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Abstract

In noninvasive studies of atrial fibrillation (AF), espe-
cially in body surface potential map (BSPM) measure-
ments, the dominant frequency (DF) is usually defined as
the highest peak in the power spectrum, after prior can-
cellation or removal of the ECG components related to the
ventricular activity. However, the power spectrum is often
hampered by the presence of residual artifacts caused by
phase breaks in atrial signals due to either signal concate-
nation or to the chaotic behavior of AF. The aim of this
study is to develop novel estimators of DF, robust against
phase breaks in atrial signals, and to compare it to Fourier
based approaches.

Fourier analysis (including multiple frequency compo-
nents models) is used as a starting point to develop meth-
ods adapted to handle phase breaks. Fourier analysis and
the average frequency derived from the phase of the ana-
lytic signal (within an AF cycle or globally) were selected
as estimators of the single frequency model, and compared
by means of simulations. It is found that for large phase
breaks (±T/2 every half-second), and for a SNR of 5db, the
95 % confidence interval were smaller for the estimates
based on the phase, within an AF cycle, of the analytic
signal. For the more realistic multiple frequency model,
the Fourier decomposition is extended by using a Least
Mean Squares (LMS) adaptive algorithm, with or without
imposing a constant magnitude. Slight differences in per-
formances of the presented methods are exemplified on a
single AF subject where the DF is computed over all the
leads of the BSPM records.

1. Introduction

Atrial fibrillation (AF) dominant frequency (DF) has
been shown to be a relevant feature in both determining
the stage of AF, and in patient’s characterization [1] [2].
However the indirect interpretation of the complexity of
the AF electrogram by using surface ECG could be mis-

leading because of amplitude and phase changes during the
course of the AF, as mentioned in [3]. Assuming that AF
is maintained by several sources localized in different area
of the atrium and with different rates of activation, the sur-
face ECG is thus a combination of these sources, with mor-
phologies dependent on the location of the leads. The use
of Body Surface Potential Mapping (BSPM) to establish a
relationship between DF and spatial location is challeng-
ing because it may be hindered by phase jumps and other
random behaviors of the activation patterns.

A Fourier based model is firstly presented with constant
features such as magnitude, frequency and phase. It is
shown in simulation that in the case of a single tone sig-
nal, Fourier based methods are subject to be impacted by
phase breaks and that cycles based methods are more ro-
bust. In order to fit to a more realistic model, including
multiple components, the Fourier based model is extended
to circumvent the mismatch to phase variation observa-
tions. The performance of the proposed methods are not
confronted to ground truth but simply shown through the
analysis of the DF on a single AF subject.

2. Models

Although the intracardiac electrograms exhibit short du-
ration transient shapes associated to the sequential electri-
cal activations of local cardiac myocells, the correspond-
ing surface signals are more cosine shapes because of the
filtering of the higher harmonics. Furthermore, the global
acceleration and deceleration phases of the AF electrical
vector presented in [4] extends this observation to a more
complex description. Considering that for complex AF
several sources of depolarizations might be at the origin
of the AF maintenance, the model of observation assumed
in this paper for one recording lead is :

x(n) =

I∑
i=1

Ai cos(2πfin/fs + Fi(n)) (1)



Where n, fs stand respectively for the sample index and
the sampling frequency. The number of components I will
be considered small, even equal to one. For the sake of
simplicity the magnitudes Ai are considered constant al-
though it is not strictly true. The important phase com-
ponent Fi(n) takes into account the rupture of phase dur-
ing complex AF where disruptions are observed. It is im-
portant to notice that it exists an indeterminacy between
the frequency component 2πfin/fs and Fi(n), when Fi

is variable with time. Indeed, if the frequency fi is re-
placed by f̃i then for the same observation we get F̃i(n) =
Fi(n)+2π(fi−f̃i)n/fs with the equality cos(2πfin/fs+
Fi(n)) = cos(2πf̃in/fs + F̃i(n)). This indeterminacy
will explain the loss of frequency resolution that affects
the methods presented thereafter. Ideally, any spectral de-
composition adapted to our model should be able to find
the best fi’s assuming a stepwise shape for the function
Fi(n) and rejecting a linear combination of n.

3. Methods

In order to limit the number of frequency components
and to emphasize the components that contribute the most
to the energy of the signal, Singular Spectrum Analysis
(or alternatively Singular Spectrum Decomposition [5]) is
firstly applied before the spectral analysis.

The first method (named WA cycle) presented here uses
a simplified version of (1) where a single component (I =
1) is considered. If this assumption is valid then that the
wrapped phase of the analytic signal has a sawtooth wave
shape in the range [−π;π]. The derivative of this phase
provides a stepwise function delimited by negative spikes
separated by the period of the cosine. Each value of the
sequential steps, i.e. the mean value of the derivative be-
tween two spikes, are theoretically equal to 2πfi/fs. Val-
ues of these steps that are not in the expected range of AF
frequencies, e.g. [5 − 8]Hz, can be rejected for the next
processing. The simplest way to compute the final estima-
tion of the single frequency is to average all the step values
obtained over the entire signal. A more efficient estimation
consists in additionally calculating the standard deviation
of the derivative between two consecutive spikes and to
use it in a weighted averaging where the weights are the
normalized inverse of the standard deviation. The second
method (named Median ssa) also assumes the same model
but the frequency is not estimated based on each cycle but
globally by computing the median value of the derivative
of the unwrapped phase of the analytic signal. From (1), it
is easy to show that in the absence of phase jumps the com-
puted value of the derivative is a constant function equal to
2πfi/fs. The use of the median operator aims to reduce
the effect of the phase jumps, if present.

