
HAL Id: hal-03783937
https://hal.science/hal-03783937v1

Submitted on 22 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cyclotomic valuation of q-Pochhammer symbols and
q-integrality of basic hypergeometric series

Boris Adamczewski, Jason P. Bell, Eric Delaygue, Frédéric Jouhet

To cite this version:
Boris Adamczewski, Jason P. Bell, Eric Delaygue, Frédéric Jouhet. Cyclotomic valuation of q-
Pochhammer symbols and q-integrality of basic hypergeometric series. Acta Arithmetica, 2024. �hal-
03783937�

https://hal.science/hal-03783937v1
https://hal.archives-ouvertes.fr


CYCLOTOMIC VALUATION OF q-POCHHAMMER SYMBOLS AND

q-INTEGRALITY OF BASIC HYPERGEOMETRIC SERIES

by

B. Adamczewski, J. P. Bell, É. Delaygue & F. Jouhet

Abstract. — We give a formula for the cyclotomic valuation of q-Pochhammer symbols in
terms of (generalized) Dwork maps. We also obtain a criterion for the q-integrality of basic
hypergeometric series in terms of certain step functions, which generalize Christol step functions.
This provides suitable q-analogs of two results proved by Christol: a formula for the p-adic
valuation of Pochhammer symbols and a criterion for the N -integrality of hypergeometric series.

1. Introduction

Factorial ratios form a remarkable class of sequences appearing regularly in combinatorics,
number theory (e.g. [3, 7, 9, 21]), mathematical physics and geometry (e.g. [5, 10, 12]).
They are sequences of rational numbers of the form

Qe,f (n) :=
(e1n)! · · · (evn)!

(f1n)! · · · (fwn)!
n ≥ 0 ,

where v and w are non-negative integers, and e := (e1, . . . , ev) and f := (f1, . . . , fw) are
vectors whose coordinates are positive integers. Understanding how arithmetic properties
of factorial ratios may depend on the integer parameters ei and fi leads to interesting and
challenging problems. Landau [19] introduced the step function

(1.1) ∆e,f (x) :=
v∑
i=1

beixc −
w∑
j=1

bfjxc

and proved that the p-adic valuation of factorial ratios is given by

vp (Qe,f (n)) =

∞∑
`=1

∆e,f

(
n

p`

)
.

This result generalizes the classical Legendre formula: vp(n!) =
∑∞

`=1

⌊
n/p`

⌋
. Surprisingly,

certain basic properties of the Landau function ∆e,f turn out to characterize fundamental
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arithmetic properties of the corresponding factorial ratio and its generating series. Indeed,
assuming for simplicity that

∑
i ei =

∑
j fj , we have the following results.

(i) The sequence (Qe,f (n))n≥0 takes integer values if and only if ∆e,f (x) ≥ 0, ∀x ∈ [0, 1].

(ii) The sequence (Qe,f (n))n≥0 has the p-Lucas property for all primes p (∗) if and only if
∆e,f (x) ≥ 1, ∀x ∈ [me,f , 1], where me,f := 1/max{e1, . . . , ev, f1, . . . , fw}.

(iii) The generating series of (Qe,f (n))n≥0 is algebraic(†) if and only if ∆e,f (x) ∈ {0, 1},
∀x ∈ [0, 1].

Items (i) and (iii) were respectively proved by Landau [19] (see also [7]) and Rodriguez-
Villegas [20] (as a consequence of [6]). Item (ii) corresponds to [2, Proposition 8.3] and was
derived from [13, Theorem 3].

Choosing for example e = (30, 1) and f = (15, 10, 6), a straightforward computation shows
that the corresponding sequence takes integer values, does not have the p-Lucas property for
all primes, and has an algebraic generating series. At first sight, proving this result is not
easy: for example, Rodriguez-Villegas [20] observed that the degree of algebraicity is 483 840.

These results have been generalized, replacing factorials by Pochhammer symbols and fac-
torial ratios by hypergeometric sequences. We recall that the Pochhammer symbol (x)n, also
called rising factorial, is defined as

(x)n = x(x+ 1) · · · (x+ n− 1) ,

if n ≥ 1 and (x)0 = 1, so that (1)n = n! and

(1.2) (dn)! = ddn
(

1

d

)
n

· · ·
(
d− 1

d

)
n

(1)n .

Given α ∈ Q \ Z≤0 and p a prime such that vp(α) ≥ 0, Christol [11] provided the following

formula(‡) for the p-adic valuation of Pochhammer symbols:

(1.3) vp((α)n) =
∞∑
`=1

⌊
n− b1− αc

p`
−D`

p(α) + 1

⌋
,

where Dp(α) is defined as the unique rational number whose denominator is not divisible
by p and such that pDp(α) − α belongs to {0, . . . , p − 1}. The maps α 7→ Dp(α) were first
introduced by Dwork [15] and are now referred to as Dwork maps. When α = 1, we have
Dp(1) = 1 and we retrieve Legendre’s formula. Note also that if vp(α) < 0, then we simply
have vp((α)n) = nvp(α).

Given two vectors α := (α1, . . . , αv) and β := (β1, . . . , βw), whose coordinates belong to
Q \ Z≤0, we define the (generalized) hypergeometric sequence

(1.4) Qα,β(n) :=
(α1)n · · · (αv)n
(β1)n · · · (βw)n

∈ Q n ≥ 0 .

The above restriction on the rational parameters βj ensures that Qα,β(n) is well-defined
for all n ≥ 0. We also assume that the parameters αi do not belong to Z≤0, since otherwise
Qα,β(n) would vanish for all n large enough, which would be irrelevant for our purpose. These

(∗)That is Qe,f (pn + r) ≡ Qe,f (n)Qe,f (r) mod p for every r ∈ {0, . . . , p− 1} and n ≥ 0.
(†)This means that the power series

∑∞
n=0 Qe,f (n)xn ∈ Q[[x]] is algebraic over the field Q(x).

(‡)More exactly, Formula (1.3) is a reformulation with floor functions of Christol’s result, as given in [14,
Section 5.3].
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sequences and their generating series have attracted a lot of attention since the time of Gauss.
According to (1.2), the study of factorial ratios reduces to the study of certain hypergeometric
sequences. Again, understanding how arithmetic properties of hypergeometric sequences may
depend on the rational parameters αi and βj leads to fascinating questions.

We let dα,β denote the least common multiple of the denominators of the parameters αi
and βj . In [11], Christol introduced new step functions ξα,β(a, ·), for every a ∈ {1, . . . , dα,β}
coprime to dα,β, which play the same role for hypergeometric sequences as the Landau function
∆e,f does for factorial ratios. We refer the reader to Section 5.1 for a definition.

Analogs of (i)–(iii) have been respectively obtained by Christol [11], Adamczewski, Bell,

and Delaygue [2], and Beukers and Heckman [6](§). We point out that, for the analog of (i), it
is more natural to consider N -integrality of the sequence (Qα,β(n))n≥0, that is to ask whether
there exists a non-zero integer a such that anQα,β(n) ∈ Z for all n ≥ 0. Also, for the analog
of (ii), it is more natural to consider the p-Lucas property for all but finitely many primes in a
given residue class modulo dα,β. Finally, the required conditions about the Landau function
must now be satisfied by the Christol functions ξα,β(a, ·) for all a ∈ {1, . . . , dα,β} coprime to
dα,β. In particular, the analog of (i) proved by Christol [11] reads as follows.

Theorem C. — Let α := (α1, . . . , αu) and β := (β1, . . . , βv) be two vectors whose coordi-
nates belong to Q \ Z≤0. Then the two following assertions are equivalent.

(a) The hypergeometric sequence (Qα,β(n))n≥0 is N -integral.
(b) For every a in {1, . . . , dα,β} coprime to dα,β and all x in R, we have ξα,β(a, x) ≥ 0.

A remarkable feature of (i)–(iii) and of the results proved in [11, 2, 6] is that they provide
simple algorithms, given in terms of suitable step functions, that allow one to decide whether
certain fundamental arithmetic properties of factorial ratios and hypergeometric sequences
hold (¶).

1.1. Main results. — In this paper, our main objective is to prove q-analogs of Formula
(1.3) and Theorem C. From now on, we let q denote a fixed transcendental complex number.

We are going to define suitable q-analogs of the Pochhammer symbol (α)n and of the
hypergeometric term Qα,β(n), which belong to the field Q(q). In this framework, the p-adic
valuations are replaced by the cyclotomic valuations, while the notion of N -integrality is
replaced by q-integrality. For every positive integer b, we let φb(q) ∈ Z[q] denote the bth
cyclotomic polynomial and vφb stands for the valuation of Q(q) associated with φb(q) (see
Section 2.1 for a definition). A sequence (R(q;n))n≥0 with values in Q(q) and first term
R(q; 0) = 1 is said to be q-integral if there exists C(q) ∈ Z[q] \ {0} such that C(q)nR(q;n) ∈
Z[q] for all n ≥ 0.

For every positive integer n, the q-analog of the integer n is defined as [n]q = 1+q+· · ·+qn−1,
while [0]q = 0. It is actually convenient to write

[n]q =
1− qn

1− q
,

(§)We refer the reader to [11, 2, 6] for precise statements. The reformulation in terms of Christol step functions
of the famous interlacing criterion of Beukers and Heckmann can be found in [14].
(¶)We also refer the reader to [4] for more general results about integrality of A-hypergeometric series.

3



while keeping in mind that this ratio belongs to Z[q]. It follows that

[n]q =
∏

b≥2, b|n

φb(q) ,

which specializes as

(1.5) n =
∏

b≥2, b|n

φb(1) .

We recall that φb(1) = 1 if b is divisible by at least two distinct primes, while φp`(1) = p when
p is a prime and ` is a positive integer. We deduce that

(1.6) vp(n) =

∞∑
`=1

vφ
p`

([n]q) .

This formula shows that, in some sense, the arithmetic of q-analogs is finer than that of
integers. The q-analog of n! is defined as

[n]!q :=

n∏
i=1

1− qi

1− q
·

Given α = r/s a rational number, the q-analog of the Pochhammer symbol (α)n is most often
defined as (see, for instance, [16])

(qα; q)n
(1− q)n

∈ Q(q1/s) ,

where we let (a; q)n :=
∏n−1
i=0 (1 − aqi) denote the q-Pochhammer symbol (also called the

q-shifted factorial). Substituting q by qs, we obtain a slightly different q-analog of (α)n:

(1.7)
(qr; qs)n
(1− qs)n

∈ Q(q) .

We note that

lim
q→1

(qα; q)n
(1− q)n

= lim
q→1

(qr; qs)n
(1− qs)n

= (α)n .

