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Computation of dynamic transmission error for gear transmission
systems using modal decomposition and Fourier series

Eddy Abboud1,2 · Aurélien Grolet1 · HervéMahé2 · Olivier Thomas1

Abstract
In this paper, a method for computing the dynamics of a geared system excited by its static transmission error is proposed.
The method is based on the iterative spectral method (ISM) and on the harmonic balance method (HBM). It is shown that
the dynamic transmission error (DTE) can be obtained in the frequency domain by solving a linear system of equations,
which in turn allows the computation of the modal and physical coordinates of the system.

Berechnung des dynamischen Übertragungsfehlers bei Zahnradübertragungssystemenmit Hilfe von
Modalzerlegung und Fourier-Reihen

Zusammenfassung
In diesem Beitrag wird eine Methode vorgestellt, die die Dynamik eines durch dessen statischen Übertragungsfehler ange-
regten Getriebesystems ausgearbeitet. Die Methode basiert auf der iterativen Spektralmethode (ISM) und der harmonischen
Gleichgewichtsmethode (HBM). Es wird gezeigt, dass der dynamische Übertragungsfehler (DTE) im Frequenzbereich
durch Lösen eines linearen Gleichungssystems ermittelt werden kann, was wiederum die Berechnung der modalen und
physikalischen Koordinaten des Systems ermöglicht.

1 Introduction

The use of electric motors generates noises that were previ-
ously masked by the sound of internal combustion engines,
such as the gear noises produced by the gearbox.

The primary source of this noise is gear vibration caused
by transmission errors, defined by Harris in 1958 [1]. No-
tably, Velex et al. [2] introduced an analytical method for
modeling the excitations of a gear system. In this method,
beginning with the instantaneous contact between teeth,
new equations of motion are proposed in terms of trans-
mission errors. Analytical and numerical solutions to these
equations are proposed. By contrast, Garambois and Perret-
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Liaudet [3–5] proposed another method of solving the equa-
tions of motion, which in turn allows the simulation of the
vibro-acoustic responses of the gear system, called the iter-
ative spectral method (ISM). In this method, the equations
of motion are projected onto the modal basis. Using Fourier
transforms, an equation is obtained to express the DTE in
the frequency domain (thus the name spectral), which is
then solved using fixed point iteration (thus the name iter-
ative). In this paper, we propose an adoption of the ISM to
solve the DTE when the input signals (STE and k.t/) are
periodic. The method is based on the ISM, but instead of
using a Fourier transform, Fourier series will be used. An
equation that governs the amplitude of the harmonics of the
DTE is obtained from the modal equation and it is solved
using a single linear system inversion instead of fixed point
iterations. The method is applied on a simple example of
two spur gears mounted on flexible shafts to illustrate its
application and performance.
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Fig. 1 Model of two spur gears mounted on flexible shafts (6 DOF
model)

2 General system

In order to represent the method, we consider a system of
two geometrically perfect spur gears (NLTE = 01) mounted
on two flexible shafts (see Fig. 1). Note, however, that the
method is applicable to more complicated systems (e.g heli-
cal, with NLTE, etc.). If we restrict ourselves to 2D motion
(in the xy plane) the gears are represented as two rigid bod-
ies each having three degrees of freedom (two translations
(xi and yi ) and one rotation �i for i 2 Œ1,2�).

The meshing interaction occuring between the two gears
is modeled by a time varying stiffness (mainly related to
the number of teeth in contact at a given time) in series
with an imposed displacement e.t/ (related to the static
transmission error). The aim is to predict the behavior of
the system and to define the modes that are most excited
by the internal force (STE).

We define the geometrical vector R, which allows the ef-
fect of the contact force (on the gear teeth) to be transported
onto the gear centers.

Fig. 2 Geometric description of the contact

1 NLTE: No Load Transmission Error.

In the simple case of Fig. 2, the geometrical vector R,
can then be written as2:
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where ˛ is the pressure angle. This leads to:
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One should note that � is used to represent a vector and
� a matrix. Using the vector of degrees of freedom asso-
ciated with both gear centers and the geometrical vector
R, one can derive the expression of the transmission error
expressed along the line of action as:

� = RTX (3)

where XT = Œx1y1�1x2y2�2�.

3 Dynamic equation

3.1 Equation ofmotion

The equation of motion of the system in Fig. 1 can be
obtained by applying Newton’s second law to each of the
gears (resulting in three equations per gear). The equation
of motion can be written under matrix form as:
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where F T
2!1 = ŒFx1 Fy1 C1� is the action of gear 2 on

gear 1 (and F T
1!2 = Œ−Fx1 − Fy1 C2� the action of gear 1

on gear 2). In Eq. (4), M
i
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i
are the mass and stiffness

matrices respectively, with M
i
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=
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2 It is important to note that in 3D, the geometric vector R is formed
by 12 non null elements which represents the degrees of freedom. In
2D, taking into account that there are only two translations and one
rotation, it will be made of the 2 center nodes.