One could argue that in real cases and especially with
complex AF, a single frequency component is not suffi-

cient to describe the sum of multiple atrial contributions
characterized by different activation rates. In that case
the previous presented methods provide us an average fre-
quency value, lacking frequency resolution. The simulta-
neous presence of multiple tones is usually addressed by
using the well know Fourier decomposition which can be
derived as a mean square estimation. In that case Fi(n) is
assumed to be constant and for a given value of fi a linear
model can be derived such that:

Ai cos(2πfin/fs + Fi) = Ai cos(Fi) cos(2πfin/fs)

−Ai sin(Fi) sin(2πfin/fs) = a cos(2πfin/fs)

+ b sin(2πfin/fs) (2)

Then a model matrix is built such that Mf =
[cosf sinf ] where cosf stands for the cosine vector (and
respectively for sinf ) computed for a given value of f and
all values of n = 1, . . . , 15000, corresponding to almost 1
minute of signal sampled at 256 Hertz. Note that in addi-
tion the two vectors are energy normalized. Finally, for a
given value of f in the range [5 − 8]Hz and with step of
0.02Hz the mean square error estimator is used to compute
the reconstructed version of the observation x (the vector
formed by all the recorded samples) at frequency f :

x̂f = Mf (M
T
f Mf )

−1MT
f x = Mf [a b]

T (3)

, with [a b] the estimated parameters of the model, and the
normalized 2-norm error used for the spectral analysis:

Four(f) = ‖x− x̂f‖2 / ‖x‖2 (4)

This fourier model imposes the constant magnitude, fre-
quency and phase features. It means that this model does
not address the presence of phase jumps. Although used
in almost all dominant frequency studies, this model is not
really adapted to our observations and is affected by depar-
tures from constant features as shown thereafter. One easy
and convenient way to adapt the model to time-varying
features is to use a Least Mean Squares (LMS) adaptive
approach [6]. In that case the values of the two scalar pa-
rameters [a b] in (3) are updated for every new recorded
sample and the convergence speed is fixed by the value of
the forgetting factor µ. Note that recursive least squares
could also be used to update parameters. In both cases, the
two time-varying scalars are then varying with time, catch-
ing simultaneously the variation of phase and magnitude.
As already mentioned, it is expected a loss of frequency
resolution because the phase variation could also adapt to
a frequency mismatch. Then a slow convergence (corre-
sponding to a low forgetting factor in LMS filtering) will
imply a higher frequency resolution but a lower ability to
track fast changes of phase, i.e. the phase jumps, and con-
versely for a fast convergence. This pure LMS adaptation
will be named Four lms(f).



Since a constant magnitude is assumed with the Fourier
decomposition, we propose to combine constant magni-
tude and time-varying phase by modifying the LMS algo-
rithm. It should be reminded that the magnitudeAi in (2) is
directly computed from (3) by Ai =

√
a2 + b2. Then, af-

ter the updating step of the parameters a and b in the LMS
algorithm (see [6]) it is added the following substitution:

[a b]← [a b]D/
√
a2 + b2 (5)

where D is an imposed magnitude. This substitution does
not change the estimated phase but only the magnitude.
The best selection of the imposed magnitudeD is achieved
by using a nonlinear programming solver such the simplex
search method with an initial value fixed by the magnitude
computed with [a b] from (3). This last modified LMS
adaptation will be named Four lms mod(f)

In summary, methods described and used in this part are:
WA cycle, Median ssa well adapted to single frequency
Fourier model and Four(f), Four lms(f), Four lms mod(f)
adapted multiple components Fourier model. Simulations
and application of these methods to a real case will be pre-
sented below.

4. Simulations

The simulation consists in generating a constant magni-
tude 6 Hertz single tone signal with random phase breaks,
or jumps, every fixed 150 samples. The sample frequency
is 256 Hertz and the total length is 15000 samples. The
range of the phase breaks is variable, from 0 to ± T/2, T
being the period of the single tone. The WA cycle, Me-
dian ssa methods, together with FFT applied to raw data
(FFT raw) and after the SSA preprocessing (FFT ssa),
were compared using a Monte Carlo approach with a noise
level equal to 5dB. For each of the 500 trials a new se-
quence of noise and random phase breaks are generated.

In Fig. (1) is given the estimate of the dominant fre-
quency at 95% confidence interval for different range of
phase breaks and for the four methods. It is clear that for
large phase jumps the adapted methods WA cycle and Me-
dian ssa performed better with a light improvement for the
one using a weighted averaging. However it is worth notic-
ing that FFT based methods are not especially designed for
single tone signals but as foreseen they are clearly affected
by the presence of phase jumps.

