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Abstract (100-150 words in length) 13 

Carbon dioxide (CO2) is an important gas used in modified atmosphere packaging of non-14 

respiring foods where it solubilizes into the aqueous and lipid phases of food and exerts an 15 

antimicrobial effect. Prediction of CO2 solubility within food is thus of paramount importance 16 

to anticipate its benefit on food preservation. In the present study, machine learning algorithms 17 

were applied on a set of 362 values of CO2 solubilities collected from the scientific literature to 18 

tentatively predict the solubility as a function of food composition (water, protein, fat and salt 19 

content) and temperature. The best option kept was a random forest algorithm that was used to 20 

predict CO2 solubility in four food case studies (ham, salmon, cheese and pâté) that were further 21 
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 2 

used as input parameters in the MAP’ OPT tool, predicting the evolution of headspace gas 22 

composition. Predicted CO2 solubilities used as input parameters succeeded in representing the 23 

CO2 headspace dynamic as a function of time in the four case studies. 24 
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1. Introduction 32 

In Modified Atmosphere Packaging (MAP) applications, the packaging atmosphere is generally 33 

replaced by a mixture of different gases mainly composed of O2, CO2 and N2 in order to prevent 34 

food degradation during storage. CO2 is often used for its bacteriostatic effect. The 35 

concentration of CO2 injected in the pack is calculated to be close to or above the minimal 36 

inhibitory concentration for microorganism’s growth (Farber, 1991) and this CO2 concentration 37 

must be maintained as much as possible into the packaging to keep its benefit along the food 38 

shelf-life. However, CO2 concentration varies during storage due to the CO2 permeation from 39 

the internal atmosphere toward the surrounding, and due to the solubilization and diffusion of 40 

CO2 into the food product initially free of dissolved CO2 (Chaix et al., 2015; Guillard, Couvert, 41 

et al., 2016; Simpson et al., 2001). If the loss of CO2 due to permeation may be well mastered 42 

by using high barrier packaging films (Guillard et al., 2017), the CO2 solubilization into the 43 

food is unavoidable and leads to rapid CO2 partial pressure drop into the packaging, to an extent 44 

that depends on the headspace to food volume ratio and nature of the food. The lower the 45 

headspace volume is, the higher the CO2 drop is, due to gas solubilization into the food. This 46 
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CO2 solubilization is governed by Henry’s law: at equilibrium and for constant temperature and 47 

pressure (Eq. 1) the concentration of dissolved CO2 (CCO2) in a product is proportional to its 48 

partial pressure (pCO2) in the surrounding atmosphere (Chaix et al., 2014; Henry, 1832): 49 

𝐶𝐶𝑂2
= 𝑆𝐶𝑂2

(𝑇) × 𝑝𝐶𝑂2
  Eq. 1 50 

where 𝑆𝐶𝑂2(𝑇), the inverse function of Henry’s law coefficient, is the solubility coefficient, at 51 

temperature T, expressed in mol.kg-1. Atm-1. It represents the maximal quantity of CO2 that could 52 

be dissolved in a product for a given partial pressure of CO2. The value of solubility depends on 53 

the nature of the food and reflects the compatibility between CO2 and the food matrix (Chaix et 54 

al., 2014; Rotabakk et al., 2007; Schwartz, 2003). The knowledge of this data is thus of 55 

paramount importance to anticipate CO2 losses by solubilization and its expected effect on food 56 

shelf-life. This CO2 solubility is an input parameter required in MAP modelling tools that permit 57 

the prediction of the evolution of internal gas composition as a function of time (Chaix et al., 58 

2015; Guillard, Couvert, et al., 2016; Simpson et al., 2001) and accuracy of this data is crucial 59 

for prediction’s relevance. 60 

CO2 solubility is generally determined using costly and time-expensive experimental set ups: 61 

nowadays there are no low-cost techniques available for a non-invasive determination of gas 62 

concentration in solid matrices, which makes automatization of the measurement difficult 63 

(Chaix et al., 2014). Lab made experimental set-ups are generally needed and measurement 64 

requires equilibrium to be reached (24h-48h).  Methodologies used to measure CO2 solubility 65 

have been reviewed by (Chaix et al., 2014). These authors also proposed a first database of 66 

values that has been recently updated by (Guillard, Buche, et al., 2016) and (Munch et al., 67 

