1) we study in this article can be related to other many-particle models at the
mesoscopic scale from mainly biological context, where reversal interactions of many particle
systems are considered as well. After this kind of local-reversal operator was introduced in [7],
its effect in combination with alignment of individuals as well as directional diffusion was
further studied in [10]. Moreover, with biological motivation again coming from the rippling
phenomenon within colonies of myxobacteria [8], in [4] the authors introduced and investigated
a spatially heterogeneous model of mean-field type, i.e. individual’s interactions are modelled as
a non-local process. There, reversals of cells either depend on the density of the agents moving
in reverse direction or occur spontaneous. It turned out to be crucial to include a waiting time
between reversals of individuals to be able to see the rippling-wave patterns [5, 8, 9]. A different
context of the importance of reversals of cells is given in [6], where protrusions and retractions in
the movement of polarized cells are studied. The models are based on individual-cell dynamics,
where the switching of direction of an agent is modelled by a probability, depending on the
microscopic “steps” the agent did in that direction. From there, the authors derive a kinetic-
renewal system and further study the relevant macroscopic limits in various scenarios of different
complexity.
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The structure of the paper is the following: in Section 2, we prove existence and uniqueness of
measure solutions to the reversal collision dynamics (3). In Section 3, we provide the proof of our
main result regarding the characterization of the asymptotic steady-state and the exponential
rate of convergence. In Section 4 we apply this result to detail the case of the one-dimensional
torus and finally in Section 5 we provide numerical simulations of this specific example.

2 Properties of solutions, existence and uniqueness
In this section, we describe properties of solutions to the reversal collision dynamics operator,
and further use them to prove existence and uniqueness in case of a bounded kernel b.

When h is a function on S, we denote h↓ the function given by h↓(x) = h(x↓). Similarly,
when f is a measure on S, we denote f ↓ the measure such that for any Borel set A of S, we
have ∫

A
df ↓ =

∫
A↓

df.

We start by observing several invariance properties of the reversal collision dynamics.
Proposition 1. Let fI be a measure on S with total mass ρ and µ := 1

2(fI + f ↓I ) its symmetric
part. Then for any measure solution f(t) to the reversal collision dynamics (3),
(i) the measure 1

2(f(t) + f(t)↓) is constant in time (and therefore equal to µ).

(ii) for any symmetric Borel set A (i.e. A↓ = A), the quantity
∫
A df(t) is constant in time

(and therefore equal to
∫
A dµ).

(iii) the total mass is conserved: ∫
S

df(t) =
∫
S

dfI = ρ.

(iv) the measure t 7→ 1
ρ
f( t

ρ
, ·) is a solution to the reversal collision dynamics and a probability

on S (with initial condition 1
ρ
fI).

Proof. (i) This is an obvious consequence of (A↓)↓ = A.
(ii) This follows immediately, since on a symmetric set f is equal to its symmetric part.
(iii) Application of (ii) with A = S.
(iv) This is a straightforward consequence of the fact that the collision operator is quadratic.

By the symmetry (2) the conserved even part µ of f is also a stationary solution to the
reversal collision dynamics (3). We shall therefore restrict our attention to the odd part f − µ,
satisfying a linear problem, and also to probabilities (as a consequence of (iv)).
Theorem 2. Let fI be a probability on S, let µ = 1

2(fI + f ↓I ), and let the collision kernel b > 0
be measurable and bounded on S × S.

Then there exists a unique solution f to the reversal collision dynamics (3) on [0,∞) with
initial condition fI , which can be written as f = (1 + h)µ, where h ∈ C([0,∞), L∞(µ)) solves

∂th = −2
∫
S
b(h+ h∗)dµ(x∗) . (4)

Furthermore we have −1 6 h 6 1 in S × [0,∞).
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Proof. By the nonnegativity of fI and therefore also of f ↓I , we have fI 6 2µ, implying that
the odd part fI − µ of fI is absolutely continuous with respect to µ. We denote its Radon-
Nikodym derivative by hI . By the evenness of µ and the oddness of f−µ, it is an odd function,
i.e. h↓I = −hI , and it satisfies |hI | 6 1 since, by dfI = (1 + hI)dµ and by the nonnegativity
of fI and µ it satisfies hI > −1 (and therefore, by oddness, hI 6 1).

Since the right hand side of (4) is a bounded linear operator on L∞(µ), the initial value prob-
lem for (4) with the initial condition h(t = 0) = hI has a unique solution in C([0,∞), L∞(µ)).
The solution could be constructed by Picard iteration on the mild formulation

h = e−γthI − 2
∫ t

0
eγ(s−t)

∫
S
bh∗(s)dµ∗ds , γ(x) = 2

∫
S
b(x, x∗)dµ(x∗) , (5)

which is easily seen to propagate the bounds −1 6 h 6 1. A simple computation shows
that f = (1 + h)µ solves (3).

Concerning uniqueness: For any measure solution f of (3) we can use the argument used
for fI above to assert the existence of h with the desired properties, such that f = (1 + h)µ.
Substitution in (3) gives (4), such that h has to be the unique solution of (4) derived above.

Remark 1. In Theorem 2, the topological nature of S does not play any role. The result is
therefore valid for any measurable space S. However, once we have a compact metric space S,
the space of probability measures has a natural topology of weak convergence and it may be of
interest to know if the solution of the reversal collision dynamics is continuous with respect
to the initial condition. Under the hypothesis of Theorem 2, and with no more restriction on
the collision kernel b, this is not the case. Indeed, in our motivating example, taking S = T1

and b(ϕ, ϕ↓) = 1 if d(ϕ, ϕ↓) > π
2 and b(ϕ, ϕ↓) = 0 otherwise, we look at the family of initial

conditions f εI = 1
2(δ0 + δπ

2 +ε). The solution is given, for ε > 0 by

f ε = 1
4
(
(1 + e−t)(δ0 + δπ

2 +ε) + (1− e−t)(δπ + δ−π2 +ε)
)
.

However, the solution for the case ε = 0 is the constant measure f 0 = f 0
I for all time. The

family of initial conditions f εI converges weakly to f 0
I when ε → 0, but at any given fixed

time t > 0, the solution f ε does not converge weakly to f 0 when ε→ 0.
If we suppose now that the collision kernel b is Lipschitz continuous, we prove in Appendix A

that we recover the well-posedness in the sense of Hadamard for the topology of weak conver-
gence.

3 Asymptotic behavior
In this section, we fix a probability measure fI on S and denote by f the solution to the reversal
collision dynamics, given by Theorem 2. We still denote by µ the symmetric part of fI and
by h ∈ C([0,+∞), L∞(µ)) the function such that f = (1 + h)µ.