The vector F ext contains the external applied force. Us-
ing the geometrical vector R and the displacement associ-
ated with the static transmission error it can be shown that
the internal force corresponding to the parametric excita-
tion (due itself to the varying stiffness) can be written as
follows [3]:

F int = k.t/RRT
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where k.t/ = k0+g.t/ is the time-varying stiffness obtained
from the meshing process (e.g from numerical analysis with
commercial software). With the gears considered geomet-
rically perfect, the no-load transmission error is zero, and
the static transmission error is thus expressed as [3, 6]:

�s.t/ = RT

�
X1s

X2s

�
(6)

The meshing stiffness K
mesh

is formed of a constant and
a variable part. At the level of the FEM model, one can
define a mean stiffness matrix:

K
mesh

= k0RRT + g.t/RRT (7)

K
AV

= K
FE

+ k0RRT (8)

Substituting Eqs. (5), (7) and (8) into Eq. (4), the final
dynamic equation of the system can be written:

M
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X + g.t/RRTX = F ext + k.t/�s.t/R: (9)

3.2 Projection onto themodal basis

The natural angular fequency !n and the associated mode
shapes �n of the coupled system can be calculated using
M

FE
and K

AV
. Using the modal basis, the vector of DOFs

X , can be written as

X.t/ =
NDOFX
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˚nqn.t/ (10)

with qn the modal amplitude of mode n. After the projection
of the equation of motion onto the modal basis, it becomes:
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where !n is the angular frequency of mode n, �n is the
modal damping of mode n and rn = ˚T

nR is the projection
of the geometrical vector onto the mode shape ˚n. As seen
in Eq. (11), rn is a multiplying factor of both applied forces
(direct and parametric). Therefore, it gives an indication

of the most excited mode (the higher the value of rn, the
higher the response of the system).

Eq. (11) contains a set of coupled linear differential equa-
tions with periodic coefficients. Considering that the time-
varying stiffness and the excitation are periodic with fun-
damental pulsation ˝ the harmonic balance method can
be used to solve the set of differential equations [7]. The
periodic signals are represented using Fourier series:
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One should note that the dynamic transmission error is de-
fined as follows in the frequency domain:
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The balancing of each harmonic leads to the following set
of algebraic equations for n 2 Œ1; Nmode� and k 2 Œ−H; H�:
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Eq. (14) by rn and summing over n leads to:
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with the DTE previously defined in Eq. (13), Eq. (15) be-
comes:
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where Tk =
P
n

Hn;kr2n. The k-th harmonic components of

the DTE (�k) can be obtained by solving the linear system
in Eq. (16). It is then possible to calculate the modal coordi-
nates by introducing the obtained values for �k in Eq. (14)
and solving for bqnk . The coordinates in the physical basis
can then be calculated using Eq. (10) and Eq. (12).

4 Application on a simple example

Using Masta [8], a system of two spur gears system is
modeled (see Table 1). The static transmission error (STE)
and the meshing stiffness (k.t/) are calculated using the
built-in tools of Masta. Using these values and Eq. (16),



Table 1 Geometrical characteristics of the two spur gears

Symbol Pinion Wheel

Number of
teeth

Z 35 48

Mass M (kg) 0.5152 1.0409

Inertia I (kgm2) 0.0001928 0.0006687

Pressure
angle

˛ı 20

Modulus m (mm) 2

Facewidth b (mm) 20

Table 2 The eigenvalues, eigenmodes and their corresponding rn values

Mode Freq(KHz) rn Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

1 0 0 0 0.04 1.18 0.42 0 −0.02

2 5.92 −1.8 0 0.12 −0.42 1.17 0 −0.08

3 15.9 0 −26.57 −35.35 0 3.49 0 −1.63

4 16.4 1.38 0 −0.01 0 0.02 −0.85 0.30

5 20.96 0 0 −0.03 0 0.06 0.31 0.85

6 21.18 −1.07 19.44 −14.45 0 1.4261 0 −0.67

(a) Natural frequencies/rn (b) Modal shapes of the system

Fig. 3 A general presentation of
the input data (macro-geometry,
STE and meshing stiffness) and
the output signals (DTE and
modal coordinates) calculated
using the described method3.(a)
3D view of the generated gear
model, (b) STE.t/ and k.t/ sig-
nals for T = 100Nm, (c) Modal
coordinates of the system, (d)
Dynamic transmission error

a b

c d

the DTE is calculated. Then, using Eq. (10) and (14), both
the modal and physical coordinates are computed.

As previously mentioned, rn is the projection of the ge-
ometrical vector onto the mode shape. Therefore, it rep-
resents the spatial sensitivity localized at the meshing (an
essential factor of the excitation forces, see Eq. 14). Based
on Table 2a, the 2nd mode has the highest rn value. This
indicates that it is the most excited mode by the internal ex-
citation element. This can also be seen in the presentation
of the modal coordinates (see Fig. 3c). As for the DTE



calculation, it is shown in Fig. 3d3 that the proposed method
gives the same values as those obtained with Masta.

Although the method described in this article was applied
to a spur gear system, it can easily be applied in the case
of a helical gear case while considering other important
elements for the study (NLTE, external forcing, etc.).

5 Conclusion

A novel method for the calculation of the dynamic transmis-
sion error of a gear system has been presented in this paper.
The method is rooted in the iterative spectral method origi-
nally proposed by Perret-Liaudet, but instead uses a Fourier
series expansion technique in the place of a Fourier trans-
form. The equations derived in this paper present a simple
and effective way of calculating the dynamic transmission
error along with the modal and physical coordinates. Such
a method is interesting in that it provides engineers and
researchers with a tool for the study of gear vibrations. In
replacing values for the stiffness and the static transmission
error, one can easily predict the general vibration behavior

3 One should note that the DTE values were calculated for an ideal-
ized system whereby the shafts have been reduced to simple springs.
The primary purpose is to demonstrate the exactitude of the calculation
method in a basic example.

of any given gear system. This is a first step toward a com-
plete gearbox simulation which can be done, for example,
using model reduction techniques (e.g. Craig-Bampton).
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