2022). In the last version, 362 solubility values were available for 81 different food products. 68 

If the link between food type and value of CO2 solubility is not straightforward, it seems 69 

nevertheless that food composition (fat, water, proteins or salt content) has a strong impact.  For 70 

instance, CO2 solubility was found higher in fat products than in aqueous ones: at 22°C, CO2 71 
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solubility was found, respectively, 1.6 and 1.8 times more soluble in olive oil and grape seed 72 

oil than in water (Pauchard et al., 1980). (Jakobsen & Bertelsen, 2006) have demonstrated that 73 

there is a significant difference between the amounts of CO2 that can be absorbed in meat with 74 

different fat contents. The CO2 absorption increases along with the increasing content of 75 

unsaturated fat. CO2 solubility was found to significantly decrease in cheese with increased 76 

salinity (from 0 to 2.7% NaCl w/w) (Acerbi et al., 2016). The CO2 solubility of renneted casein 77 

matrices was found to decrease linearly with salt-in-moisture content, whereas it increased with 78 

increasing pH and non-linearly varied with the moisture-to-protein ratio (Fava & Piergiovanni, 79 

1992; Jakobsen et al., 2009; Lamichhane et al., 2021). In all cases, beyond compositional aspects, 80 

temperature was identified as the most impacting parameter on the CO2 solubility value with, 81 

in general, a decrease of solubility with an increase in temperature. Interference between 82 

temperature and physical state of lipids into the food formulation was also observed making 83 

trends more difficult to interpret and formalize: for instance, in seafood model products with 84 

varying lipid profile, liquid fat leads to a similar solubility of CO2 as water, while CO2 only 85 

being minimally dissolved in solid fats (Abel et al., 2018).  86 

Faced with the importance of accurate CO2 solubility predictions and lack of low-cost and rapid 87 

methods for its determination, some authors have attempted to develop empirical mathematical 88 

models (mostly regressions) between CO2 solubility and temperature and one or more 89 

compositional parameters. One of the first models was proposed by (Fava & Piergiovanni, 1992) 90 

and related using multiple linear regressions CO2 solubility and compositional parameters (fat, 91 

protein, moisture, pH, water activity) of different foods at one temperature (7 °C). However, if 92 

this model was found suitable for meat products, it failed to predict solubility in dairy products. 93 

After this preliminary attempt, a second model was proposed by (Jakobsen et al., 2009) to 94 

predict CO2 solubility in semi-hard cheese based on the weight fraction of water (ww) and fat 95 

(wf) in the 2–phase cheese system, temperature (T), and the CO2 solubilities in, respectively, 96 
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pure water (SCO2/W) and pure fat (butterfat, SCO2/F). This model succeeded in predicting CO2 97 

solubility in semi hard cheeses and the range of temperature from 0 to 20◦C investigated by the 98 

authors. Another more recent model was the one proposed by (Acerbi et al., 2016) that linked 99 

the CO2 solubility (SCO2 in mmol.kg-1.atm-1) in Maasdam type cheese to temperature and salt-100 

in-moisture (S/M) content (Eq. 2): 101 

𝑆𝐶𝑂2 = 37.92 − 0.35 𝑇 − 1.21 𝑆/𝑀  Eq. 2 102 

However, the main drawback of all the modelling attempts mentioned above is that they are no 103 

longer valid when they are extrapolated to products that were not initially included in the initial 104 

range of data used for their setting up. For instance, (Chaix et al., 2014) have tested linear 105 

correlations between fat and water content and CO2 solubility determined in water, hake 106 

sausage, and ham. Although well accurate for those products, these correlations failed to predict 107 

solubility into fish products with an error of more than one order of magnitude (about 90%). 108 

This limits their usefulness and well illustrates the difficulty of finding a simple and universal 109 

linear model or correlations that are valid for large domains. In addition, it is difficult to draw 110 

clear and fair conclusions about the impact of food composition on CO2 solubility because 111 

temperature often interferes with other effects, even masking them sometimes, and only one 112 

class of food is examined at a time which makes it very difficult to conclude about the real 113 

effect of compositional parameters. pH may also interfere by modifying the ratio of dissolved 114 

CO2 species into the food, e.g. carbonic acid, bicarbonate ion, and carbonate ion (Chaix et al., 115 