The variance of the anti-symmetric part of f in the probability space determined by µ is
then given by

H[f ] = 1
2

∫
S
h2 dµ = 1

4

∫∫
S×S

(h− h∗)2 dµ dµ∗ . (6)

5



Since h and ∂th are uniformly bounded (µ-a.e.), we can interchange integration and derivation
in time, and we obtain using (4)

d
dtH[f ] =

∫
S
h ∂thdµ = −2

∫∫
S×S

bh(h+ h∗) dµ dµ∗

= −
∫∫
S×S

b(h+ h∗)2 dµ dµ∗ =: −D[f ],

where the last equality is due to symmetry. Therefore the quantity H[f ] is nonincreasing in
time and bounded below and, thus, convergent as t → +∞. By differentiating in time once
more, using the fact that b is bounded and h is uniformly bounded in time, we obtain that
the second derivative of H[f ] is uniformly bounded in time, and this classically ensures that
the derivative of H[f ] converges to 0 as t→ +∞. This is an indication that the solution may
converge to a state such that D[f ] = 0 (and we will prove that this is indeed equivalent to be
a steady-state).

From the expression for D[f ] we expect that in equilibrium collision partners carry opposite
values of h, whereas two elements having a common collision partner must have the same value
of h. This motivates the definitions below. We first denote by K the support of µ defined in
the sense of measures:

K := supp (µ) :=
{
x ∈ S : ∀ε > 0,

∫
Bε(x)

dµ > 0,
}
,

which is compact, since it is a closed subspace of the compact space S.

Definition 2. For x, x∗ ∈ K, we say that x and x∗ are collision partners whenever b(x, x∗) > 0.

(i) For a set T ⊂ K, we denote by T∗ the set of collision partners of elements of T :

T∗ := {x∗ ∈ K,∃x ∈ T , b(x, x∗) > 0}.

(ii) We say x ∈ K and y ∈ K are adjacent and write x ←→ y when they have a common
collision partner, i.e. there exists x∗ ∈ K such that b(x, x∗) > 0 and b(y, x∗) > 0. This
relation defines the graph Γ = (K, E), where the vertices are the elements of K and the
edges are given by E := {(x, y) ∈ K ×K : x←→ y}.

(iii) The connected component of x ∈ K is the set of all y ∈ K such there exists a path
(x = x0, x1, . . . , xn = y) of adjacent nodes with xi ←→ xi+1 for 0 6 i < n− 1.

The following result provides a decomposition of the reversal collision dynamics.

Proposition 3. Let the assumptions of Theorem 2 hold and let b be lower semi-continuous.
Let f(t), t > 0, be the solution of (3) and let T be a connected component of the graph Γ.

(i) If T∗ is empty, T consists of an isolated node x of Γ, T = {x}, and∫
{x}

df(t) =
∫
{x}

dfI .
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(ii) If T∗ is nonempty, then T , T ↓, T∗, and (T∗)↓ are connected components of Γ and open
sets in K, satisfying (T∗)∗ = T and T ↓∗ := (T∗)↓ = (T ↓)∗.
Let A := T ∪ T ↓ ∪ T∗ ∪ T ∗↓. Then f |A is a solution to the reversal collision dynamics
on A.

Proof. (i) is obvious.
(ii) Let T be such that T∗ is nonempty, and let x∗, y∗ ∈ T∗. Then there exist x, y ∈ T such
that b(x, x∗), b(y, y∗) > 0. By connectedness of T there exists a path

x = x0 ↔ x1 ↔ · · · ↔ xN = y ,

and, consequently, there exists x∗,j ∈ T∗ such that b(xj−1, x∗,j), b(xj, x∗,j) > 0, j = 1, . . . , N .
This implies

x∗ ↔ x∗,1 ↔ · · · ↔ x∗,N ↔ y∗ ,

and therefore connectedness of T∗. The reflection invariance of b implies connectedness of T ↓
and of (T∗)↓.
By the argument above, connectedness of T∗ implies connectedness of (T∗)∗. Non-emptiness
of T∗ implies the existence of x ∈ T with a collision partner in T∗, and therefore x ∈ T ∩ (T∗)∗,
implying (T∗)∗ = T .
Let x ∈ (T∗)↓. This is equivalent to x↓ ∈ T∗, which is again equivalent to the existence of
a collision partner y ∈ T of x↓. By the reflection invariance of b this is equivalent to the
existence of a collision partner y↓ ∈ T ↓ of x. Finally this is equivalent to x ∈ (T ↓)∗, prov-
ing (T∗)↓ = (T ↓)∗ =: T ↓∗ .
The results so far imply that the roles of the four sets T , T∗, T ↓, T ↓∗ can be interchanged. For
example, T̂ := T ↓∗ implies T̂∗ = T ↓, T̂ ↓ = T∗, and T̂ ↓∗ = T . Therefore it is sufficient to prove
that one of the for sets is open in K.
For every x∗ ∈ T∗ there exists x ∈ T such that b(x, x∗) > 0. By lower semicontinuity of b
this implies b(x, y∗) > 0 for all y∗ in a neighborhood of x∗, implying y∗ ∈ T∗ and therefore
openness of T∗. Openness of T , T ↓, and T ↓∗ follows from the remark above, which also im-
plies A = A∗ = A↓ = A↓∗. Thus, for A ⊂ A, the right hand side of (3) depends only on f |A,
completing the proof.

The next step is the identification of equilibria of the dynamics on sets of the form of A.

Proposition 4. Let the assumptions of Proposition 3 hold and let A := T ∪ T ↓ ∪ T∗ ∪ T ↓∗
with T∗ nonempty.

(i) The measure µ assigns positive mass to all four parts of A, in particular ρ :=
∫
T dµ > 0

and ρ∗ :=
∫
T∗ dµ > 0. The average 〈h〉T = 1

ρ

∫
T h dµ satisfies that

ηT := ρ〈h〉T − ρ∗〈h〉T∗
ρ+ ρ∗

=
∫
T ∪T ↓∗

h dµ∫
T ∪T ↓∗

dµ =
∫
T ∪T ↓∗

dfI∫
T ∪T ↓∗

dµ − 1 ∈ [−1, 1] (7)

is independent of t.

(ii) The following conditions are equivalent
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– f |A is a steady state of the reversal collision dynamics on A,
– DT [f ] :=

∫∫
T ×T∗ b(x, x∗)(h+ h∗)2 dµ dµ∗ = 0,

– h = ηT on T ∪ T ↓∗ and h = −ηT on T∗ ∪ T ↓, µ-almost everywhere.