The latter has several advantages which are discussed in Section 2. In the end, it is sufficient
for our discussion to consider q-Pochhammer symbols of the form

(qr; qs)n :=

n−1∏
i=0

(1− qr+si) ∈ Z[q−1, q] ,

where r and s are two integers, s 6= 0. This product is non-zero if and only if r/s /∈ Z≤0 or
n ≤ −r/s. The usual extension to negative arguments n is given by

(1.8) (qr; qs)n =

−n∏
i=1

1

(1− qr−is)
=

1

(qr−s; q−s)−n
,

which is well-defined if and only if r/s /∈ Z>0 or n > −r/s.
Our first main result, which provides a q-analog of Formula (1.3) as well as its extension

to negative arguments, involves a generalization of Dwork maps where the prime number p is
replaced by an arbitrary positive integer b. Given a positive integer b and a rational number
α whose denominator is coprime to b, we show in Section 3.1 that there exists a unique
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rational number Db(α) whose denominator is coprime to b and which satisfies bDb(α)− α ∈
{0, . . . , b− 1}. When b = p is prime, we retrieve the classical Dwork map Dp.

Theorem 1.1. — Let r and s be two integers, s 6= 0, and α := r/s. Let b be a positive integer,
c := gcd(r, s, b), b′ := b/c, and s′ := s/c. Let n ∈ Z be such that (qr; qs)n is well-defined and
non-zero. Then we have

vφb((q
r; qs)n) =

{ ⌊
cn/b−Db′ (α)− b1−αcb′

⌋
+ 1 if gcd(s′, b′) = 1 ,

0 otherwise.

Remark 1.2. — Recall that vφb((1− qs)n) = nvφb(1− qs) and vφb(1− qs) = 1 if b divides s
and 0 otherwise. Hence we can easily derive from Theorem 1.1 a formula for the φb-valuation
of the q-analog of (α)n given in (1.7).

We now define q-analogs of hypergeometric sequences with rational parameters. For i ∈
{1, . . . , v} and j ∈ {1, . . . , w}, we let (ri, si) and (tj , uj) be pairs of integers such that si 6= 0
and uj 6= 0. We set

r := ((r1, s1), . . . , (rv, sv)) and t := ((t1, u1), . . . , (tw, uw)) ,

together with α := (α1, . . . , αv) and β := (β1, . . . , βw), where αi := ri/si and βj := tj/uj .
Let dr,t := lcm{s1, . . . , sv, u1, . . . , uw}. With this notation, we define the q-hypergeometric
sequence

(1.9) Qr,t(q;n) :=
(qr1 ; qs1)n · · · (qrv ; qsv)n
(qt1 ; qu1)n · · · (qtw ; quw)n

n ≥ 0 .

Note that, similarly to (1.4), Qr,t(q;n) is well-defined for all n ≥ 0 when the rational numbers
βj do not belong to Z≤0. In addition, we assume that the rational numbers αi do not belong to
Z≤0, since otherwise Qr,t(q;n) would vanish for all n large enough, which would be irrelevant
for our purpose.

Our second main result is a q-analog of Theorem C. It involves new step functions Ξr,t(b, ·),
b ∈ {1, . . . , dr,t}, which generalize Christol step functions. They are introduced in Section 5,
where we also show that Ξr,t(b, ·) = ξα,β(a, ·) for b coprime to dr,t and ba ≡ 1 mod dr,t. Thus,
we only define new functions for b not coprime to dr,t. The appearance of these new functions
makes the proof of Theorem 1.3 substantially more tricky than that of Theorem C.

Theorem 1.3. — We continue with the previous notation and assumptions. We also assume
that s1, . . . , sv are positive. Then the two following assertions are equivalent.

(i) The sequence (Qr,t(q;n))n≥0 is q-integral.
(ii) For every b ∈ {1, . . . , dr,t} and all x in R, we have Ξr,t(b, x) ≥ 0.

A generalization of Theorem 1.3 with no restriction on the parameters s1, . . . , sv ∈ Z \ {0}
is stated as Theorem 5.5 in Section 5.4.

Remark 1.4. — Strictly speaking, Qr,t(q;n) is not a q-analog of the hypergeometric term
Qα,β(n). Instead, (1.7) shows that a suitable q-analog can be defined as

Q′r,t(q;n) :=

(∏w
j=1(1− quj )∏v
i=1(1− qsi)

)n
Qr,t(q;n) .
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Indeed, we have

(1.10) lim
q→1
Q′r,t(q;n) = Qα,β(n) .

Since the q-integrality of (Qr,t(q;n))n≥0 is equivalent to that of (Q′r,t(q;n))n≥0, we find more
convenient to work with the simpler expression Qr,t(q;n).

We infer from (1.10) that the q-integrality of the sequence (Qr,t(q;n))n≥0 implies the N -
integrality of the sequence (Qα,β(n))n≥0. This is consistent with Theorems 1.3 and C since
Ξr,t(b, ·) = ξα,β(a, ·) when ba ≡ 1 mod dr,t. However, the converse result does not always
hold true, depending on the behaviour of Ξr,t(b, ·) for b not coprime to dr,t.

For example, let us consider the vectors

r := ((1, 3), (2, 3)) and t := ((1, 2), (1, 1)) .

Then we have α = (1/3, 2/3) and β = (1/2, 1). We deduce from (1.2) (or from Theorem C)
that the hypergeometric sequence

Qα,β(n) =
(1/3)n(2/3)n
(1/2)n(1)n

n ≥ 0

is N -integral. However, we have Ξr,t(3, 1/2) < 0 (see Section 6.1 for more details) and thus,
according to Theorem 1.3, the q-hypergeometric sequence

Qr,t(q;n) =
(q; q3)n(q2; q3)n
(q; q2)n(q; q)n

n ≥ 0

fails to be q-integral.

1.2. Organization of the paper. — In Section 2, we discuss our choice for the q-analog
of the Pochhammer symbol (α)n and show how to relate our results on q-hypergeometric se-
quences to basic hypergeometric series, as they are usually defined. In Section 3, we extend the
definition of Dwork maps to arbitrary integers b and prove some of their basic properties. We
also prove Theorem 1.1, as well as a formula for the cyclotomic valuation of q-hypergeometric
terms. The latter is given in terms of certain step functions ∆r,t

b , which are introduced in
this section. In Section 4, we deduce a first criterion for the q-integrality of q-hypergeometric
sequences, which depends on the behaviour of ∆r,t

b for all but finitely many integers b. We
also discuss the extension of this result to negative arguments n. These first criteria for
q-integrality are not very satisfactory because they imply checking certain properties of an
infinite number of step functions. We fill this gap in Section 5, where we introduce the finitely
many step functions Ξr,t(b, ·), b ∈ {1, . . . , dr,t}, and prove Theorem 1.3. Finally, we provide
some illustrations of Theorem 1.3 in Section 6.

2. Choices for the q-analogs of Pochhammer symbols and hypergeometric
functions

The notion of q-analog is loosely defined: for a(q) to be a q-analog of a term a, one only
requires that a(q) tends to a as q tends to 1. While everyone agrees with the definition of
[n]q and [n]!q, this requires a fair amount of choice for more general expressions. Depending
on the nature of the properties one wishes to study, one may have to make one choice rather
than another. In this section, we discuss in more detail our own choices for the q-analogs of
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Pochhammer symbols and hypergeometric series, as well as how our results translate when
considering other natural q-analogs.

2.1. Cyclotomic valuations and q-valuation. — We recall that, for every positive in-
teger b, φb(q) ∈ Z[q] stands for the bth cyclotomic polynomial. It is well-known that
φb(q) is irreducible over Z[q]. If R and S belong to Z[q] \ {0}, then we let vφb(R) denote
the φb-valuation of R, that is the largest non-negative integer ν such that φb(q)

ν divides
R. We also set vφb(0) := +∞. The φb-valuation extends naturally to Q(q) by setting
vφb(R/S) := vφb(R)− vφb(S).

We also let vq denote the valuation of Q(q) which is associated with the irreducible poly-
nomial q in the same way.

2.2. q-Analogs of Pochhammer symbols. — We explain now why we prefer to choose

(2.1)
(qr; qs)n
(1− qs)n

∈ Q(q)

as q-analog of the Pochammer symbol (α)n, α = r/s, instead of the more standard

(2.2)
(qα; q)n
(1− q)n

∈ Q(q1/s) .

There are three main reasons for our preference. The first one, which was already mentioned
in the introduction, is that we find it more natural to work in the field Q(q) instead of working

in the field ∪s≥1Q(q1/s) and dealing with non-integer powers of q. The second one is that it
offers more flexibility. For example,

(q; q2)n
(1− q2)n

,
(q3; q6)n
(1− q6)n

, and
(q−1; q−2)n
(1− q−2)n

provide three different q-analogs of (1/2)n. The third one comes from the useful Equality (1.2),
which we recall here for the reader’s convenience:

(2.3) (dn)! = ddn
(

1

d

)
n

(
2

d

)
n

· · ·
(
d− 1

d

)
n

(1)n .

With the choice of (qα; q)n/(1− q)n, we do not obtain a nice q-deformation of (2.3). Indeed,
take for instance d = 2, so that

(2n)! = 4n(1/2)n(1)n .

The q-analog of the left-hand side of (2.3) is

(q; q)2n

(1− q)2n
=

(q; q2)n(q2; q2)n
(1− q)2n

= (−q1/2; q)n(−q; q)n
(q1/2; q)n
(1− q)n

(q; q)n
(1− q)n

,

therefore introducing minus signs in q-Pochhammer symbols. In contrast, the choice
(qr; qs)n/(1− qs)n ensures the following nice q-deformation of (2.3):

[dn]!q =
dn∏
i=1

1− qi

1− q
=

(
1− qd

1− q

)dn d∏
i=1

(qi; qd)n
(1− qd)n

·
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Remark 2.1. — Let d be a positive integer. Since q is transcendental over Q, there is an
isomorphism of Z-modules given by

ϕ : Z[q1/d] −→ Z[q]

P (q1/d) 7−→ P (q)
.

In particular, Z[q1/d] is a Euclidean ring whose irreducible elements are of the form P (q1/d)
where P (q) is an irreducible polynomial in Z[q]. The isomorphism ϕ extends to an isomor-

phism between the rings of Laurent polynomials Z[q−1/d, q1/d] and Z[q−1, q], as well as between

the fields Q(q1/d) and Q(q). In particular, if we let vb,s denote the valuation in Q(q1/s) as-

sociated with the irreducible polynomial φb(q
1/s) ∈ Z[q1/s] and if we take α = r/s, then we

obtain that

vb,s((q
α; q)n/(1− q)n) = vφb((q

r; qs)n/(1− qs)n) .

This shows that there is no loss of generality when choosing (2.1) as q-analog of (α)n.

2.3. q-Analogs of generalized hypergeometric series. — Let us first recall the stan-
dard notation for hypergeometric series (with rational parameters). With two vectors
α = (α1, . . . , αv) and β = (β1, . . . , βw) whose coordinates belong to Q \Z≤0, we associate the
generalized hypergeometric series defined by

vFw

(
α1, . . . , αv
β1, . . . , βw

∣∣∣∣∣x
)

:=

∞∑
n=0

(α1)n · · · (αv)n
(β1)n · · · (βw)nn!

xn ,

while we usually prefer to work with its companion power series

Fα,β(x) := v+1Fw

(
α1, . . . , αv, 1
β1, . . . , βw

∣∣∣∣∣x
)

=

∞∑
n=0

(α1)n · · · (αv)n
(β1)n · · · (βw)n

xn .