5. Application to BSPM data

For this illustration, BSPM were recorded in one pa-
tient with persistent AF using a custom configuration of
184 leads with 120 anterior and 64 posterior leads (Ac-
tiveTwo BSM Panels Carbon Electrodes, Biosemi B.V.,
The Netherlands). ECGs were sampled at 256Hz. A one-

Figure 1. Methods performances for single component model with
phase breaks.

minute segment was selected, low-quality leads were ex-
cluded (low signal-to-noise ratio, poor electrode contact,
motion artefacts), and Wilsons Central Terminal was sub-
tracted in line with conventional ECG analysis. After
band-pass filtering the signals between 1 and 100Hz (3rd
order Chebyshev), QRST cancellation was performed us-
ing an adaptive singular value decomposition method. The
extracted atrial signals were post-filtered with a zerophase
notch filter at 50Hz to suppress power line noise, and with
a 3Hz zero-phase highpass filter (3rd order Chebyshev) to
remove low-frequency residuals not related to (persistent)
AF.

In this example, the methods developed for multi com-
ponents analysis based on (3) are applied to all the leads
of the BSPM record. To understand the different results
on the whole BSPM, it is shown in Fig. (2) the normal-
ized 2-norm error (4) for the different methods applied to
the lead where the DF is the highest. The lowest value
of the criteria gives the frequency that better fits the ob-
servation vector, namely the DF. It can be observed a
lower frequency resolution for the LMS based methods
compared to Four and that for an identical µ value the
Four lms mod method exhibits a higher frequency resolu-
tion than Four lms. It should be also observed that the DF,
i.e. the frequency corresponding to the minimum value,
depends on the method and cannot be explained only by
a lower frequency resolution. In addition, when µ in-
creases the error decreases because the trackings of the
phase changes (for both Four lms mod and Four lms) and
the magnitude changes (for Four lms only) are more ef-
ficient but at a cost of a lower frequency resolution. In
addition, the WA cycle method provides by design a single
value that is equal to 6.4Hz in that case.

In Fig. (3), (4), (5), (6) the DF computed with some
of the presented methods are given for each lead and dis-
played on the subject torso. Clearly, the WA cycle suf-
fers from a lack of frequency resolution visible through
the smoothed distribution of DF. The differences between
all other methods are not very large. It can be noticed that
the highest DF are localized in the vicinity of V1 (red cir-
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Figure 2. Comparison of spectral decompositions for multiple com-
ponents model for the highest DF among the BSPM leads.

cle) for Four although it is distributed on a larger area for
Four lms mod and on a different parts of the torso. How-
ever, because intracardiac electrical activity is not recorded
it is impossible to compare results to the ground truth.

Figure 3. DF distribution over the BSPM leads for the WA cycle
method. Red circle stands for V1 location. Values on the color bar are
expressed in Hertz.

Figure 4. DF distribution over the BSPM leads for the Four method.

Figure 5. DF distribution over the BSPM leads for the Four lms mod
method with µ=50.

Figure 6. DF distribution over the BSPM leads for the Four lms
method with µ=50.

6. Conclusions

This study aimed to question the relevance of the DF
computed with Fourier based methods. It is shown in sim-
ulation that the assumption behind the use of the classical
Fourier analysis is not well adapted to phase jumps likely
present during AF episodes. We derived several meth-
ods to get rid of the impact of these changes but at the
cost of a lower frequency resolution. The use of a LMS
based method imposing a constant magnitude seems to be
promising but it should be confirmed by the analysis of
intracardiac signals.

References

[1] Guillem MA, Andreu MC, Millet J, Arenal A, Fernandez-
Aviles F, Jalife J, Atienza F, Berenfeld O. Noninvasive lo-
calization of maximal frequency sites of atrial fribrillation
by body surface potential mapping. Circ Arrhythm Electro-
physiol. 2013; 6:294-301.

[2] Meste O, Zeemering S, Karel J, Lankveld T, Schotten U,
Crijns H, Peeters R, Bonizzi P. Body-surface atrial sig-
nals analysis based on spatial frequency distribution : com-
parison between different signal transformation. Conf Proc
Comp in Card, 2021; Vol. 48

[3] Ng J, Kadish AH, Goldberger JJ. Effect of electrogram
characteristics on the relationship of dominant frequency
to atrial activation rate in atrial fibrillation. Heart Rhythm.
2006; 3(11):1295-305.

[4] Bonizzi P, Zeemering S, Karel J, Lankveld T, Schotten U,
Crijns H, Peeters R, Meste O. Body-surface atrial vector
similarity as a new way to investigate atrial fibrillation prop-
agation dynamics. Conf Proc Comp in Card, 2021; Vol. 48

[5] Bonizzi P, Karel JMH, Meste O, Peeters RLM. Singular
spectrum decomposition: A new method for time series de-
composition. Advances in Adaptive Data Analysis, 2014,
Vol. 6, 4: 34 pages.

[6] Widrow B, Stearns SD. Adaptive Signal Processing.
Prentice-Hall, 1985.

Address for correspondence :
Aline CABASSON, Laboratoire I3S - Université côte d’Azur - CNRS,
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