Proof. (i) By the openness of T in K, for x ∈ T there exists a ball B(x, δ) such that B(x, δ)∩K
is included in T ∩ K. Therefore

ρ >
∫
B(x,δ)

dµ > 0 ,

since x is in the support of µ. In the same way: ρ∗ > 0.
Integration of (4) over T and over T∗ gives

d
dt

∫
T
h dµ = d

dt

∫
T∗
h dµ = −2

∫∫
T ×T∗

b(x, x∗)(h+ h∗)dµ∗dµ ,

proving that ηT is constant in time. The second and third equalities in (7) are due to the
oddness of h and the definition of µ. Note that by connectedness T and T ↓∗ are either equal or
disjoint and that the formulas hold in both cases. Finally, ηT ∈ [−1, 1] follows from h ∈ [−1, 1].
(ii) If f |A is a steady state, then D[f |A] = 0 and therefore DT [f ] = 0. If this is the case, then the
quantity

∫
T∗ b(x, x∗)(h(x) + h(x∗))2dµ∗ is zero for µ-almost every x ∈ T . Since T is of positive

mass, then there exists such a x and we denote η0 = h(x), and therefore b(x, x∗)(η0+h(x∗))2 = 0
for µ-almost every x∗ in T∗. Now if b(x, x∗) > 0, by lower semi-continuity there exists δ > 0
such that for all y∗ ∈ K ∩ B(x∗, δ) and for all y ∈ K ∩ B(x, δ), we have b(y, y∗) > 0 (and
then y ∈ T and y∗ ∈ T∗). Therefore h(y∗) = −η0 for µ-almost every y∗ ∈ B(x∗, δ) ∩ T∗. And
then we have

0 =
∫∫
T ∩B(x,δ)×T∗∩B(x∗,δ)

b(y, y∗)(h(y) + h(y∗))2dµ(y)dµ(y∗)

=
∫∫
T ∩B(x,δ)×T∗∩B(x∗,δ)

b(y, y∗)(h(y)− η0)2dµ(y)dµ(y∗).

Once more since the mass of T ∩B(x∗, δ) is positive (this is the same as K∩B(x∗, δ) and K is
the support of µ), there exists then a y∗ ∈ B(x∗, δ) such that

∫
T ∩B(x,δ) b(y, y∗)(h(y)− η0)2dµ(y)

is zero. And from here we conclude that h = η0 µ-almost everywhere on B(x, δ)∩T . What we
have in general is therefore the following: when b(y, y∗) > 0, if h = η0 µ-a.e. on a neighborhood
of y, then h = −η0 µ-a.e. on a neighborhood of y∗ (and conversely).

We want to prove that h = η0 on T (µ-a.e.). Since K is compact, then it is separable, and
therefore T is also separable and we only need to prove that h = η0 (µ a.e.) in the neighborhood
of any point of T . We fix y ∈ T and we take a path (x = x0, x1, . . . , xn = y) of consecutive
adjacent elements in T . By induction using the previous property, we get that h = η0 µ-a.e on
the neighborhood of xi for all 1 6 i 6 n, and therefore in the neighborhood of y. Finally we
also have that for all y∗ ∈ T∗, h = −η0 µ-a.e on the neighborhood of y∗. Therefore we conclude
that h = −η0 on T∗ (µ-a.e.), and we obtain

∫
T hdµ −

∫
T∗ hdµ = (ρ + ρ∗)η0, and therefore we

get η0 = ηT .
Finally, if h has this form and A ⊂ T is a Borel set, integration of (4) over A gives

d
dt

∫
A
h dµ = −2

∫∫
A×T∗

b(x, x∗)(h+ h∗)dµ∗dµ = 0 .
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We proceed similarly and get the same result when A is a Borel set included in T∗, and by sym-
metry when A is included in T ↓ or T ↓∗ . At the end, for any Borel set A ⊂ A, the integral

∫
A hdµ

is constant in time, therefore f |A is a steady state.
Remark 2. In Proposition 3 the connected components T , T∗, T ↓ and T ↓∗ do not need to be
disjoint, and thus we have the following five possibilities:
(i) The four sets are disjoint.

(ii) T = T ↓∗ 6= T∗ = T ↓. In this case (7) simplifies to ηT =
∫
T dfI∫
T dµ − 1.

(iii) T = T∗ 6= T ↓ = T ↓∗ .

(iv) T = T ↓ 6= T∗ = T ↓∗ .

(v) T = T∗ = T ↓ = T ↓∗ .
In the last three cases (T ∪ T ↓∗ )↓ = T ∪ T ↓∗ holds, and therefore ηT = 0.

As a consequence of Proposition 4 we expect convergence of the solution of the reversal
dynamics to the equilibrium

f∞ := (1 + h∞)µ :=


fI on all T with empty T∗ ,
(1 + ηT )µ on all T with non-empty T∗ ,
0 on S \ K ,

(8)

with
ηT =

∫
T ∪T ↓∗

dfI −
∫
T∗∪T ↓ dfI∫

T ∪T ↓∗
dfI +

∫
T∗∪T ↓ dfI

, µ = fI + f ↓I
2 .

By the decomposition of the dynamics, the convergence analysis can be restricted to sets of
the form A = T ∪ T∗ ∪ T ↓ ∪ T ↓∗ . We start by introducing a relative entropy as a modification
of (6), which can also be motivated by the standard form of entropies for Markov processes
with integrand

(f − f∞)2

f∞
= (h− ηT )2µ

1 + ηT
, on T .

We shall use

HT [f ] = 1
2

∫
T

(h− ηT )2dµ+ 1
2

∫
T∗

(h+ ηT )2dµ (9)

= 1
2

∫
T
h2dµ+ 1

2

∫
T∗
h2dµ− 1

2(ρ+ ρ∗)η2
T ,

with ρ and ρ∗ as in Proposition 4. For odd functions h, this quantity controls the L2(µ)
distance between h|A and its equilibrium. The derivative in time of HT [f ] can be computed as
previously, and we obtain

d
dtHT [f ] = −2

∫∫
T ×T∗

b(h+ h∗)2 dµ dµ∗ =: −DT [f ]. (10)

Our goal is to identify situations where the dissipation DT controls the entropy HT . By the
following result, this is true for the case where the collision kernel b is bounded away from zero
on T × T∗.

9



Proposition 5. With the notation from Proposition 4 we have

2 min(ρ, ρ∗)HT [f ] 6
∫∫
T ×T∗

(h+ h∗)2 dµ dµ∗ .

Proof. We compute the right-hand side of the desired inequality:∫∫
T ×T∗

(h+ h∗)2 dµ dµ∗ = ρ∗

∫
T
h2dµ+ ρ

∫
T∗
h2dµ+ 2ρρ∗〈h〉T 〈h〉T∗ .