The basic hypergeometric series is defined as

vφw

(
qα1 , . . . , qαv

qβ1 , . . . , qβw

∣∣∣∣∣ q;x
)

:=
∞∑
n=0

(qα1 ; q)n · · · (qαv ; q)n
(qβ1 ; q)n · · · (qβw ; q)n(q; q)n

(
(−1)nq(

n
2)
)1+w−v

xn .

It is a generalization of the classical 2φ1 introduced by Heine [17] and the most standard
q-analog of the hypergeometric series vFw (see, for instance, the monograph [16] for more on

this topic). In fact, it is a q-analog up to renormalization by a factor (q − 1)(w−v)n, that is

lim
q→1

v+1φw

(
qα1 , . . . , qαv , q
qβ1 , . . . , qβw

∣∣∣∣∣ q; (q − 1)w−vx

)
= Fα,β(x) .

Hence a first q-analog of Fα,β(x) is given by

F
(1)
α,β(q;x) : = v+1φw

(
qα1 , . . . , qαv , q
qβ1 , . . . , qβw

∣∣∣∣∣ q; (q − 1)w−vx

)
(2.4)

=

∞∑
n=0

(qα1 ; q)n · · · (qαv ; q)n
(qβ1 ; q)n · · · (qβw ; q)n

· (1− q)(w−v)nq(w−v)(n2)xn .

8



Now, choosing (qα; q)n/(1 − q)n as q-analog of the Pochhammer symbol (α)n, we obtain
another natural q-analog of Fα,β(x), namely

(2.5) F
(2)
α,β(q;x) :=

∞∑
n=0

(qα1 ; q)n · · · (qαv ; q)n
(qβ1 ; q)n · · · (qβw ; q)n

· (1− q)(w−v)nxn .

The two definitions only differ by the factor q(w−v)(n2). In particular, they coincide when
v = w.

Finally, choosing (qr; qs)n/(1− qs)n as q-analog of the Pochhammer symbol (α)n, α = r/s,
we obtain a third natural q-analog of Fα,β(x), namely

(2.6) Fr,t(q;x) :=
∞∑
n=0

(qr1 ; qs1)n · · · (qrv ; qsv)n
(qt1 ; qu1)n · · · (qtw ; quw)n

·
(

(1− qu1) · · · (1− quw)

(1− qs1) · · · (1− qsv)

)n
xn,

where r = ((r1, s1), . . . , (rv, sv)), t = ((t1, u1), . . . , (tw, uw)), and ri/si = αi and tj/uj = βj
for all i and j.

Thus, we have three different natural q-analogs of the generalized hypergeometric series

Fα,β(x). We observe that both F
(1)
α,β(q;x) and F

(2)
α,β(q;x) have coefficients in Q(q1/d), where

d = dα,β is the least common multiple of the denominators of the rational numbers αi and
βj . In contrast, Fr,t(q;x) has coefficients in Q(q) and there exist infinitely many vectors r
and t such that

lim
q→1

Fr,t(q;x) = Fα,β(x) .

Indeed, if r = ((r1, s1), . . . , (rv, sv)) and t = ((t1, u1), . . . , (tw, uw)) is such a pair of vectors,
then for each pair (a, b) occurring either in r or in t, we can choose a non-zero integer k and
replace (a, b) by (ka, kb).

2.4. q-Integrality and q1/d-integrality for basic hypergeometric series. — A power
series F (q;x) ∈ 1+xQ(q)[[x]] is said to be q-integral if the sequence formed by its coefficients is
q-integral, or, in other words, if there exists C(q) ∈ Z[q]\{0} such that F (q;C(q)x) ∈ Z[q][[x]].

Similarly, we say that a power series F (q;x) ∈ 1 + xQ(q1/d)[[x]] is q1/d-integral if there

exists C(q) ∈ Z[q1/d] \ {0} such that F (q;C(q)x) ∈ Z[q1/d][[x]]. According to Remark 2.1,

F (q;x) is q1/d-integral if and only if F (qd;x) is q-integral.

Now, we show how Theorem 1.3 can be used to study the q1/d-integrality of F
(1)
α,β(q;x) and

F
(2)
α,β(q;x), as well as the q-integrality of Fr,t(q;x). Recall that

F
(1)
α,β(qd;x) =

∞∑
n=0

(qdα1 ; qd)n · · · (qdαv ; qd)n
(qdβ1 ; qd)n · · · (qdβw ; qd)n

· (1− qd)(w−v)nqd(w−v)(n2)xn

and

F
(2)
α,β(qd;x) =

∞∑
n=0

(qdα1 ; qd)n · · · (qdαv ; qd)n
(qdβ1 ; qd)n · · · (qdβw ; qd)n

· (1− qd)(w−v)nxn .
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Setting r := ((dα1, d), . . . , (dαv, d)) and t := ((dβ1, d), . . . , (dβw, d)), we obtain that

F
(1)
α,β(qd;x) =

∞∑
n=0

Qr,t(q;n)(1− qd)(w−v)nqd(w−v)(n2)xn ,

F
(2)
α,β(qd;x) =

∞∑
n=0

Qr,t(q;n)(1− qd)(w−v)nxn ,

Fr,t(q;x) =
∞∑
n=0

Qr,t(q;n)

(
(1− qu1) · · · (1− quw)

(1− qs1) · · · (1− qsv)

)n
xn .

Note that for q-integrality, we can omit factors of the form h(q)n with h(q) ∈ Q(q) such as

(1− qd)(w−v)n and

(
(1− qu1) · · · (1− quw)

(1− qs1) · · · (1− qsv)

)n
.

It follows that F
(1)
α,β(q;x) is q1/d-integral if and only if Qr,t(q;n) is q-integral and

vq

(
qd(w−v)(n2)

)
≥ an ∀n ≥ 0 ,

for some integer a, that is

F
(1)
α,β(q;x) is q1/d-integral ⇐⇒ (Qr,t(q;n))n≥0 is q-integral and w ≥ v.

We also deduce that

F
(2)
α,β(q;x) is q1/d-integral ⇐⇒ Fr,t(q;x) is q-integral ⇐⇒ (Qr,t(q;n))n≥0 is q-integral.

2.5. Irreducible factors of q-Pochhammer symbols and q-integrality of q-
hypergeometric sequences. — Throughout this paper, we work only with ratios of prod-
ucts of terms of the form (qr; qs)n and (1− qs), where r and s are integers, s 6= 0, and n is an
integer.

Let us first recall that, for every positive integer a, we have

(2.7) 1− qa = −
∏
b|a

φb(q) and 1− q−a = −q−a(1− qa) = q−a
∏
b|a

φb(q) .

Let n ∈ Z. It follows that any ratio of products of terms of the form (qr; qs)n and (1 − qs),
where r and s are integers and s 6= 0, has a unique decomposition of the form

(2.8) ±qvq,n
∞∏
b=1

φb(q)
vb,n ,

where vq,n, v1,n, . . . are integers and vb,n = 0 for all but finitely many positive integers b.
The integer vq,n is the q-valuation of this ratio and, for every b ≥ 1, the integer vb,n is its
φb-valuation.

Remark 2.2. — A term of the form (2.8) belongs to Z[q] if and only if the integers
vq,n, v1,n, v2,n, . . . are all non-negative. When only the integers v1,n, v2,n, . . . are non-negative,
then it belongs to Z[q−1, q].
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2.5.1. The q-valuation of q-Pochhammer symbols. — Let n be a positive integer and r and
s be two integers, s 6= 0. Let us assume that (qr; qs)n is well-defined and non-zero. We let
N := {i ∈ {0, . . . , n− 1} : r + is < 0}. Then we have

vq((q
r; qs)n) =

∑
i∈N

(r + is) .

We deduce the following results.

(i) When r and s are non-negative, then vq((q
r; qs)n) = 0.

(ii) When r is negative and s positive, then the sequence (vq((q
r; qs)n))n≥0 remains bounded.

(iii) When s is negative, then

(2.9) vq((q
r; qs)n) ∼

n→+∞
s

(
n

2

)
.

Now, let n be a negative integer. We can derive similar results from the expression

(qr; qs)n =
1

(qr−s; q−s)−n
·

In particular, we get that (vq((q
r; qs)n))n≤0 remains bounded if s is negative, and

(2.10) vq((q
r; qs)n) ∼

n→−∞
s

(
−n
2

)
if s is positive.

2.5.2. Asymptotics for cyclotomic and q-valuations of q-hypergeometric terms. — Let us con-
sider the q-hypergeometric sequence

Qr,t(q;n) =
(qr1 ; qs1)n · · · (qrv ; qsv)n
(qt1 ; qu1)n · · · (qtw ; quw)n

n ≥ 0 ,

which we assume to be well-defined and not eventually zero. We first infer from (2.7) that

(2.11) vφb(Qr,t(q;n)) = O(n) ,

for every positive integer b. Let N1 := {i ∈ {1, . . . , v} : si < 0}, N2 := {j ∈ {1, . . . , w} : uj <
0}, and s =

∑
i∈N1

si −
∑

j∈N2
uj . Using (i)–(iii) above, we deduce that

(2.12) vq(Qr,t(q;n)) = s

(
n

2

)
+O(n) .

It follows from (2.8), Remark 2.2, and Equalities (2.11) and (2.12), that

(2.13) (Qr,t(q;n))n≥0 is q-integral ⇐⇒ s ≥ 0 and vφb(Qr,t(q;n)) ≥ 0 ∀b� 1

and
(2.14)
∃C(q) ∈ Z[q] \ {0} | ∀n ≥ 0 , C(q)nQr,t(q;n) ∈ Z[q−1, q] ⇐⇒ vφb(Qr,t(q;n)) ≥ 0 ∀b� 1 .

The discussion of Section 2.5.1 also shows how to derive similar results for q-hypergeometric
sequences of the form (Qr,t(q;n))n≤0.
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3. The cyclotomic valuation of basic hypergeometric terms

In this section, we introduce some generalizations of Dwork maps and Landau functions.
They provide suitable tools to respectively compute the φb-valuation of the q-Pochhammer
symbol (qr; qs)n and of q-hypergeometric terms. Our approach takes its source in the works
of Dwork [15], Katz [18], and Christol [11]. Precise formulas and properties for the p-adic
valuation of Pochhammer symbols (r/s)n were given by Delaygue, Rivoal, and Roques [14]
in order to prove the integrality of coefficients of some mirror maps. In this section, we
generalize those formulas, yielding finer results in analogy with (1.6). We also show that our
results extend naturally to negative arguments n, and we derive new formulas that could be
used to simplify the proofs in [14, Chapter 5] considerably.

3.1. A generalization of Dwork maps. — We first extend the definition of the Dwork
map Dp, replacing the prime number p by an arbitrary positive integer b.

For every rational number α, we let d(α) denote the exact positive denominator of α, that
is

d(α) := min{d ∈ N : α = a/d, a ∈ Z} .
Hence d(α) = 1 if and only if α is an integer. We also let n(α) denote the numerator of α,
that is the unique integer such that α = n(α)/d(α). For every positive integer b, we consider
the multiplicative set Sb := {k ∈ Z : gcd(k, b) = 1}. We let S−1

b Z ⊂ Q denote the localization
of Z by Sb, that is the ring formed by the rational numbers α such that d(α) belongs to Sb.