2014). This lack of generalization of state-of-the-art solubility predictive attempts is a real 116 

problem to extend virtual MAP modelling tools (Guillard et al., 2017) to decision-making 117 

where multiple simulations with various food products would be required. 118 

Artificial intelligence tools can bring generalization power by inducing global models from 119 

data, that are able to deal with such different behaviors, both by (1) learning models for 120 

prediction and extrapolation; and (2) structuring available knowledge and extracting new ones 121 
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from data. For the first part, different works in machine learning can be noted in the case of 122 

solubility prediction for saline solutions (Boobier et al., 2020; Vo Thanh et al., 2022). However, 123 

to the best of our knowledge, no attempt has been made yet for predicting CO2 solubility in food 124 

using machine learning algorithms. In this work, we would like to tackle this issue using 125 

families of standard machine learning methods, in order to assess their performances. Our main 126 

purpose is to evaluate their ability to predict the food product’s solubility from the temperature 127 

and composition alone. To do so, we compare three families of algorithms: linear, local and 128 

ensemble methods (better described in Section 3.2.1.). While the chosen models have different 129 

characteristics, they are all dedicated to the prediction of a value (in our case, the solubility) 130 

given an entry vector (temperature and composition), and thus represent good candidates for 131 

evaluating the ability of machine learning approaches for our problem. 132 

For the second part, knowledge engineering is a sub-domain of artificial intelligence, using 133 

methods and tools based on ontologies, that can be helpful to extract knowledge semi-134 

automatically (Lentschat et al., 2022), and to annotate experimental data from scientific papers 135 

(Buche et al., 2013) in order to be able to realize meta-analyses. Moreover, a semi-automatic 136 

mapping between ontologies dedicated to the food domain description permits to manage the 137 

problem of data incompleteness, especially in terms of food product compositional parameters 138 

(Buche et al., 2021). In the case of CO2 solubility prediction, knowledge engineering could be 139 

useful for structuring the different relations between the solubility and the different input 140 

parameters (e.g.  compositional parameters, temperature), as well as retrieving missing 141 

information from other databases. 142 

In this context, the aim of this paper is to present an innovative composition-based statistical 143 

model of CO2 solubility as a function of temperature (T) and compositional parameters (fat, 144 

moisture, protein and salt contents). To avoid any bias due to the numerical treatment of a 145 

specific, focused set of data and to enlarge the analysis to all kinds of foods available in the 146 
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scientific literature, an exhaustive dataset of all CO2 solubility was first created. Compositional 147 

parameters were retrieved from the original paper or inferred using the MultiDB explorer tool2 148 

and were capitalized in the dataset too. Multiple machine learning algorithms were then 149 

evaluated on the dataset in order to identify the most suitable model for predicting CO2 solubility 150 

as a function of T and composition. Its predictions of CO2 solubility for 4 different food products 151 

(ham, salmon, cheese and pâté) were then used to feed the MAP’OPT modelling tool (Guillard 152 

et al., 2017) which predict evolution of CO2 composition into packaging headspace. The 153 

theoretical CO2 headspace composition for these 4 products was confronted to experimental 154 

measurements to validate the composition-based statistical model proposed. 155 

 156 

2. Material and methods  157 

2.1. Food products 158 

Ham, salmon, cheese and pâté were purchased in local supermarkets. Nutritional composition 159 

information of the food products used for the validation are presented in Table 1. 160 

2.2. Shelf-life experiments 161 

Exactly 100 g of each food product were packaged in high density polyethylene (HDPE) trays 162 

with a volume capacity of 375 cm3 (530 XX 00, PROMENS, Norway) and a minimal thickness 163 

of 200 µm. The gas transmission rates of this tray are 3 and 13 cm3/day.atm for O2 and CO2 164 

respectively. Each sample were placed in a cooling cell to reach a core temperature of 4 °C 165 

before their sealing with a lidding film in PE (42.0 ± 4.2 µm thick) with less than 5 and 25 166 

cm3/m².day.bar of O2 and CO2 permeance respectively (Lintop PE HB B 42, LINPAC 167 

PACKAGING, France) using an OPE 1000C tray sealer (Guelt, France) configured to modify 168 

the headspace atmosphere with a gas mixture of 30% of N2 and 70% of CO2. This step took 169 
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place in a laminar flow hood to avoid any microbiological contamination. The samples were 170 

stored at 4 °C until analysis for 5 days. Daily monitoring of headspace CO2 was made using a 171 