Now we expand an expression similar to the expression (9) of HT [f ], but with the weights ρ
and ρ∗ for the quadratic parts in h:

ρ∗

∫
T

(h− ηT )2dµ+ ρ
∫
T∗

(h+ ηT )2dµ

= ρ∗

∫
T
h2dµ+ ρ

∫
T∗
h2dµ+ 2ρρ∗(η2

T − 〈h〉T ηT + 〈h〉T∗ηT )

= ρ∗

∫
T
h2dµ+ ρ

∫
T∗
h2dµ+ 2ρρ∗(ηT − 〈h〉T )(ηT + 〈h〉T∗) + 2ρρ∗〈h〉T 〈h〉T∗

=
∫∫
T ×T∗

(h+ h∗)2 dµ dµ∗ − 2
(

ρρ∗
ρ+ ρ∗

)2
(〈h〉T + 〈h〉T∗)2,

where we have used ηT −〈h〉T = − ρ∗
ρ+ρ∗ (〈h〉T + 〈h〉T∗) and ηT + 〈h〉T∗ = ρ

ρ+ρ∗ (〈h〉T + 〈h〉T∗). We
then obtain∫∫

T ×T∗
(h+ h∗)2 dµ dµ∗ > ρ∗

∫
T

(h− ηT )2dµ+ ρ
∫
T∗

(h+ ηT )2dµ > 2 min(ρ, ρ∗)HT [f ] ,

and this ends the proof.

It will turn out that the condition of boundedness away from zero of b can be removed
under the additional assumption that T and T∗ are compact. An important tool will be a
strengthening of the connectivity of T . As a preparation we note that the graph Γ, when
restricted to a pair (T , T∗) can also be seen as a connected bipartite graph with edges (x, x∗)
in T × T∗ consisting of pairs of collision partners, i.e. b(x, x∗) > 0.

Definition 3. Let T be a connected component of Γ, let β > 0, and let

C = {T1, . . . , Tn, T∗,1, . . . , T∗,n∗}

be a finite set of measurable sets such that

T =
n⋃
i=1

Ti , ρi :=
∫
Ti

dµ > 0 , i = 1, . . . , n ,

T∗ =
n∗⋃
j=1

T∗,j , ρ∗,j :=
∫
T∗,j

dµ > 0 , j = 1, . . . , n∗ .

We say that Ti, T∗,j ∈ C are β-linked, iff

b(x, x∗) > β for all (x, x∗) ∈ Ti × T∗,j .

If the bipartite graph with the node set C and edges between β-linked nodes is connected, we call
C a finite β-connected covering of T ∪ T∗.

10



A finite β-connected covering can be seen as a strengthened version of the bipartite graph
mentioned in Definition 2. The following result (together with the previous lemma) shows that
its existence implies the desired control of HT [f ] by DT [f ].

Lemma 6. Let T be a connected component of Γ, let T∗ be non-empty, and let β > 0. Assume
there exists a finite β-connected covering C of T ∪T∗. Then there exists a constant C > 0 (only
depending on µ, β, and C) such that∫∫

T ×T∗
(h+ h∗)2 dµ dµ∗ 6 C

∫∫
T ×T∗

b(h+ h∗)2 dµ dµ∗.

Proof. We have ∫∫
T ×T∗

(h+ h∗)2 dµ dµ∗ 6
n∑
i=1

n∗∑
j=1

∫∫
Ti×T∗,j

(h+ h∗)2 dµ dµ∗ . (11)

Concentrating on one pair (i, j), there exists a path of β-links connecting Ti and T∗,j, given
by the index sequence (i = i0, j0, i1, j1, . . . , ik, jk = j). With xi` ∈ Ti` and x∗,j` in T∗,j` for
all 0 6 ` 6 k we have

(h(xi0) + h(x∗,jk))2 =
(

k∑
`=0

(h(xi`) + h(x∗,j`))−
k−1∑
`=0

(h(xi`+1) + h(x∗,j`))
)2

6 (2k + 1)
(

k∑
`=0

(h(xi`) + h(x∗,j`))2 +
k−1∑
`=0

(h(xi`+1) + h(x∗,j`))2
)

6
2k + 1
β

(
k∑
`=0

b(xi` , x∗,j`)(h(xi`) + h(x∗,j`))2 +
k−1∑
`=0

b(xi`+1 , x∗,j`)(h(xi`+1) + h(x∗,j`))2
)
.

Now we integrate against dµ(xi0) · · · dµ(x∗,jk) over Ti0 × . . . × T∗,jk and obtain (after division
by ρi0 · · · ρ∗,jk)

1
ρi0ρ∗,jk

∫∫
Ti×T∗,j

(h+ h∗)2 dµ dµ∗

6
2k + 1
β

 k∑
`=0

1
ρi`ρ∗,j`

∫∫
Ti`×T∗,j`

b(h+ h∗)2 dµ dµ∗ +
k−1∑
`=0

1
ρi`+1ρ∗,j`

∫∫
Ti`+1×T∗,j`

b(h+ h∗)2 dµ dµ∗

 ,
Since Ti` ⊂ T and T∗,j` ⊂ T∗ for all 0 6 ` 6 k, we finally obtain
∫∫

Ti×T∗,j
(h+ h∗)2 dµ dµ∗ 6

2k + 1
β

(
k∑
`=0

ρi0ρ∗,jk
ρi`ρ∗,j`

+
k−1∑
`=0

ρi0ρ∗,jk
ρi`+1ρ∗,j`

)∫∫
T ×T∗

b(h+ h∗)2 dµ dµ∗ .

Summation with respect to i and j and using (11) completes the proof.

Finally, it remains to provide sufficient conditions for the existence of a finite β-connected
covering.

Proposition 7. Let T be a connected component of Γ, let T∗ be non-empty, let both sets be
compact, and let b be lower semicontinuous. Then there exists β > 0 and a finite β-connected
covering of T ∪ T∗.
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Proof. We work with the connected bipartite graph with the node set T ∪T∗ and edges between
collision partners x ∈ T and x∗ ∈ T∗. For (x, y) ∈ T × T∗ we denote by P (x, y) the set of
connecting paths of the form p = (x = x0, y0, x1, . . . , xk, yk = y). For such a path p we denote

βp := min
(
{b(xi, yi), 0 6 i 6 k} ∪ {b(xi+1, yi), 0 6 i 6 k − 1}

)
,

and we define
β̄(x, y) := sup{βp : p ∈ P (x, y)} .

By connectedness we have β̄(x, y) > 0, (x, y) ∈ T × T∗.
Let us prove that (x, y) 7→ β̄(x, y) is lower semicontinuous on T × T∗. Indeed, if ε > 0

there exists a path p ∈ P (x, y) such that βp > β̄(x, y) − ε. In particular, since b is lower
semicontinuous, there exists r > 0 such that for all x̃ ∈ B(x, r)∩T and for all ỹ ∈ B(y, r)∩T∗, we
have b(x̃, y0) > β̄(x, y)− ε and b(xk, ỹ) > β̄(x, y)− ε. Therefore with the path (x̃, y0, . . . , xk, ỹ),
we obtain that β̄(x̃, ỹ) > β̄(x, y)−ε. Therefore β̄ is lower semicontinuous on T ×T∗ and reaches
there its minimum β̄0 > 0.