Proposition-definition 3.1. — Let b be a positive integer and α be in S−1
b Z. There is a

unique element Db(α) of S−1
b Z such that

(3.1) bDb(α)− α ∈ {0, . . . , b− 1} .

Furthermore, the formula

(3.2) Db(α) = aα+

⌊
α− 1

b
− aα

⌋
+ 1

holds true for every integer a satisfying ab ≡ 1 mod d(α).

Remark 3.2. — Note that the map Db is only defined from S−1
b Z into itself. When b = 1,

S−1
b Z = Q and D1 is just the identity map of Q. In fact, not only Db(α) ∈ S−1

b Z, but, more

precisely, Equation (3.2) shows that Db(α) ∈ 1
d(α)Z.

Proof. — Let us first assume by contradiction that Db(α) is not unique, and let θ1 > θ2 be
two distinct elements of S−1

b Z satisfying Equation (3.1). It would yield b ≥ 2 and b(θ1−θ2) ∈
{1, . . . , b− 1}. Therefore we would have θ1− θ2 /∈ S−1

b Z, which would provide a contradiction

since S−1
b Z is a ring. Hence Db(α) is unique.

Now we prove the existence of Db(α) while establishing (3.2). Since, by assumption, α
belongs to S−1

b Z, we have gcd(d(α), b) = 1, and integers a such that ab ≡ 1 mod d(α) do
exist. Let a be such an integer and set

θ := aα+

⌊
α− 1

b
− aα

⌋
+ 1 .
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Observe that θ ∈ S−1
b Z. Since ba ≡ 1 mod d(α), baα−α is an integer and bθ−α belongs to

Z. Furthermore, we have
α− 1

b
< θ ≤ α− 1

b
+ 1 ,

which yields

−1 < bθ − α ≤ b− 1 .

Hence Db(α) = θ, as expected.

Following Christol [11], we introduce some notation which allows us to simplify the ex-
pression of Db(α) when b is large enough. For every real number x, we let {x} denote its
fractional part and we set

〈x〉 :=

{
{x} if x /∈ Z ,
1 otherwise.

Hence 〈x〉 = 1− {1− x}. For every rational number α, we also define

nα :=

{
n(α) if α ≥ 0 ,

|n(α)|+ 1 otherwise.

Proposition 3.3. — Let b be a positive integer and α be in S−1
b Z. Let a be an integer

satisfying ab ≡ 1 mod d(α). Then we have the formula

Db(α) = 〈aα〉 −
⌊
〈aα〉 − α

b

⌋
.

Furthermore, if b ≥ nα, then

Db(α) =

{
〈aα〉 if α /∈ Z≤0 ,

0 otherwise.

It follows that, for a fixed rational number α, and for all integers b ≥ nα coprime to d(α),
Db(α) only depends on the residue class of b modulo d(α).

Remark 3.4. — When b is prime and α /∈ Z≤0, Lemma 23 in [14] shows that Db(α) = 〈aα〉
for b ≥ d(α)(|b1 − αc| + 〈α〉). The condition b ≥ nα slightly improves on this bound. When
α > 0, it makes no difference because nα = n(α) which can be written d(α)α = d(α)(−b1 −
αc+ 〈α〉), with b1−αc ≤ 0. But when α < 0, we have nα = |n(α)|+ 1 which may improve on
the previous bound. For example, even for α = −1/2, one finds that d(α)(|b1−αc|+ 〈α〉) = 3
while nα = 2.

Proof. — Since, by assumption, a does not divide d(α), there is an integer k such that 〈aα〉 =
k/d(α) and k ≡ an(α) mod d(α). Hence bk ≡ n(α) mod d(α) and b〈aα〉 − α is an integer.
It follows that

b
(
〈aα〉 −

⌊
〈aα〉 − α

b

⌋)
− α ∈ Z .

Furthermore, we have

〈aα〉 − α

b
− 1 <

⌊
〈aα〉 − α

b

⌋
≤ 〈aα〉 − α

b
,

so that

0 ≤ b
(
〈aα〉 −

⌊
〈aα〉 − α

b

⌋)
− α < b .

This proves the expected formula for Db(α) by uniqueness.
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Now, let us assume that b ≥ nα. Then we have |α/b| ≤ 1/d(α) and (even if α is an integer)

1

d(α)
≤ 〈aα〉 ≤ 1 .

If α is positive, then it follows that

(3.3)
⌊
〈aα〉 − α

b

⌋
= 0 ,

that is Db(α) = 〈aα〉. If α = 0, then Db(α) = 0. If α is negative, then nα = |n(α)| + 1 and
we obtain that |α/b| < 1/d(α). Hence, either α is an integer and

Db(α) = 1−
⌊
1− α

b

⌋
= 0 ,

or we have
1

d(α)
≤ 〈aα〉 ≤ d(α)− 1

d(α)

and Db(α) = 〈aα〉. In all cases, we obtain the expected result.

We end this section with a simple rule about composition of Dwork maps.

Proposition 3.5. — Let b and c be two positive integers, and let α be in S−1
bc Z. Then we

have
Db(Dc(α)) = Dbc(α) .

In particular, we have Dn
b = Dbn, and if bn ≥ nα is congruent to 1 modulo d(α) and α 6∈ Z≤0,

then we have Dn
b (α) = 〈α〉.

Proof. — We have

bcDb(Dc(α))− α = c
(
bDb(Dc(α))−Dc(α)

)
+ cDc(α)− α ,

which belongs to {0, . . . , bc − 1}. Hence Db(Dc(α)) = Dbc(α) by uniqueness. By induction,
we get that Dn

b = Dbn . By Proposition 3.3, if α /∈ Z≤0 and bn ≥ nα is congruent to 1 modulo
d(α), then Dn

b (α) = Dbn(α) = 〈α〉. Indeed, since bn ≡ 1 mod d(α), we can choose a = 1.

3.2. The cyclotomic valuation of q-Pochhammer symbols. — In this section, we
rephrase Theorem 1.1 as Proposition 3.8 and then we prove the latter.

Definition 3.6. — Let r, s, and b be integers with s 6= 0 and b ≥ 1. Set α := r/s, c :=
gcd(r, s, b), b′ := b/c, and s′ := s/c. If gcd(s′, b′) = 1, then Db′ (α) is well-defined and we set

(3.4) γ := Db′ (α) +
b1− αc
b′

·

We define the (upper semi-continuous) step function δb(r, s, ·) : R→ R by:

δb(r, s, x) :=

{
bcx− γc+ 1 if gcd(s′, b′) = 1 ,

0 otherwise.

Lemma 3.7. — The real number γ defined in (3.4) belongs to (0, 1].

Proof. — By definition, b′Db′(α)− α belongs to {0, . . . , b′ − 1} and α = 〈α〉 − b1− αc, where
〈α〉 belongs to (0, 1]. Thus, we have

0 <
〈α〉
b′
≤ Db′(α) +

b1− αc
b′

≤ b′ − 1 + 〈α〉
b′

≤ 1 ,

as expected.
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Proposition 3.8. — Let r, s, and b be integers such that s 6= 0 and b ≥ 1. Let n be an
integer such that (qr; qs)n is well-defined and non-zero. Then we have

vφb((q
r; qs)n) = δb(r, s, n/b) .

It follows that when b divides both r and s, then c = b, b′ = 1 and δb(r, s, n/b) = n, as
expected since φb(q) divides each factor 1− qr+is. In particular, this is the case when b = 1.

In order to prove Proposition 3.8 for negative n, we need the following lemma. It is also
used in the proof of our criterion for the q-integrality of q-hypergeometric sequences.

Lemma 3.9. — Let r, s, and n be integers with s 6= 0, and let b be a positive integer. Then
we have

(3.5) δb(r, s,−n/b) = −δb(r − s,−s, n/b) .

Proof. — We set c := gcd(r, s, b) and write b = cb′ and s = cs′. Both sides of Equation (3.5)
are 0 when gcd(s′, b′) 6= 1, so we can assume that s′ and b′ are coprime. Set α := r/s so that
1− α = (r − s)/(−s). We have

δb(r − s,−s, x) =

⌊
cx−Db′(1− α)− bαc

b′

⌋
+ 1 .

Since b′Db′(α)− α belongs to {0, . . . , b′ − 1}, we have

b′(1−Db′(α))− (1− α) = b′ − 1− (b′Db′(α)− α) ∈ {0, . . . , b′ − 1} ,
so that Db′(1− α) = 1−Db′(α). It follows that

(3.6) δb(r − s,−s, n/b) =

⌊
n

b′
+Db′(α)− bαc

b′

⌋
.

If x ∈ R, we have x ∈ Z or b−xc = −bxc − 1, which also yields α ∈ Z or b1− αc = −bαc.
Let us first consider the case where α /∈ Z. Then bαc = −b1− αc and the right hand-side

of (3.6) becomes

(3.7)

⌊
n

b′
+Db′(α) +

b1− αc
b′

⌋
.

We have n+ b′Db′(α)−α ∈ Z, but α /∈ Z. Hence n+ b′Db′(α) + b1−αc is not an integer and
(3.7) is equal to

−
⌊
−n
b′
−Db′(α)− b1− αc

b′

⌋
− 1 = −δb(r, s,−n/b) ,

as expected.

It remains to consider the case where α ∈ Z. Set k := −δb(r, s,−n/b) ∈ Z. We have⌊
−n
b′
−Db′(α)− b1− αc

b′

⌋
= −k − 1 ,

which yields the equivalences

−k − 1 ≤ −n
b′
−Db′(α)− b1− αc

b′
< −k ⇐⇒ k <

n

b′
+Db′(α) +

1− α
b′
≤ k + 1

⇐⇒ k − 1

b′
<
n

b′
+Db′(α)− α

b′
≤ k + 1− 1

b′
·
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Even if b′ = 1, we obtain that ⌊n
b′

+Db′(α)− α

b′

⌋
= k .

Combined with (3.6), this yields (3.5) and ends the proof of the lemma.

Proof of Proposition 3.8. — Set r′ = r/c. We first consider the case n ≥ 0. We assume that
(qr; qs)n is non-zero, that is α /∈ Z≤0 or n ≤ −α.

We observe that b | (r + is) if and only if b′ | (r′ + is′). Since we have gcd(r′, s′, b′) = 1, if
b′ and s′ are not coprime, then b - (r + is) and vφb((q

r; qs)n) = 0.
We now assume that b′ and s′ are coprime. We need to find, among the powers of q in the

product defining (qr; qs)n, which are multiples of b. We have the following equivalences:

r′ + is′ ≡ 0 mod b′ ⇐⇒ i ≡ −α mod b′S−1
b′ Z

⇐⇒ i ≡ b′Db′(α)− α mod b′

⇐⇒ ∃k ∈ N, i = b′Db′(α)− α+ kb′ ,

because i ≥ 0 and b′Db′(α) − α belongs to {0, . . . , b′ − 1}. We aim to count how many such
integers i belong to {0, . . . , n− 1}. Writing n− 1 = v +mb′, with 0 ≤ v ≤ b′ − 1, and setting
η := b′Db′(α) − α, we find all the integers η, η + b′, . . . , η + (m − 1)b′. Therefore, we have
at least m such integers i. There is one more such integer if and only if v ≥ b′Db′(α) − α.
Furthermore, we have

v ≥ b′Db′(α)− α ⇐⇒ v + 1 ≥ b′Db′(α) + b1− αc(3.8)

⇐⇒ v + 1

b′
≥ Db′(α) +

b1− αc
b′

·(3.9)

Equivalence (3.8) follows from the implication

v + 1 ≥ b′Db′(α) + b1− αc ⇒ v + 1− 〈α〉 ≥ b′Db′(α)− α
⇒ v ≥ b′Db′(α)− α ,

because 1− 〈α〉 belongs to [0, 1). By Lemma 3.7, since both sides of Inequality (3.9) belong
to (0, 1], we obtain that

vφb((q
r; qs)n) = m+

⌊
v + 1

b′
−Db′(α)− b1− αc

b′

⌋
+ 1

=

⌊
n

b′
−Db′(α)− b1− αc

b′

⌋
+ 1 ,

as expected.