Check Mate 9900 calibrated annually by the supplier (Dansensor / AMETEK, France). The 172 

principle of dosing is based on an infrared sensor for CO2.  173 

2.3. MAP’OPT: mathematical model for headspace CO2 dynamic 174 

The mathematical model developed by (Guillard et al., 2017) was used to predict the variation 175 

of the O2 and CO2 concentration in the headspace of packaged food products in the present shelf-176 

life experiment (i.e., ham, salmon, cheese and pâté). This semi-mechanistic model included (i) 177 

O2/CO2/N2 transfer between headspace and external atmosphere via permeation through the lid 178 

material and the tray in contact with headspace, (ii) O2/CO2 sorption or desorption characterized 179 

by solubilization and diffusion within the food product, (iii) variations in headspace volume 180 

and composition obeying the ideal gas law while maintaining a total pressure equal to the set 181 

pressure of the tray sealer and (iv) temperature effect on all the aforementioned mechanisms 182 

according to Arrhenius equation. The input parameters needed to run the simulation depend on 183 

the characteristics of the packaging (volume capacity, thickness of the tray and lid, exposed 184 

area, gas permeation), storage (composition of the gas mixture, temperature, duration 185 

preservation) and of the food product (solubilization and diffusion of gases, mass, density, 186 

thickness, information on nutritional composition). The O2 diffusivity and solubility, at 4°C, 187 

were fixed respectively to 1.2 x 10-9 m²/s and 2 x 10-8 mol/(kg.Pa) from (Chaix et al., 2014). The 188 

CO2 diffusivity (in m²/s), at 4°C, was estimated, for each product, according to (Chaix et al., 189 

2014) by: 190 

𝐷𝐶𝑂2
= 3 × 10−10%fat + 1 × 10−9  Eq. 3 191 

Valid in the range of temperature [0, 8°C], where 𝐷𝐶𝑂2 is the diffusivity of CO2 (m²/s) and %fat 192 

is the fat content (%w/w in wet basis) of food products. 193 
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The CO2 solubility for the 4 food case studies was predicted using the model developed in this 194 

study and were used as input parameters for CO2 solubility. 195 

2.4. Evaluating Statistical Models for CO2 solubility 196 

While machine learning algorithms are numerous and can virtually be applied to any cases, 197 

their performances often vary greatly between application cases. In order to elect the best 198 

model, different algorithms were compared in our study. To do so, we use a 10-folds cross-199 

validation (CV), which allows to separate the dataset into two parts, a learning set (used for 200 

learning a model) and a testing test (used for evaluating the learned model). To ensure a good 201 

precision in the results, this operation is repeated 10 times, while changing the composition of 202 

both the learning and the testing sets. For each fold, a score is computed. The final score 203 

represents the mean of these different results, and determines the average predictive 204 

performances of the tested algorithm for the given dataset. As shown in Fig. 1, which illustrates 205 

a 4-folds validation, testing and training sets do not overlap between folds (i.e., the test sets 206 

form a partition of the data). To validate even more, we will also use a LOO (Leave-One-Out) 207 

procedure, corresponding to a n-fold cross validation. Note that (Bengio & Grandvalet, 2004) 208 

shows that K-fold cross-validation has no unbiased estimator of its variance, meaning that its 209 

performances will depend on the internal variation of the considered dataset. This is not a major 210 

drawback in our case, as we mainly use these tools to compare different algorithms predictive 211 

capabilities.  212 

All experiments were implemented using the Python library Scikit-learn (Pedregosa et al., 213 

2011), which is dedicated to machine learning. Unless otherwise stated, the library’s default 214 

algorithm’s parameters were used.  Further explanations of the results were done using the 215 

Python SHAP library (Lundberg & Lee, 2017), which allows to compute the relative 216 

importance of features in a prediction task using the game-theoretic notion of Shapley value. 217 

The choice of this method was motivated by its agnostic aspect: as its results do not depend on 218 
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the selected model, it provides insights and explanations that are less dependent on it. Such 219 

methods are also applicable to other models, and therefore in future works, one could try to see 220 

if using other models with similar capabilities would provide the same explanations. 221 

2.5. Statistical analysis 222 

For shelf-life experiments, significant differences in headspace composition between food 223 

matrices and time points were tested using the nonparametric Kruskal test with the 224 