We now fix 0 < β < β̄0, and for any x, y ∈ T × T∗ we define δ̄(x, y) the supremum of possi-
ble 0 < δ 6 diam(K) such that there exists a path p ∈ P (x, y) for which the property as above
is valid even when moving all the points by less than δ: if p = (x = x0, y0, x1, y1, . . . , xk, yk = y)
then for all (x̃0, ỹ0, . . . , x̃k, ỹk) such that x̃i ∈ B(xi, δ) ∩ T and ỹi ∈ B(yi, δ) ∩ T∗ we have the
estimation b(x̃i, ỹi) > β for all 0 6 i 6 k and b(ỹi, x̃i+1) > β for all 0 6 i < k. By lower
semicontinuity of b, such a positive δ exists for all x, y in T × T∗.

Let us now prove that δ̄ is lower semicontinuous. If for a given δ > 0 we have a path
as described above between x ∈ T and y ∈ T∗, and d(x̃, x) < ε and d(ỹ, y) < ε for ε < δ,
then B(x̃, δ − ε) ⊂ B(x, δ) and B(ỹ, δ − ε) ⊂ B(y, δ), therefore taking the same path, we have
the same property with radius δ− ε. This shows that δ̄(x̃, ỹ) > δ̄(x, y)− ε. Therefore δ̄ is lower
semicontinuous and reaches its minimum δ̄0 > 0 on T × T∗. So if we fix now δ < δ̄0, we have
the property of existence of a path as above, uniformly in x and y.

We now take a finite covering of the compact set T (resp. T∗) by open sets Ti (resp. T∗,j) of
diameter less than δ. By Proposition 4, since T and T∗ are open in K, without loss of generality
(replacing Ti by Ti∩T for instance) we can assume that the open sets Ti (resp. T∗,j) are subsets
of T (resp. T∗), to be in the framework of Definition 3.

It remains to show that C := {Ti} ∪ {T∗,j} is β-connected. It is sufficient to show that
two arbitrary vertices of different type Ti and T∗,j with ρi > 0 and ρ∗,j > 0 are connected
(since T and T∗ are not empty, we have ρ, ρ∗ > 0 by Proposition 4, so there is at least one
vertex of each type with ρi > 0 and ρ∗,j > 0). We take x ∈ Ti and y ∈ T∗,j and we obtain a
path (x = x0, y0, x1, y1, . . . , xk, yk = y) as previously, such that for all (x̃0, ỹ0, . . . , x̃k, ỹk) such
that x̃` ∈ B(x`, δ)∩T and ỹ` ∈ B(y`, δ)∩T∗ we have the estimate b(x̃`, ỹ`) > β for all 0 6 ` 6 k
and b(ỹ`, x̃`+1) > β for all 0 6 ` < k. We use the coverings to find i` and j` for 0 6 ` 6 k such
that x` ∈ Ti` and y` ∈ T∗,j` for all 0 6 ` 6 k (with i0 = i and jk = j). Since Ti` is open in K,
it follows that ρi` > 0 by definition of the support K of µ. Similarly ρ∗,j` > 0. Now since the
diameter of Ti` (resp. T∗,j`) is less than δ, we obtain that Ti` ⊂ B(x`, δ) (resp. T∗,j` ⊂ B(y`, δ)),
and therefore we obtain that for all x̃` ∈ Ti` and ỹ` ∈ T∗,j` , we have b(x̃`, ỹ`) > β which
means that Ti` and T∗,j` are β-linked. Similarly, we have that T∗,j` and Ti`+1 are β-linked
for 0 6 ` < k. Therefore we have a path in the graph C from Ti = Ti0 to T∗,j = T∗,jk , and this
ends the proof.
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Finally, combining Lemma 6 and Propositions 5 and 7 with the expression (10) of the
dissipation of HT [f ], we obtain, when the connected components T and T∗ are compact and
not empty or, alternatively, when b is bounded away from zero on T × T∗, that there exists a
constant λ > 0 (only depending on µ, b and T , and not on the initial condition hI) such that

d
dtHT [f ] 6 −λHT [f ]. (12)

Therefore we have exponential decay on A of the solution towards the steady-state on A (given
by (1+ηT )µ on T ∪T ∗↓ and (1−ηT )µ on T∗∪T ↓. The main theorem of this section summarizes
these results and provides a case where the number of connected components is finite (and they
are all compact), and therefore we have exponential convergence to the steady state.

Theorem 8. Let fI be a probability measure on S and µ = 1
2(fI + f ↓I ) with support K. Let the

collision kernel b be lower semicontinuous and bounded, let the graph Γ be as in Definition 2,
and let K = K∗ (i.e., every element of K has a collision partner in K).
Then Γ has a finite number of connected components, which are all compact and the solution f(t)
of the reversal collision dynamics given by Theorem 2 converges as t→∞ exponentially in total
variation distance to f∞, given by (8), i.e., there exist C, λ > 0, such that

sup
A∈σ(S)

∣∣∣∣∫
A

df(t)−
∫
A

df∞
∣∣∣∣ 6 Ce−λt , t > 0 .

Proof. The fact that every point in K has a collision partner excludes case (i) of Proposition 3.
This implies that K is the disjoint union of open sets T , the connected components of Γ. By
compactness of K, this covering is finite, and all components are closed, and therefore compact
in S.

For estimating the total variation distance we observe that for A ∈ σ(S) we have(∫
A

df(t)−
∫
A

df∞
)2

=
(∫

A
(h(t)− h∞)dµ

)2
6
∫
K

(h(t)− h∞)2dµ =
∑
T

∫
T

(h(t)− ηT )2dµ

In the finite sum on the right hand side we introduce a grouping into pairs of the form (T , T∗),
whence the terms in the sum take the form HT [f ] (since ηT∗ = −ηT ). Lemma 6 and Proposi-
tions 5 and 7 imply a differential inequality of the form (12) for each HT [f ] and therefore its
exponential decay.

The following corollary shows that Theorem 8 covers the case of our motivating example (1)
on the circle.

Corollary 9. Let the assumption of Theorem 8 hold, but with K = K∗ replaced by b(x, x↓) > 0
for all x ∈ S. Then the conclusions of Theorem 8 are valid. Furthermore each connected
component T of Γ satisfies T∗ = T ↓, and therefore we have either Case (ii) or Case (v) of
Remark 2.