We now assume that n < 0 and that (qr; qs)n is well-defined, that is α /∈ Z>0 or n > −α.
We have

(qr; qs)n =
1

(qr−s; q−s)−n
·

Using the non-negative case, we get that vφb((q
r; qs)n) = −δb(r−s,−s,−n/b). By Lemma 3.9,

the latter is equal to δb(r, s, n/b). This ends the proof.
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3.3. Extension to q-hypergeometric terms. — Let

r = ((r1, s1), . . . , (rv, sv)) and t = ((t1, u1), . . . , (tw, uw))

be two vectors with integer coordinates and such that s1, . . . , sv, u1, . . . , uw are non-zero. Set
αi := ri/si and βj := tj/uj . For every non-negative n, the ratio

Qr,t(q;n) =
(qr1 ; qs1)n · · · (qrv ; qsv)n
(qt1 ; qu1)n · · · (qtw ; quw)n

is well-defined if we have either βj /∈ Z≤0 or n ≤ −βj , for all j ∈ {1, . . . , w}. According to
(1.8), this q-hypergeometric term admits the following extension to negative n:

Qr,t(q;n) =
(qt1−u1 ; q−u1)−n · · · (qtw−uw ; q−uw)−n
(qr1−s1 ; q−s1)−n · · · (qrv−sv ; q−sv)−n

·

The latter is well-defined if we have either αi /∈ Z>0 or n > −αi, for all i ∈ {1, . . . , v}.
If R(q) and S(q) are non-zero elements in Z[q−1, q], we write R(q) ∼ S(q) when R(q)/S(q)

is a unit of Z[q−1, q], that is when it is of the form εqm with ε ∈ {−1, 1} and m ∈ Z.
We introduce now some step functions that generalize the Landau functions mentioned in

the introduction.

Definition 3.10. — We continue with the notation of Section 3.2. For every integer b, we
define the (upper semi-continuous) step function ∆r,t

b : R→ R by:

∆r,t
b (x) :=

v∑
i=1

δb(ri, si, x)−
w∑
j=1

δb(tj , uj , x) .

As a direct consequence of Proposition 3.8, we deduce the following result.

Corollary 3.11. — Let n ∈ Z be such that Qr,t(q;n) is well-defined and non-zero. Then we
have

vφb(Qr,t(q;n)) = ∆r,t
b (n/b) ,

that is

(3.10) Qr,t(q;n) ∼
∞∏
b=1

φb(q)
∆r,t

b (n/b) .

Remark 3.12. — Let α := (α1, . . . , αv) and β := (β1, . . . , βw) be vectors of rational num-
bers. Let d := dα,β be the least common multiple of the denominators of the rational numbers
αi and βj . Let n be an integer such that

(3.11) Q̃α,β(q;n) :=
(qα1 ; q)n · · · (qαv ; q)n
(qβ1 ; q)n · · · (qβw ; q)n

is well-defined and non-zero. Then Q̃α,β(q;n) belongs to Q(q1/d). By Remark 2.1, Corol-
lary 3.11 implies that

(3.12) Q̃α,β(q;n) ∼
∞∏
b=1

φb

(
q1/d

)∆r,t
b (n/b)

,

where the equivalence relation ∼ has to be understood in Z[q−1/d, q1/d], and where

r = ((dα1, d), . . . , (dαv, d)) and t = ((dβ1, d), . . . , (dβw, d)) .
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4. First criteria for q-integrality of basic hypergeometric sequences

In this section, we provide a criterion for the q-integrality of the q-hypergeometric sequences
in terms of the Landau functions ∆r,t

b , as well as related results.

4.1. A first criterion of q-integrality. — Our first result reads as follows.

Proposition 4.1. — We continue with the notation of the previous sections. Let us as-
sume that (Qr,t(q;n))n≥0 is a well-defined sequence. Then the two following assertions are
equivalent.

(i) There exists C(q) ∈ Z[q] \ {0} such that, for every n ≥ 0, C(q)nQr,t(q;n) ∈ Z[q−1, q].

(ii) For all but finitely many positive integers b, ∆r,t
b is non-negative on R≥0.

According to (2.13), we deduce from Proposition 4.1 the following result.

Corollary 4.2. — Let us assume that (Qr,t(q;n))n≥0 is a well-defined sequence. Let N1 :=
{i ∈ {1, . . . , v} : si < 0}, N2 := {j ∈ {1, . . . , w} : uj < 0}, and s =

∑
i∈N1

si −
∑

j∈N2
uj. Let

us assume that s ≥ 0. Then the two following assertions are equivalent.

(i) The sequence (Qr,t(q;n))n≥0 is q-integral.

(ii) For all but finitely many positive integers b, ∆r,t
b is non-negative on R≥0.

Throughout this section, we fix r and t, and we write ∆b as a shorthand for ∆r,t
b . Before

proving Proposition 4.1, we need to establish the following lemma about the jumps of Landau
step functions.

Lemma 4.3. — For every integers k and b ≥ 1, and every real number x, we have

∆b(x+ k) = ∆b(x) + k∆b(1) .

Furthermore, if b is large enough, then the distance between any two distinct jumps of ∆b is
greater than or equal to 1/b.

Remark 4.4. — By Lemma 4.3, ∆b is non-negative on R≥0 if and only if ∆b is non-negative
on [0, 1]. In addition, when b is coprime to dr,t, then ∆b(1) = v − w and Assertion (ii) of
Proposition 4.1 implies that v ≥ w.

Proof. — Let us first give a useful expression for ∆b. For all i and j, we recall that αi = ri/si
and βj = tj/uj . We also set ci := gcd(ri, si, b), dj := gcd(tj , uj , b), and

(4.1) Vb := {1 ≤ i ≤ v : gcd(si, b) = ci} and Wb := {1 ≤ j ≤ w : gcd(uj , b) = dj} .

We observe that i ∈ Vb if and only if δb(ri, si, ·) is not the zero function, while j ∈ Wb if and
only if δb(tj , uj , ·) is not the zero function. It follows that
(4.2)

∆b(x) =
∑
i∈Vb

⌊
cix−Db/ci(αi)−

b1− αic
b/ci

⌋
−
∑
j∈Wb

⌊
djx−Db/dj (βj)−

b1− βjc
b/dj

⌋
+#Vb−#Wb .

Since b/ci is coprime to d(αi) and b/dj is coprime to d(βj), we infer from Lemma 3.7 that

Db/ci(αi) +
b1− αic
b/ci

∈ (0, 1] and Db/dj (βi) +
b1− βjc
b/dj

∈ (0, 1] .
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By Equality (4.2), we first deduce that ∆b(1) =
∑

i∈Vb ci −
∑

j∈Wb
dj , and then that

∆b(x+ k) = ∆b(x) +
∑
i∈Vb

cik −
∑
j∈Wb

djk

= ∆b(x) + k∆b(1) ,

for every integer k. This proves the first part of the lemma.

By (4.2), the jumps of the step function ∆b have abscissa of the form

(4.3) γ(r, s, k) :=
Db/c(α) + k

c
+
b1− αc

b
,

where (r, s) belongs to r or t, α = r/s, c = gcd(r, s, b) and k ∈ Z. Let γ1 := γ(r1, s1, k1) and
γ2 := γ(r2, s2, k2) be two distinct abscissa of jumps as in (4.3). For i = 1 or 2, set αi := ri/si,
ci := gcd(ri, si, b) and bi := b/ci. If we have

Db1(α1) + k1

c1
=
Db2(α2) + k2

c2
,

then b1− α1c 6= b1− α2c and

|γ1 − γ2| =
|b1− α1c − b1− α2c|

b
≥ 1

b
,

as expected. Otherwise, we get that∣∣∣∣Db1(α1) + k1

c1
− Db2(α2) + k2

c2

∣∣∣∣ ≥ 1

dr,t
·

Indeed, we infer from Remark 3.2 that Dbi(αi) ∈
ci
si
Z, which shows that

Dbi(αi) + ki
ci

∈ 1

si
Z .

Hence, for b ≥ 2dr,t ·max{|b1− αc − b1− βc|+ 1 : α and β in α or β}, we have

|γ1 − γ2| >
1

2dr,t
≥ 1

b
,

as expected. This ends the proof.

Proof of Proposition 4.1. — We first infer from (2.14) and (3.10) that Assertion (ii) implies
Assertion (i). Now, we assume that Assertion (i) holds and we prove Assertion (ii). By (2.14)
and (3.10), there exists a positive integer m such that, for every non-negative integer n and
every integer b ≥ m, we have ∆b(n/b) ≥ 0. By Lemma 4.3, we can assume that m is such
that, for b ≥ m, the distance between any two distinct jumps of ∆b is greater than or equal
to 1/b. It follows that ∆b is non-negative on R≥0 for all b ≥ m, as wanted.

4.2. Related criteria for negative arguments. — It is easy to deduce from Proposition
4.1 a criterion for the q-integrality of the sequence (Qr,t(q;−n))n≥0. Indeed, for every integer
n, we have Qr,t(q;n) = Qt′,r′(q;−n) (assuming that both terms are well-defined), where r′ and
t′ are respectively obtained from r and t by replacing each pair (r, s) in r or t by (r− s,−s).
By Lemma 3.9, for every positive integer b, we have

∆r,t
b (n/b) = ∆t′,r′

b (−n/b) .
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Combining Lemma 4.3 and Proposition 4.1, we obtain that the following two assertions are
equivalent.

(i) There exists C(q) ∈ Z[q] \ {0} such that, for every n ∈ Z≤0, C(q)nQr,t(q;n)
belongs to Z[q−1, q].

(ii) For all but finitely many positive integers b, ∆r,t
b is non-negative on R≤0.

A natural question is then to ask whether it is possible to find a non-zero rational fraction
C(q) in Q(q) such that C(q)nQr,t(q;n) is a polynomial for positive and negative n simulta-
neously. The main problem is that the numerator of C(q) will bring new denominators for
negative n and vice versa. It turns out that this problem can be overcome only in the special
case where Qr,t(q;n) ∈ Z[q−1, q] for all integers n.

Proposition 4.5. — Let us assume that (Qr,t(q;n))n∈Z is a well-defined family. Then the
three following assertions are equivalent.