“kruskal.test” function in statistical software R 3.6.1  (R. C. Team, 2019). In case of significant 225 

food matrix effect, Dunn’s test for stochastic dominance among food matrix groups was 226 

computed using the function “dunn.test” of the R package “dunn.test” (Dinno, 2019) and P < 227 

0.1 was considered as significant. 228 

 229 

3. Results and Discussion3 230 

3.1. Data collection 231 

362 data from 21 references of the literature were collected and stored in a dedicated database. 232 

Solubility unit kept for the following is mmol.kg-1. Atm-1 for the sake of clarity. Corresponding 233 

food compositions were retrieved directly from the original paper or, if not provided in the 234 

source paper, retrieved from the Food Composition database (Buche et al., 2021). Four 235 

constituents (water, fat, protein and salt) were kept for further analyses (sugar was discarded 236 

due to many null or missing values, which would not have brought more information to the 237 

model). This choice was motivated by analysis of previous literature on the topic, as fat content 238 

was found particularly relevant (Jakobsen & Bertelsen, 2006; Pauchard et al., 1980). However, 239 

while the lipid profile and physical state of lipids was also proved to be important, especially 240 

its interrelationship with temperature (Abel et al., 2018), it was not possible to consider it in 241 

                                                           
3 All data and source codes are available at the following URL: https://doi.org/10.57745/QRBX4Z 

https://doi.org/10.57745/QRBX4Z
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this approach because lipids profile was most of the time simply unknown or impossible to 242 

retrieve with enough precision. On another hand, protein and moisture contents were also kept 243 

because several times quoted as relevant compositional parameters influencing CO2 solubility 244 

(Lamichhane et al., 2021). More specifically, (Fava & Piergiovanni, 1992) considered fat, protein, 245 

moisture, pH, water activity in their model of CO2 solubility. In the present study, pH and water 246 

activity were discarded because they are not available in the food composition database. Finally, 247 

salt content was also kept as several times quoted for its impact on CO2 solubility (Acerbi et al., 248 

2016; Duan & Sun, 2003). 249 

In the end, the constituted database presents mainly three categories of food products: dairy 250 

products, meat and fish. It was also complemented with measures made on water and oil. While 251 

this distinction of “type” was kept for data description purposes, it was not used as a variable 252 

during the learning: the composition was considered to be sufficient for predictability purposes. 253 

For each food product, temperature was also kept as one of the main factors affecting CO2 254 

solubility value. Even if the temperature effect was in general well modelled using Arrhenius’ 255 

law (Chaix et al., 2014), it was decided in the present work to consider it as a parameter in 256 

addition to composition in the statistical model and to not model its effect using Arrhenius’ 257 

law.  258 

Once the data collected, an additional pretreatment was applied after the preliminary descriptive 259 

analysis: since some data were repetitions made on a same sample (for instance, there are 12 260 

repetitions for Maasdam cheese at 25°C), the average solubility was considered in those cases 261 

in order to reduce the dominance of certain food products. After these pretreatments, 258 data 262 

from the original 362 values collected were kept and used in machine learning algorithms. 263 

 264 

3.2. Learning models / prediction of CO2 solubilities 265 

3.2.1. Model used, learning  266 
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We considered three types of algorithms: linear methods (which aim to learn linear 267 

relationships), local methods (which aim to learn local models for the different parts of the 268 

dataset) and ensemble methods (which aim to learn multiple models in order to enhance the 269 

predictive performances and reduce variance of the predictions).  270 

Linear methods (and their extensions) are prototypical of statistical parametric methods: they 271 

make some strong assumptions about the relationships between the data, meaning that they have 272 

a high potential bias but low variance. This means that if their assumption is true, they will 273 

require few data to have a very good predictive power and will come with powerful statistical 274 

tool to select features, explain results etc. In contrast, if their assumption is false (as will be the 275 

case here for linear models), they are likely to produce models with poor predictive power, and 276 

will provide potentially misleading conclusions. In contrast, local or regionalized methods 277 

typically make very few assumptions, meaning that they have a low bias but a high variance. 278 

They are likely to provide good predictive power in all cases, but come with less powerful 279 

statistical tools, and can strongly vary if the data are modified, meaning that they can be instable 280 

and that one should be careful about their conclusions, especially when having few data points. 281 