Proof. Since µ is symmetric, K is symmetric. So if x ∈ K, x↓ is a collision partner of x which
belongs to K. Therefore K = K∗ and the conclusions of Theorem 8 hold. We also have T ↓ ⊂ T∗
(and thus T ↓ = T∗ since both are connected component of the graph Γ) and the only possibilities
from Remark 2 are (ii) and (v).
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Remark 3. An example, showing that without the condition K = K∗, the number of connected
components may be infinite: let S = [−1, 1] with x↓ = −x,

K = K+ ∪ K↓+ with K+ = {0} ∪
∞⋃
k=1
Tk , Tk =

[ 1
2k + 1 ,

1
2k

]
,

and
b(x, x∗) > 0 iff x < x∗ + x2

∗ and x∗ < x+ x2 on [0, 1]2 ,
with b = 0 on [−1, 0]× [0, 1], and b defined on [−1, 1]× [−1, 0] by symmetry (2). One can show
that Tk,∗ = Tk and that each Tk is a connected component of Γ. Note that 0 ∈ K does not have
a collision partner.
The essential thing to show is that no element in Tk has a collision partner in Tk+l for l > 1.
This would require

1
2k + 1 <

1
2(k + l) + 1

4(k + l)2 .

It is an easy computation to show that this can never hold.
For each k > 1 Case (iii) of Remark 2 applies, and the solution of the reversal collision
dynamics converges to µ on Tk. By the compactness of Tk the convergence is exponential, but
with a k-dependent rate, which might degenerate as k →∞, depending on the choice of b.

Remark 4. Another example shows that without the condition K = K∗, the connected compo-
nents, even in finite number, may not be compact. Again with S = [−1, 1] and x↓ = −x, we
set K = S, and

b(x, x∗) =
|x− x∗| − 1 if |x− x∗| > 1,

0 if |x− x∗| 6 1.

One can show here that the connected components of Γ are [−1, 0), {0} and (0, 1]. Again, 0
does not have a collision partner, and the two other components are now in Case (ii) of Re-
mark 2. But we cannot expect an exponential rate of convergence, since the rate of interaction
with particles located close to 0 degenerates.

Remark 5. We shall provide a last example, showing that the convergence rate λ > 0 in (12)
is not only depending on K and on the kernel b, but also on the invariant measure µ.

We consider the motivating example (1) with

b(ϕ, ϕ∗) =
{

1, for d(ϕ, ϕ∗) > π/2 ,
0, for d(ϕ, ϕ∗) 6 π/2 ,

and with the initial conditions

fI = 2αδ0 + 2βδ2π/3 + 2γδ−2π/3 , α + β + γ = 1
2 .

The invariant measure therefore is given by

µ = α (δ0 + δπ) + β
(
δ2π/3 + δ−π/3

)
+ γ

(
δ−2π/3 + δπ/3

)
.
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We note that we are in case (v) of Remark 2 with K = T = T∗ = T ↓ = T ↓∗ . Due to
the oddness of h it is enough to investigate the dynamics on supp fI . Thus, we define by
h0(t), h2π/3(t), h−2π/3(t) the coefficients of h at the points 0, 2π

3 ,−
2π
3 . From (4) we obtain the

linear system

d
dt

 h0(t)
h2π/3(t)
h−2π/3(t)

 = −2

β + γ β γ
α α + γ γ
α β α + β


 h0(t)
h2π/3(t)
h−2π/3(t)

 ,

where the characteristic polynomial p(ξ) of the coefficient matrix is given by

p(ξ) = ξ3 + 2ξ2 + 4ξ
(
α2 + β2 + γ2 + 2(αβ + αγ + βγ)

)
+ 32αβγ .

In the case where α� β, γ, we get the following asymptotic behaviour for the eigenvalues:

ξ1 ≈ −32αβγ , ξ2,3 ≈ −1 .
Hence also the convergence rate λ in (12) degenerates as α→ 0.

4 Reversal collisions on the torus T1

This section is devoted to a slight generalization of the motivating example (1) with S = T1

and with

b(ϕ, ϕ∗) =
1 if d(ϕ, ϕ∗) > π − α,

0 if d(ϕ, ϕ∗) 6 π − α,
0 < α < π .

The governing equation becomes

∂tf =
∫
d(ϕ,ϕ∗)>π−α

(
f ↓f ↓∗ − ff∗

)
dϕ∗ ,

equipped with initial conditions
f(ϕ, 0) = fI(ϕ) , for ϕ ∈ T1 ,

where fI is a probability measure on T1. The case α = π/2 corresponds to the motivating
example (1), discussed and simulated in the following Section 5.

The immediate observation that due to d(ϕ, ϕ↓) = π > π − α for any ϕ ∈ K its oppo-
site ϕ↓ has to be a collision partner, implies T ↓ ⊂ T∗ for all connected components T of Γ.
Consequently, since T ↓ and T∗ are also connected components,

T ↓ = T∗ .
Thus, we can exclude the cases (i), (iii) and (iv) of Remark 2.

Another crucial observation is that any pair ϕ, ψ ∈ K satisfies
d(ϕ, ψ) < α ⇒ ϕ←→ ψ , (13)

which can be seen easily since
π = d(ϕ, ϕ↓) = d(ϕ, ψ) + d(ψ, ϕ↓) < α + d(ψ, ϕ↓),

which implies d(ψ, ϕ↓) > π − α. Therefore ϕ↓ is a collision partner for both ϕ and ψ.
The property (13) allows us to characterize all the possible configurations.
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Proposition 10. There is more than one connected component of Γ if and only if there exists
an interval of the form (ψ, ψ + α) entirely included in S \ K. If this is the case, the connected
components correspond to Case (ii) of Remark 2, their number is even and at most 2bπ/αc.

If no such interval exists, there is only one connected component, corresponding to Case (v)
of Remark 2.

Proof. We first prove that if T is a connected component in Case (v) of Remark 2, then there
is no such interval of the form (ψ, ψ + α) entirely included in S \ K. Indeed, for ϕ ∈ T ,
we have ϕ↓ ∈ T , so we can pick a connecting path p = (ϕ = ϕ0, ϕ1, . . . , ϕn = ϕ↓0 = ϕ↓).
Then for all 0 6 k < n we have a common collision partner ψk of ϕk and ϕk+1, that is to
say d(ϕk, ψk) > π − α, i.e. d(ϕk, ψ↓k) < α (and similarly d(ϕk+1, ψ

↓
k) < α). Thus, the sequence

of points (ϕ0, ψ
↓
0, ϕ1, ψ

↓
1, . . . , ϕn) is such that two consecutive points are at distance less than α,

covering a half-circle from ϕ to ϕ↓ and, hence, excluding the occurrence of such an interval.
Moreover, the sequence of points (ϕ↓0, ψ0, ϕ

↓
1, ψ1, . . . , ϕ

↓
n) covers the other half-circle and, thanks

to the property (13), this implies that Γ is connected and T = T∗ = T ↓ = T ↓∗ = K.
Conversely, if Γ is connected, it is obviously in Case (v) of remark 2. If there are at least

two connected components, they are therefore all in Case (ii) of remark 2. The property (13)
implies that between two different connected components there has to be a margin of width not
less than α. Between ϕ ∈ K and ϕ↓ there can be at most bπ/αc margins of width α on each half
circle. This immediately implies that Γ can have at most 2bπ/αc connected components.