(i) There exists C(q) ∈ Q[q] \ {0} such that, for every n ∈ Z, C(q)nQr,t(q;n) ∈ Z[q−1, q].
(ii) For every n ∈ Z, Qr,t(q;n) ∈ Z[q−1, q].

(iii) For every n ∈ N, Qr,t(q;n) ∈ Z[q−1, q] and all but finitely many positive integers b, ∆r,t
b

is 1-periodic.

Proof. — Let us first prove that (i) implies (iii). If we assume (i), then, by the above criteria,
for every large enough positive integer b, ∆b is non-negative on R. By Lemma 4.3, we obtain
that ∆b(1) = 0 and that ∆b is 1-periodic. Even for small positive integers b, we have

∆b(1) =
∑
i∈Vb

ci −
∑
j∈Wb

dj ,

where Vb, Wb, ci and dj are defined as in (4.1). The latter only depend on the congruence
class of b modulo dr,t. Hence ∆b(1) = ∆b+ldr,t(1), while ∆b+ldr,t(1) = 0 for l large enough.
It follows that ∆b(1) = 0 and ∆b is 1-periodic for every positive integer b. In particular,
if ∆b(n/b) < 0 for some positive integers n and b, then there exists a negative integer m
such that ∆b(m/b) < 0. In this case, both the φb-valuation of Qr,t(q;n) and Qr,t(q;m) are
negative, which contradicts (i). It follows that, for every n ∈ N, Qr,t(q;n) ∈ Z[q−1, q] and
(iii) is proved.

Now, let us prove that (iii) implies (ii). If (iii) holds, then, reasoning as above, we get
that ∆b is 1-periodic for all positive integers b. For all positive integers n and b, we have
Qr,t(q;n) ∈ Z[q−1, q], so that ∆b(n/b) ≥ 0. By 1-periodicity, for all integers n and b ≥ 1, we
have ∆b(n/b) ≥ 0, that is Qr,t(q;n) ∈ Z[q−1, q], as expected.

Obviously, (ii) implies (i) by choosing C(q) = 1, which ends the proof of the proposition.

4.3. Small digression on the step function ∆r,t
b . — In this section, we use Proposition

3.3 to simplify the expression of ∆b(x) when b is large enough. To that end we introduce
some additional notation. We continue with the notation introduced in (4.1) and we let nα
be defined as in Proposition 3.3. We define ar,t as the maximum of the numbers gcd(ri, si)
and gcd(tj , uj) for all i and j. We set

nr,t := max{nα : α in α or β} and br,t := ar,t · nr,t .
Let b ≥ br,t be a fixed integer. For every i ∈ Vb and j ∈ Wb, there exist positive integers ei
and fj such that

bei ≡ ci mod si and bfj ≡ dj mod uj .
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Now, take for example i ∈ Vb. We have

b

ci
≥ br,t

ci
≥ ar,t

ci
nr,t ≥ nαi .

So we can apply Proposition 3.3 to obtain that Db/ci(αi) = 〈eiαi〉 if αi /∈ Z≤0 and 0 otherwise.
Let us consider a slight modification of the function 〈·〉 defined for every x ∈ R by

〈x〉∗ :=

 {x} if x /∈ Z ,
1 if x ∈ Z>0 ,
0 otherwise.

For i ∈ Vb, if ci < si, then ei is invertible modulo si/ci which is a denominator of αi. It follows
that eiαi ∈ Z≤0 if and only if αi ∈ Z≤0. Hence, we deduce from (4.2) that, for all b ≥ br,t
and all x ∈ R, ∆b(x) is equal to

(4.4)
∑
i∈Vb

⌊
cix− 〈eiαi〉∗ −

b1− αic
b/ci

⌋
−
∑
j∈Wb

⌊
djx− 〈fjβj〉∗ −

b1− βjc
b/dj

⌋
+ #Vb −#Wb .

Let dr,t be the least common multiple of the integers s1, . . . , sv, u1, . . . , uw. If in addition
b is coprime to dr,t, then all the numbers ci and dj are equal to 1. Let a in {1, . . . , dr,t} be
such that ab ≡ 1 mod dr,t. Then, for all i and j, we can take ei = fj = a, so that

∆b(x) =
v∑
i=1

⌊
x− 〈aαi〉∗ −

b1− αic
b

⌋
−

w∑
j=1

⌊
x− 〈aβj〉∗ −

b1− βjc
b

⌋
+ v − w .

Moreover, if all the numbers αi and βj belong to (0, 1], then we have

∆b(x) =
v∑
i=1

bx− 〈aαi〉c −
w∑
j=1

bx− 〈aβj〉c+ v − w ,

which only depends on the congruence class of b modulo dr,t.

5. Efficient criteria for q-integrality of basic hypergeometric sequences

To verify the second assertion in Proposition 4.1 and in Corollary 4.2, we need in principle to
perform infinitely many tests, checking the non-negativity of the step function ∆r,t

b on R≥0 for
all sufficiently large integers b. This is not entirely satisfactory and the aim of Theorem 1.3
is precisely to reduce the situation to a finite number of similar tests. In this section, we
introduce the step functions Ξr,t(b, ·), b ∈ {1, . . . , dr,t}. Then we prove Theorem 1.3.

5.1. A generalization of Christol step functions. — Following Christol [11], we define
a total order � on R as follows. For all real numbers x and y, we set

x � y ⇐⇒ (〈x〉 < 〈y〉 or (〈x〉 = 〈y〉 and x ≥ y)) .

We refer to it as Christol order. Let α := (α1, . . . , αv) and β := (β1, . . . , βw) be two vectors
of rational numbers, and

dα,β := lcm(d(α1), . . . , d(αv), d(β1), . . . , d(βw)) .
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For every integers a ∈ {1, . . . , dα,β} coprime to dα,β, Christol defined the step function
ξα,β(a, ·) from R to R by:

(5.1) ξα,β(a, x) := #{i ∈ {1, . . . , v} : aαi � x} −#{j ∈ {1, . . . , w} : aβj � x} .
We recall here our notation. Let v and w be positive integers, and for i ∈ {1, . . . , v}

and j ∈ {1, . . . , w}, let (ri, si) and (tj , uj) be pairs of integers such that siuj 6= 0 for all
(i, j). Set αi := ri/si, βj := tj/uj , r := ((r1, s1), . . . , (rv, sv)), t := ((t1, u1), . . . , (tw, uw)),
α := (α1, . . . , αv), β := (β1, . . . , βw), and dr,t := lcm(s1, . . . , sv, u1, . . . , uw).

For every b ∈ {1, . . . , dr,t}, we define the step function Ξr,t(b, ·) as follows. For all i ∈
{1, . . . , v} and j ∈ {1, . . . , w}, we set ci := gcd(ri, si, b) and dj := gcd(tj , uj , b). We consider,
as in (4.1), the sets of indices

Vb := {1 ≤ i ≤ v : gcd(si, b) = ci} and Wb := {1 ≤ j ≤ w : gcd(uj , b) = dj} .
As we already observed in Section 4.3, for every i ∈ Vb and j ∈ Wb, there exist positive
integers ei and fj such that

bei ≡ ci mod si and bfj ≡ dj mod uj .

For all i, j, we choose such integers ei and fj . We stress that the definition of Ξr,t(b, ·) (see

Definition 5.1) does not depend on this choice. Let b̃ be the greatest divisor of b coprime to

dr,t and let a be the unique element of {1, . . . , dr,t} satisfying ab̃ ≡ 1 mod dr,t.

Definition 5.1. — For every integer b in {1, . . . , dr,t}, we define the step function Ξr,t(b, ·) :
R→ R by:

Ξr,t(b, x) :=#

{
(i, k) ∈ Vb × {0, . . . , ci − 1} :

〈eiαi〉+ k

ci
− b1− aαic � x

}
−#

{
(j, `) ∈Wb × {0, . . . , dj − 1} :

〈fjβj〉+ `

dj
− b1− aβjc � x

}
.

5.2. Comparison with the step functions ξα,β(a, ·) and ∆r,t
b . — The functions Ξr,t(b, ·)

can be thought of as a generalization of the functions ξα,β(a, ·) to composite numbers b.
Indeed, if we assume that b is coprime to dr,t and that all the ratios αi = ri/si and βj = tj/uj
belong to Q \ Z≤0, we claim that Ξr,t(b, ·) = ξα,β(a, ·) where ab ≡ 1 mod dr,t.

Let us prove this claim. If b is coprime to dr,t, then b = b̃, all the numbers ci and dj are
equal to 1, Vb = {1, . . . v}, Wb = {1, . . . , w}. Hence, for all i and j, we can choose ei = fj = a.
Moreover, for all (i, k) ∈ Vb × {0, . . . , ci − 1}, we have k = 0. We obtain that

〈eiαi〉+ k

ci
− b1− aαic = 〈aαi〉 − b1− aαic = aαi .

Similarly, for all (j, `) ∈Wb × {0, . . . , dj − 1}, we have

〈fjβj〉+ `

dj
− b1− aβjc = aβj .

By (5.1), we get that

Ξr,t(b, x) = # {(i, k) ∈ {1, . . . , v} × {0} : aαi � x} −# {(j, `) ∈ {1, . . . , w} × {0} : aβj � x}
= # {i ∈ {1, . . . , v} : aαi � x} −# {j ∈ {1, . . . , w} : aβj � x}
= ξα,β(a, x) .
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Let us now compare the step functions Ξr,t(b, ·) and ∆r,t
b . Using Equality (4.2), we can

give a new expression for ∆r,t
b (restricted on [0, 1]) which is closer to the definition of the step

function Ξr,t(b, ·). Indeed, for every positive integer b and every real number x in [0, 1], we
get that

∆r,t
b (x) =#

{
(i, k) ∈ Vb × {0, . . . , ci − 1} :

Db/ci(αi) + k

ci
+
b1− αic

b
≤ x

}
(5.2)

−#

{
(j, `) ∈Wb × {0, . . . , dj − 1} :

Db/dj (βi) + `

dj
+
b1− βjc

b
≤ x

}
.

5.3. Ordering of jumps. — The interest of the step-functions Ξr,t(b, ·) is that they keep

track of all jumps configurations of the Landau functions ∆r,t
` for large ` congruent to b

modulo dr,t. More precisely, we have the following result.

Lemma 5.2. — For every i ∈ {1, 2}, we let ri and si be integers with si 6= 0 and such that
αi := ri/si /∈ Z≤0. Set d := lcm(s1, s2) and let b be an integer such that

b > max
(
|r1|, |r2|, d · |b1− α1c − b1− α2c|

)
.

Set ci := gcd(ri, si, b) and let us assume that there exists an integer ei, 1 ≤ ei ≤ d, such that
bei ≡ ci mod si. Let ki be an integer in {0, . . . , ci − 1} and a be a positive integer. Set

γi :=
Db/ci(αi) + ki

ci
+
b1− αic

b
and Γi :=

〈eiαi〉+ ki
ci

− b1− aαic .

Then we have

γ1 ≤ γ2 ⇐⇒ Γ1 � Γ2 .

Furthermore, if Γ1 = Γ2, then α1 = α2.