In the limiting cases π/α ∈ N the maximal number of connected components can only be
reached by concentrating the mass at the 2bπ/αc vertices of a regular polygon, i.e.

fI =
2π/α∑
i=1

ρiδϕ0+iα , with ϕ0 ∈ T1 , ρi > 0 .

5 Numerical simulations
This section is dedicated to illustrate the theoretical results of the previous sections with nu-
merical simulations. We chose the setting of Section 4 with α = π

2 . We summarize the above
considerations and the results of Proposition 10 for this special angle in the following list,
characterizing the possible cases of number and properties of connected components of the
graph Γ.

• If there is no open interval of the form (ψ, ψ+ π
2 ) entirely included in S\K, then K has only

one connected component. Thus, the solution f(·, t) to (1) converges exponentially fast
to the invariant measure µ as time goes to ∞. This corresponds to case (v) of Remark 2.

• Maximal four different connected components can occur. We have exactly four connected
components of the graph Γ iff

K = {ϕ, ϕ+ π/2, ϕ+ π, ϕ+ 3π/2} , for a ϕ ∈ T1.

In that case each of the isolated points is a connected component on which the solu-
tion f(·, t) to (1) is constant (case (i) in Proposition 3).
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• If none of the two possibilities listed above is applicable, the graph Γ has exactly two
connected components, denoted by Γ+ and Γ−, on which the solution f(·, t) converges
exponentially fast respectively to

2ρ± µ|Γ± , as t→∞,

where ρ± =
∫
Γ± dfI (so ρ+ + ρ− = 1). This corresponds to Case (ii) in Remark 2.

Discretization: The results of the preceding section will be illustrated by numerical sim-
ulations for the simple problem (1) on the torus with b ≡ 1. Discretization is based on an
equidistant grid

ϕk = (k − n)π
n

, k = 0, . . . , 2n ,

with an even number of grid points, guaranteeing that the grid is invariant under the reversal
collisions, i.e., with ϕk also ϕ↓k = ϕk+n is a grid point. Solutions of (1) are approximated at
grid points by

fn(t) := (f1(t), . . . , f2n(t)) ≈ (f(ϕ1, t), . . . , f(ϕ2n, t)) ,
extended periodically by fk+2n(t) = fk(t). This straightforwardly leads to the discrete model

dfk
dt

= Qn
REV (fn, fn)k ,

with
Qn
REV (fn, fn)k := π

n

∑
|k∗−k|>n/2

bk,k∗(fk+nfk∗+n − fkfk∗) ,

and bk,k∗ := b(ϕk, ϕk∗). For the time discretization the explicit Euler scheme is used, such that
the total mass is conserved by the discrete scheme, which has been implemented in Matlab.
We simulated the first and third cases described at the beginning of this section.

The graph Γ has one connected component: Simulations have been carried out with
grid-size n = 202. Figure 1, and the left part of Figure 3 show snapshots of the distribution
function f at different times together with the symmetric equilibrium µ. In the left part of
Figure 2 and the right part of 3, the total mass

∫
T1 f dϕ = 1 as well as

∫ 0
−π f dϕ and

∫ π
0 f dϕ are

plotted against time. The right part of Figure 2 displays the log-plot of H[f ] belonging to the
simulations of Figure 1, which shows its exponential decay.
In Figure 1 we started with asymmetric data, positive everywhere, which makes it clear that
the associated graph Γ has only one connected component and hence the solution converges to
the symmetric equilibrium µ. For this simulation the time-stepsize was chosen as ∆t = 0.01
for 1000 time-steps.
Figure 3 shows the evolution with positive initial conditions in the intervals (−3π/4,−π/4)
and (π/4, 3π/4), although weighted differently. Furthermore, a perturbation in the inter-
val [−π/4, π/4] was added, which serves as connecting point for the otherwise not connected
graph. Also here convergence to the symmetric equilibrium µ can be observed. For this simu-
lation the time-stepsize was chosen as ∆t = 0.1 for 5000 time-steps.
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Figure 1: Initial conditions (solid dark blue) positive everywhere, Γ has one connected com-
ponent. Simulation: f after 500 time-steps (dashed red), f after 1000 time-steps (solid black)
and µ (dotted light blue).
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Figure 2: Time evolution of quantities corresponding to the simulations of Figure 1. Left: Total
mass conservation (black), masses of the positive (dark blue) and negative (red) part of the
torus are different initially, but converge to the same value. Right: log-plot of the Lyapunov
functional H, showing exponential decay.
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Figure 3: Initial conditions supported on (−3π/4,−π/4) and (π/4, 3π/4), as well as in a very
small interval contained in (−π/4, π/4). Γ has one connected component. Left: Initial condition
(solid dark blue), f after 2500 time-steps (dashed red), f after 5000 time-steps (solid black) and
the equilibrium f∞ (dotted light blue). Right: Total mass conservation (black), masses of the
positive (dark blue) and negative (red) part of the torus, which are also conserved quantities.

The graph Γ has two connected components: For the simulations corresponding to
Figure 4 initial data only positive in the intervals (−3π/4,−π/4) and (π/4, 3π/4) was chosen.
This causes the graph Γ to have two connected components Γ−, supported in (−π, 0) and Γ+,
supported in (0, π). The masses in the corresponding sets of vertices V± were chosen different
from each other.
Again, the left part of Figure 4 shows snapshots of the distribution function f at different times
together with the equilibrium

f∞ = 2
µ

∫ 0
−π f dϕ, ϕ ∈ (−π, 0]

µ
∫ π

0 f dϕ, ϕ ∈ [0, π].

In the second row the total mass
∫
T1 f dϕ = 1 as well as

∫ 0
−π f dϕ and

∫ π
0 f dϕ are plotted against

time, which shows mass conservation in V±.
The simulation was carried out for ∆t = 0.01 and 250 time-steps.

A Well-posedness in Wasserstein distance
We recall that the Wasserstein-1 distance between two probability measures µ and ν on the
compact metric space S is given, thanks to the Kantorovich-Rubinstein duality [11], by

W1(µ, ν) = sup
( ∫
S
ψ dµ−

∫
S
ψ dν

)
, (14)

where the supremum is taken over all 1-Lipschitz functions ψ. And in our case of a compact
space S the topology given by the Wasserstein-1 distance on P(S) (the set of probability
measures on S) corresponds to the topology of weak convergence of measures.
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Figure 4: Initial conditions supported on (−3π/4,−π/4) and (π/4, 3π/4), vacuum else. Γ has
two connected components Γ− with V− ⊂ (−π, 0) and Γ+ with V+ ⊂ (0, π) . Left: Initial
condition (solid dark blue), f after 125 time-steps (dashed red), f after 250 time-steps (solid
black) and the equilibrium (dotted light blue). Right: Total mass conservation (black), masses
of the positive (dark blue) and negative (red) part of the torus, which are different initially,
but converge to the same value.

Proposition 11. We suppose that the collision kernel b is Lipschitz with a Lipschitz coeffi-
cient λ > 0. We denote by L a bound on the diameter of S and by M a bound on the collision
kernel b. Then, if f and f̃ are two solutions to the reversal collision dynamics with respective
initial conditions fI and f̃I , we have the following global stability estimate with respect to the
initial conditions:

∀t > 0, W1(f(t, ·), f̃(t, ·)) 6 eλLtC(t)W1(fI , f̃I),
where the coefficient C(t) is explicitly given by C(t) = 1 + (M + 5λL)t+ 2t2λML.

Proof. Since f is a solution, thanks to Theorem 2 it is of the form (1 +h)µ with µ = 1
2(fI + f ↓I )

and h ∈ C([0,∞), L∞(µ)). Therefore f belongs to C([0,∞),P(S)). Using the fact that h
is a fixed point of the mild formulation (5), we get that f is a fixed point of the map ΨfI ,
where ΨfI (f) is given by the following formula, given for all ψ ∈ C(S) and t ∈ [0,∞):∫

S
ψ(x)dΨfI (f)(t, x) =

∫
S
e−2tBµ(x)ψ(x)dfI(x) +

∫ t

0

∫
S
e−2(t−s)Bµ(x)Bf(s,·)(x)ψ(x)dµ(x)ds,

where, for any ν ∈ P(S), we write Bν(x) =
∫
S b(x, x∗)dν(x∗). This gives a definition of ΨfI (f)

as an element of C([0,∞),P(S)), by Riesz-Markov-Kakutani representation theorem.
We start by proving the following estimate:

W1(ΨfI (f),Ψf̃I
(f̃)) 6

∫ t

0
λLW1(f(s, ·), f̃(s, ·))ds+ C(t)W1(fI , f̃I). (15)

We notice that in the definition (14) of the Wasserstein distance, if we fix x0 ∈ S, we can
restrict the supremum over functions ψ which are 1-Lipschitz and such that Ψ(x0) = 0. From
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now on we fix such a x0 and ψ and want to estimate, at a fixed time t > 0, the quantity∫
S
ψ(x)dΨfI (f)(t, x)−

∫
S
ψ(x)dΨf̃I

(f̃)(t, x) := A1 + A2 +
∫ t

0
(A3(s) + A4(s) + A5(s))ds, (16)

where we have split it thanks to the five following expressions:

A1 =
∫
S
e−2tBµ(x)ψ(x)dfI(x)−

∫
S
e−2tBµ(x)ψ(x)df̃I(x),

A2 =
∫
S

(
e−2tBµ(x) − e−2tBµ̃(x)

)
ψ(x)df̃I(x),

A3(s) =
∫
S
e−2(t−s)Bµ(x)Bf(s,·)(x)ψ(x)dµ(x)−

∫
S
e−2(t−s)Bµ(x)Bf(s,·)(x)ψ(x)dµ̃(x),

A4(s) =
∫
S
e−2(t−s)Bµ(x)(Bf(s,·)(x)−Bf̃(s,·)(x))ψ(x)dµ̃(x)),

A5(s) =
∫
S

(
e−2(t−s)Bµ(x) − e−2(t−s)Bµ̃(x)

)
Bf̃(s,·)(x)ψ(x)dµ̃(x).

We first notice that since b is λ-Lipschitz, then for all ν ∈ P(S), Bν is also λ-Lipschitz. Then
since b is bounded by M , Bν is also bounded by M . And finally we have that |ψ| is bounded
by L since |ψ(x)| = |ψ(x)− ψ(x0)| 6 d(x, x0). Therefore we have for x, y ∈ S

e−2tBµ(x)ψ(x)− e−2tBµ(y)ψ(y) = (e−2tBµ(x) − e−2tBµ(y))ψ(x) + e−2tBµ(y)(ψ(x)− ψ(y))
6 2tλd(x, y)L+ d(x, y),

Therefore the function x 7→ e−2tBµ(x)ψ(x) is (1+2tλL)-Lipschitz, and this provides the estimate

A1 6 (1 + 2tλL)W1(fI , f̃I).

Similarly, the function x 7→ e−2(t−s)Bµ(x)Bf(s,·)(x)ψ(x) is (M + λL + 2(t − s)λML)-Lipschitz,
and we obtain

A3(s) 6 (M + λL+ 2(t− s)λML)W1(µ, µ̃).
Furthermore, still thanks to the fact that b is λ-Lipschitz, we have for all ν, ν̃ ∈ P(S):

Bν(x)−Bν̃(x) 6 λW1(ν, ν̃).

Therefore this gives the estimates

A2 6 2tλW1(µ, µ̃)L,
A4(s) 6 λLW1(f(s, ·), f̃(s, ·),
A5(s) 6 2(t− s)λW1(µ, µ̃)ML.

Since for any 1-Lipschitz function ψ, the function 1
2(ψ+ψ↓) is also 1-Lipschitz, we get that

∫
S
ψdµ−

∫
S
ψdµ̃ =

∫
S

1
2(ψ + ψ↓)dfI −

∫
S

1
2(ψ + ψ↓)dfI .
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Therefore we obtain W1(µ, µ̃) 6 W1(fI , f̃I). Thanks to these estimates, we obtain that

A1 + A2 +
∫ t

0
(A3(s) + A5(s))ds

6 (1 + 2tλL+ 2tλL+ (M + λL)t+ t2λML+ t2λML)W1(fI , f̃I) = C(t)W1(fI , f̃I).
Therefore the expression given by (16) is bounded by the right-hand side of the inequality (15).
Since this is true for all 1-Lipschitz function ψ such that ψ(x0) = 0, this gives the inequality (15).

Finally, since ΨfI (f) = f and Ψf̃I
(f̃) = f̃ , the inequality (15) becomes an integral Grönwall

estimate, which gives the final result.
Notice that the inequality (15) could also be used to directly prove existence of a fixed

point of ΨfI (and thus a solution) in the space C([0, T ],P(S)), restricted to time dependent
probability measures f such their symmetric part is constant equal to µ, in the same manner
as for the proof of Theorem 2.
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