Remark 5.3. — Contrary to what the notation of Lemma 5.2 may suggest, we stress that
the latter applies to compare the ordering of both the jumps with positive and negative
amplitude of the step functions Ξr,t(b, ·) and ∆r,t

b .

Even when b ≥ br,t, Formula (4.4) shows that the Landau functions ∆r,t
b depend in principle

on b and not only on the congruence class of b modulo dr,t. In contrast, Lemma 5.2 shows

that for sufficiently large b, the ≤-ordering of the jumps of ∆r,t
b on [0, 1] is the same as the

�-ordering of that of Ξr,t(b, ·) on R, where b is the unique representative in {1, . . . , dr,t} of b
modulo dr,t. In particular, this ordering only depends on the congruence class of b modulo
dr,t.

Furthermore, Lemma 5.2 shows that if two jumps of Ξr,t(b, ·), respectively associated with
the pairs (r1, s1) and (r2, s2), have the same abscissa, then we must have r1/s1 = r2/s2.
However, these pairs can still be distinct. Indeed, taking for example the pairs (r1, s1) = (1, 4)

and (r2, s2) = (3, 12), and b = 9, we find that d = 12 and b̃ = 1, so that a = 1, c1 = 1, c2 = 3,
e1 = 1, and e2 = 3. Hence taking k1 = k2 = 0 yields

Γ1 = 〈1/4〉 =
1

4
and Γ2 =

〈3/4〉
3

=
1

4
·

Proof of Lemma 5.2. — For i ∈ {1, 2}, we set bi := b/ci and

θi :=
Dbi(αi) + ki

ci
·

23



Since b > |ri| and ci divides both ri and si, we have bi > |n(αi)| and hence bi ≥ nαi . By
Proposition 3.3, we have Dbi(αi) = 〈eiαi〉 for αi /∈ Z≤0, so that

(5.3) θi =
〈eiαi〉+ ki

ci
·

Note that θi ∈ 1
dZ. Indeed, ci divides gcd(ri, si) so that αi/ci ∈ 1

si
Z, while d is a multiple of

si. Now, we show that

(5.4) θ1 = θ2 ⇒ 〈α1〉 = 〈α2〉 .

Setting s′i := si/ci, for i ∈ {1, 2}, we get that biei ≡ 1 mod s′i and αi ∈ 1
s′i
Z. We obtain that

〈bi〈eiαi〉〉 = 〈αi〉 .

Thereby, we obtain that

θ1 = θ2 ⇒ bθ1 = bθ2

⇒ b1〈e1α1〉+ b1k1 = b2〈e2α2〉+ b2k2

⇒ 〈b1〈e1α1〉〉 = 〈b2〈e2α2〉〉
⇒ 〈α1〉 = 〈α2〉 ,

which proves (5.4). Furthermore, since α = 〈α〉 − b1− αc, we have

b1− aαic = b1− a〈αi〉+ ab1− αicc
= b1− a〈αi〉c+ ab1− αic .

If θ1 = θ2, then we have 〈α1〉 = 〈α2〉 and

(5.5) b1− aα1c ≥ b1− aα2c ⇐⇒ b1− α1c ≥ b1− α2c ,

for a is a positive integer. Since θi belongs to 1
dZ and b > d · |b1− α1c − b1− α2c|, we obtain

the following equivalences:

γ1 ≤ γ2 ⇐⇒ θ1 +
b1− α1c

b
≤ θ2 +

b1− α2c
b

⇐⇒ θ1 − θ2 ≤
b1− α2c − b1− α1c

b
⇐⇒ θ1 < θ2 or (θ1 = θ2 and b1− α1c ≤ b1− α2c)
⇐⇒ θ1 < θ2 or (θ1 = θ2 and b1− aα1c ≤ b1− aα2c)
⇐⇒ θ1 − b1− aα1c � θ2 − b1− aα2c
⇐⇒ Γ1 � Γ2 .

Indeed, we have θi ∈ (0, 1], which implies that 〈θi − b1− aαic〉 = θi, while (5.3) implies that
θi − b1− aαic = Γi. This proves the first part of the proposition.

Now, assume that Γ1 = Γ2 so that θ1 − b1 − aα1c = θ2 − b1 − aα2c. Since θi ∈ (0, 1], it
follows that θ1 = θ2. Hence 〈α1〉 = 〈α2〉 by (5.4). We obtain that b1 − aα1c = b1 − aα2c
and (5.5) implies that b1 − α1c = b1 − α2c. Since αi = 〈αi〉 − b1 − αic, we get α1 = α2, as
expected. This ends the proof.
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5.4. Efficient criteria for q-integrality and proof of Theorem 1.3. — We are now
ready to prove Theorem 1.3. The last missing ingredient is the following lemma.

Lemma 5.4. — Let r = ((r1, s1), . . . , (rv, sv)) and t = ((t1, u1), . . . , (tw, uw)) be two vectors
with integer coordinates such that, for all (i, j), siuj 6= 0 and the ratios ri/si and tj/uj do not
belong to Z≤0. Then the two following assertions are equivalent.

(i) For all but finitely many b, ∆r,t
b is non-negative on R≥0.

(ii) For every b ∈ {1, . . . , dr,t} and all x ∈ R, we have Ξr,t(b, x) ≥ 0.

Proof. — We write ∆b and Ξ(b, ·) as respective short-hands for ∆r,t
b and Ξr,t(b, ·).

If b is large enough, then we infer from (5.2) that ∆b is a step function whose jumps on
[0, 1] are precisely located at rationals of the form

γ(r, s, k) :=
Db/c(α) + k

c
+
b1− αc

b
,

where (r, s) belongs either to r or to t, α = r/s, c = gcd(r, s, b) and k ∈ {0, . . . , c− 1}. More
precisely, ∆b has a jump of positive amplitude at each element of the multiset

J+
b :=

{{
Db/ci(αi) + k

ci
+
b1− αic

b
: i ∈ Vb, 0 ≤ k ≤ ci − 1

}}
.

The amplitude of such a jump is equal to the multiplicity of the corresponding element in J+
b .

Similarly, ∆b has a jump of negative amplitude at each element of the multiset

J−b :=

{{
Db/dj (βj) + `

dj
+
b1− βjc

b
: j ∈Wb, 0 ≤ ` ≤ dj − 1

}}
,

and the amplitude of such a jump is equal to the multiplicity of the corresponding element in
J−b . By Lemma 3.7, the supports of these multisets are included in (0, 1]. Let

0 < γ1 < · · · < γµ ≤ 1

denote the elements of the support of the multiset Jb := J+
b ∪ J−b . We let m+

i (resp. m−i )

denote the multiplicity of γi in J+
b (resp. in J−b ), and we set mi := m+

i −m
−
i . Let x ∈ [0, 1]

and set ν := sup{i ∈ {1, . . . , µ} : γi ≤ x} with the convention sup(∅) = −∞. Then, while
setting γ−∞ := 0, we obtain that

∆b(x) = ∆b(γν) =

{
m1 + · · ·+mν if ν ≥ 1 ,

0 if ν = −∞ .

On the other hand, let b denote the unique representative of b in {1, . . . , dr,t} modulo dr,t
and let us consider the multisets

J +
b :=

{{
〈eiαi〉+ k

ci
− b1− aαic : i ∈ Vb, 0 ≤ k ≤ ci − 1

}}
and

J −b :=

{{
〈fjβj〉+ `

dj
− b1− aβjc : j ∈Wb, 0 ≤ ` ≤ dj − 1

}}
.

By Lemma 5.2, the support of Jb := J +
b ∪ J

−
b has also cardinality µ. Let

Γ1 ≺ · · · ≺ Γµ
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denote the elements of the support of Jb (ordered with respect to Christol order). Further-

more, Lemma 5.2 implies that Γi has also multiplicity m+
i in J +

b and m−i in J −b . Let x ∈ R
and set ν := sup{i ∈ {1, . . . , µ} : Γi � x}. Then, while setting Γ−∞ := 0, we obtain that

Ξ(b, x) = Ξ(b,Γν) =

{
m1 + · · ·+mν if ν ≥ 1 ,

0 if ν = −∞ .

We deduce that

(5.6) ∆b([0, 1]) = {0,∆b(γ1), . . . ,∆b(γµ)} = {0,Ξ(b,Γ1), . . . ,Ξ(b,Γµ)} = Ξ(b,R) .

This shows that Assertion (ii) is equivalent to the fact that ∆b is non-negative on [0, 1] for
all b large enough. On the other hand, the identity ∆b(x + k) = ∆b(x) + k∆b(1) proved for
k ∈ Z in Lemma 4.3 shows that ∆b is non-negative on [0, 1] if and only if it is non-negative on
R≥0. In the end, we obtain that Assertion (i) and Assertion (ii) are equivalent, which ends
the proof.

We first deduce form Proposition 4.1 and Lemma 5.4 the following result.

Theorem 5.5. — Let us assume that (Qr,t(q;n))n≥0 is a well-defined sequence which is not
eventually zero. Then the two following assertions are equivalent.

(i) There exists C(q) ∈ Z[q] \ {0} such that, for every n ≥ 0, C(q)nQr,t(q;n) ∈ Z[q−1, q].
(ii) For every b ∈ {1, . . . , dr,t} and all x ∈ R, we have Ξr,t(b, x) ≥ 0.

Finally, we can achieve the proof of our main q-integrality criterion.

Proof of Theorem 1.3. — The result is a straightforward consequence of Corollary 4.2 and
Lemma 5.4.

As discussed in Section 4.1, efficient criteria for the q-integrality of the sequences
(Qr,t(q;n))n≤0 and (Qr,t(q;n))n∈Z can also be derived from Theorems 1.3 and 5.5.

6. Examples and applications

In this last section, we give an overview of the computation of Christol step functions
through some classical examples.

6.1. General considerations. — We continue with the general notation of this paper.
For every b ∈ {1, . . . , dr,t}, we have defined in Section 5.1 the step function Ξr,t(b, ·). Using
the notation used in the proof of Lemma 5.4, we obtain that

Ξr,t(b, x) := #{{γ ∈ J +
b : γ � x}} −#{{γ ∈ J −b : γ � x}} .

When b ∈ {1, . . . , dr,t} is coprime to dr,t, the function Ξr,t(b, ·) is easier to compute since we
have

J +
b = {{aα1, . . . , aαv}} and J −b = {{aβ1, . . . , aβw}} ,

where a is the unique integer in {1, . . . , dr,t} satisfying ab ≡ 1 mod dr,t. Theorem C can
then be rephrased as follows:

(Qα,β(n))n≥0 is N -integral ⇐⇒ ∀b ∈ {1, . . . , dr,t} | gcd(b, dr,t) = 1 : Ξr,t(b, x) ≥ 0 , ∀x ∈ R .
Starting with an N -integral hypergeometric sequence

(α1)n · · · (αv)n
(β1)n · · · (βw)n

n ≥ 0
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and taking r and t such that

Qr,t(q;n) =
(qr1 ; qs1)n · · · (qrv ; qsv)n
(qt1 ; qu1)n · · · (qtw ; quw)n

,

with ri/si = αi and tj/uj = βj , Lemma 5.2 ensures the existence of a constant cr,t such that,
for every integer b coprime to dr,t and larger than cr,t, we have

vφb(Qr,t(q;n)) = ∆r,t
b (n/b) ≥ 0 .

Indeed, for b > cr,t, Lemma 5.2 shows that the ≤-ordering of the jumps of ∆r,t
b on [0, 1] is the

same as the �-ordering of the ones of Ξr,t(b, ·) on R, where b is the unique representative in

{1, . . . , dr,t} of b modulo dr,t. In particular, ∆r,t
b is non-negative on R≥0 as expected.

Hence the denominator of Qr,t(q;n) could only contain cyclotomic polynomials φb(q) with
b ≤ cr,t or b not coprime to dr,t. The situation with such numbers b is much more complicated
and strongly depends on the gcd’s of the pairs (ri, si) and (tj , uj).

Let us first consider the case where gcd(ri, si) = 1 and gcd(tj , uj) = 1 for all i and j. Let

b ∈ {1, . . . , dr,t}, b̃ be the greatest divisor of b coprime to dr,t, and let a be the unique integer

in {1, . . . , dr,t} satisfying ab̃ ≡ 1 mod dr,t. Then, following the notation of Section 5.1, we
find ci = dj = 1, so that

Vb := {1 ≤ i ≤ v : gcd(si, b) = 1} and Wb := {1 ≤ j ≤ w : gcd(uj , b) = 1} ,
which yields

J +
b := {{〈eiαi〉 − b1− aαic : i ∈ Vb}} and J −b := {{〈fjβj〉 − b1− aβjc : j ∈Wb}} .

Hence each “classical” jump occurring at aαi (by this, we mean the jumps occurring when b is
coprime to dr,t) either disappears because b is not coprime to si, or is replaced by a jump at
〈eiαi〉−b1−aαic when b is coprime to si. Even in this particular case, we already understand
that the new step functions can behave in a very different way than the classical ones.

As an illustration, we consider the simple example

Qr,t(q;n) :=
(q; q3)n(q2; q3)n
(q; q2)n(q; q)n

,

which was introduced at the end of Section 1.1 and corresponds to r = ((1, 3), (2, 3)) and
t = ((1, 2), (1, 1)). We have(

(1− q2)(1− q)
(1− q3)2

)n
Qr,t(q;n) −→

q→1

(1/3)n(2/3)n
(1/2)n(1)n

,

the right-hand side being N -integral. This can be derived from Formula (1.2). We find that

dr,t = 6, and for b = 3 we obtain b̃ = 1 and a = 1. This yields V3 = ∅, W3 = {1, 2}, and
f1 = f2 = 1. Hence J +

3 = ∅ and J −3 = {{1/2, 1}}, so that Ξ(3, 1/2) < 0. Thus, we deduce
from Theorem 1.3 that the sequence (Qr,t(q;n))n≥0 is not q-integral.

On the other hand, we have

(6.1)
(q; q3)n(q2; q3)n
(q; q2)n(q; q)n

· (q3; q3)n
(q2; q2)n

=

[
3n

2n

]
q

∈ Z[q] ,

which shows that the corresponding q-hypergeometric sequence is obviously q-integral. In
order to understand the effect of the extra factors (q3; q3)n and (q2; q2)n, we have to investigate
the case where gcd(ri, si) 6= 1.
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When gcd(ri, si) 6= 1, we possibly have ci = gcd(ri, si, b) 6= 1. In this case, either
gcd(si, b) 6= ci and the “classical” jump at aαi disappears, or there is an integer ei satis-
fying bei ≡ ci mod si and the jump at aαi splits into ci distinct jumps at

〈eiαi〉+ k

ci
− b1− aαic , 0 ≤ k ≤ ci − 1 .

Let us now return to (6.1) and consider the case where b = 3 . Then, we find that c3 = 3,
V3 = {3}, and e3 = 1. This yields jumps with amplitude +1 at all elements of the (multi)set
J +

3 = {{1/3, 2/3, 1}}. On the other hand, we have W3 = {1, 2, 3} and f1 = f2 = f3 = 1,
which yields jumps with amplitude −1 at all elements of the multiset J −3 = {{1/2, 1, 1}}. In
the end, we get that

(6.2) Γ1 =
1

3
≺ Γ2 =

1

2
≺ Γ3 =

2

3
≺ Γ4 = 1 ,

with m1 = 1, m2 = −1, m3 = 1, and m4 = −1. It follows that the step function Ξ(3, ·) is
non-negative on R, as expected.

6.2. q-Factorial ratios. — Let us recall that [n]q = (1− qn)/(1− q), so that

[n]q =
∏

b≥2, b|n

φb(q)

and

(6.3) [n]!q :=
n∏
i=1

1− qi

1− q
=

∏
b≥2, b|n

φb(q)
bn/bc .

Given two vectors e := (e1, . . . , ev) and f := (f1, . . . , fw) whose coordinates are positive
integers, we define as in [22] the q-analog of the factorial ratio Qe,f (n) as

Qe,f (q;n) :=
[e1n]!q · · · [evn]!q
[f1n]!q · · · [fwn]!q

·

We deduce from (6.3) that

Qe,f (q;n) =
∏

b≥2, b|n

φb(q)
∆e,f (n/b) ,

where

∆e,f (x) =

v∑
i=1

beixc −
w∑
j=1

bfjxc

is the classical Landau function, as defined in (1.1). We easily obtain that Qe,f (q;n) is q-
integral if and only if ∆e,f is non-negative on [0, 1]. Note that these properties are also
equivalent to the fact that Qe,f (q;n) ∈ Z[q] (see also [22] where a positivity conjecture of the
coefficients of these polynomials is proposed). It is therefore much more efficient to work with
∆e,f than to compute the corresponding Christol functions.

The example given in (6.1) corresponds to e = (3) and f = (2, 1), so that

∆e,f (x) = b3xc − b2xc − bxc .
On [0, 1], this step function has jumps with positive amplitude +1 at 1/3 and 2/3, and jumps
with negative amplitude −1 at 1/2 and 1. As expected, we retrieve the same ordering as in
(6.2) for the jumps of Ξ(3, ·).
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6.3. A famous non-factorial example. — When introducing his step functions in [11],
Christol was motivated by the following question: is it true that an N -integral hypergeometric
series is the diagonal of a rational fraction in several variables? The hypergeometric sequence

(6.4)
(1/9)n(4/9)n(5/9)n

(1/3)n(1)2
n

n ≥ 0

is one of the simplest examples of an N -integral hypergeometric sequence for which the ques-
tion is still open (although recent progress in this direction has been made in [1] and [8]).

In this case, the six Christol functions associated with each b coprime to 9 are non-negative
on R. By Theorem C, this ensures that this hypergeometric sequence is N -integral. A precise
formula for the smallest positive integer N0 is given in [14, Theorem 4]: here we get that
N0 = 93.

As already discussed, a natural q-analog of (6.4) can be defined as(
(1− q3)(1− q)2

(1− q9)3

)n
(q; q9)n(q4; q9)n(q5; q9)n

(q; q3)n(q; q)2
n

n ≥ 0 .

The q-integrality of this sequence is equivalent to the one of the q-hypergeometric sequence
Qr,t(q;n), where r = ((1, 9), (4, 9), (5, 9)) and t = ((1, 3), (1, 1), (1, 1)).

It remains to consider the Christol functions associated with b ∈ {3, 6, 9}. For b = 3, we
have gcd(9, b) = 3 6= 1 so that J +

3 = ∅. But due to the factors (q; q)2
n in the denominator,

we obtain that J −3 = {{1, 1}}, so that Ξr,t(b, 1) < 0. We deduce from Theorem 1.3 that
the sequence (Qr,t(q;n))n≥0 is not q-integral. In this example, all the “classical jumps” with
positive amplitude have disappeared for b = 3.

In fact, we can retrieve q-integrality by adding a factor (q9; q9)n to the numerator and a
factor (q; q)n to the denominator. This leads to the slightly modified q-analog:(

(1− q3)(1− q)3

(1− q9)4

)n
(q; q9)n(q4; q9)n(q5; q9)n(q9; q9)n

(q; q3)n(q; q)3
n

n ≥ 0 .

With this new choice of parameters r′ and t′, the functions Ξr′,t′(b, ·) for b coprime to 9
remains unchanged. However, for b in {3, 6, 9}, one finds that Vb is no longer empty. A
computation shows that Vb = {4}, Wb = {2, 3, 4}, J −3 = J −9 = {{1, 1, 1}}, J −6 = {{5, 5, 5}},
while

J +
3 =

{{
1

3
,
2

3
, 1

}}
, J +

6 =

{{
1

3
+ 4,

2

3
+ 4, 5

}}
, and J +

9 =

{{
1

9
,
2

9
, . . . ,

8

9
, 1

}}
.

In all cases, Ξr′,t′(b, ·) is now non-negative on R and we infer from Theorem 5.5 that the
sequence (Qr′,t′(q;n))n≥0 is q-integral.

Finally, we consider a third q-analog of the hypergeometric sequence (6.4), which we define
as

(6.5) Q̃α,β(q;n) =
(q1/9; q)n(q4/9; q)n(q5/9; q)n

(q1/3; q)n(q; q)2
n

n ≥ 0 .

As already discussed, the q1/9-integrality of (Q̃α,β(q;n))n≥0 is equivalent to the q-integrality
of the sequence

Q̃α,β(q9;n) =
(q; q9)n(q4; q9)n(q5; q9)n

(q3; q9)n(q9; q9)2
n

n ≥ 0 .

Furthermore, we have Q̃α,β(q9;n) = Qr,t(q;n) for a suitable choice of vectors r and t. As

previously, a computation shows that for b = 3, we have J +
3 = ∅ while 1 ∈ J −3 , so that
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Ξr,t(3, 1) < 0. We deduce from Theorem 5.5 that (Qr,t(q;n))n≥0 is not q-integral. Then, it

follows that the sequence defined in (6.5) is not q1/9-integral.
We observe that, in this case, we cannot use the same trick as before. Indeed, multiplying

Q̃r,t(q
9;n) by (q9; q9)n/(q; q)n amounts to multiplying (6.5) by (q; q)n/(q

1/9; q1/9)n which does
not correspond to any choice of parameters α and β.
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congruences “à la Lucas”, Ann. Sci. Éc. Norm. Supér. 52 (2019), 515–559.

[3] A. Adolphson and S. Sperber, On the integrality of hypergeometric series whose coefficients
are factorial ratios, Acta Arith. 200 (2021), 39–59.

[4] A. Adolphson and S. Sperber, On integrality properties of hypergeometric series, Funct.
Approx. Comment. Math. 65 (2021), 7–31.

[5] V. V. Batyrev and D. van Straten, Generalized hypergeometric functions and rational curves
on Calabi-Yau complete intersection in toric varieties, Comm. Math. Phys. 168 (1995), 493–533.

[6] F. Beukers and G. Heckman, Monodromy for the hypergeometric functions nFn−1, Invent.
Math. 95 (1989), 325–354.

[7] J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, J. Lond.
Math. Soc. 79 (2009), 422–444.

[8] A. Bostan and S. Yurkevich, On a class of hypergeometric diagonals, Proc. Amer. Math. Soc.
150 (2022), 1071–1087.
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