Due to their localized nature, they are usually interpretable models. Ensemble methods try to 282 

achieve a low bias with a low variance, by making very few assumptions and by averaging a 283 

(usually large) set of simpler models. Due to their high flexibility and the use of averaging, they 284 

usually achieve very high predictive performances, but are by nature poorly interpretable and 285 

extendable. They must therefore be complemented by additional tools if one wants to 286 

analyze/interpret their results, and should be used in those cases where simpler models failed 287 

to deliver satisfactory results. We will see in the next pages that our study falls into this 288 

category, at least when one restricts to linear models for the global ones.  289 

For each, we selected a few classical algorithms and performed 10-fold cross validations, whose 290 

results are presented in Table 2. We also present the results of a particular type of cross-291 
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validation, the Leave One Out (LOO). Better fitted for small datasets, LOO is learned for each 292 

split using all data except one, which is used for the testing part. If we have n data, LOO 293 

corresponds to an n-folds cross validation. While it can lead to overfitting (i.e., learning a model 294 

that memorize the training set but extrapolate/generalize poorly to unseen data points), it also 295 

gives a good overview of the model’s performances when trying to predict data close to the 296 

original dataset. 297 

As we can see, ensemble methods perform the best. This is not surprising considering our 298 

dataset, which presents very different products on variable conditions (temperature, 299 

composition). To deal with them, our model needs to be able to (1) describe multiple (possibly 300 

linear) regimes of CO2 evolution depending on the original conditions (which is not fitted for 301 

linear methods, that can only describe well one linear regime) and (2) keep a coherent continuity 302 

between these different regimes (for which local methods are not fitted, as predictions can 303 

change abruptly when modifying slightly conditions). Ensemble methods, on the contrary, are 304 

based on the learning of multiple simplified models (decision trees in the case of Random 305 

Forests), whose predictions are computed in order to select an average result; this allows both 306 

the adaptability and the continuity of the learned model. As a consequence, we adopt for the 307 

rest of this article the Random Forest regression, which obtained the best overall score. While 308 

its performances are not perfect (which is due, as we will see, to the diversity of our dataset), it 309 

presents promising results and seems to be the best suited for our application. 310 

Random Forests are an ensemble method based on the learning of multiple decision trees from 311 

a random sample of the whole dataset. This approach avoids the over-fitting tendencies of 312 

decision trees through averaging, and proposes a better adaptability to the data’s inner 313 

variations. Since the number of trees has an impact over the final result, we have used another 314 

10-folds CV to fine tune the parameter and find the best possible combination. We have tested 315 

with 50, 100, 150, 250 and 500 trees, without denoting a drastic change in the performances; as 316 
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a consequence, our final model was learned with the dataset previously presented and 100 trees, 317 

which correspond to the default value in Scikit-learn. To be noted, due to the multiplicity of 318 

methods and features to optimize, we only focus in this article on fine-tuning the method elected 319 

after the cross-validation made on the library’s default parameters. 320 

 321 

3.2.2. Impact of food composition on predicted CO2 solubility 322 

The impact of both food composition and temperature on the predicted solubility can be now 323 

analyzed from the learned model. First of all, we analyze the sensitivity of each parameter by 324 

learning multiple models with truncated information (only one parameter, then two, etc.). The 325 

objective is to compute the scores’ difference (and thus the quantity of knowledge) brought by 326 

the addition of information. Part of the results are presented in Table 3, where we can see that 327 

adding the temperature’s value to a nutrient composition drastically enhances the quality of the 328 

model, confirming the key role of temperature on the reliability of CO2 solubility prediction. 329 

Indeed, while temperature or compositional parameters alone are not enough to predict the 330 

solubility, the combination of temperature and at least one of the compositional parameters can 331 

give a rather good prediction, which can be further improved by adding the other compositional 332 

parameters. On the contrary, the combination of multiple compositional parameters alone is not 333 

enough: for instance, a model learned solely with the fat and water parameters has a score of 334 

0.35; which is very close to the score of a model learned with all four compositional parameters 335 

without knowledge of the temperature (0.40). This result well highlights the importance of 336 

considering both criteria, temperature and compositional parameters, for an accurate prediction 337 

of the CO2 solubility. To be noted, a model learned with temperature alone has a very bad score 338 

(0.04). Temperature alone is thus not enough to explain the variability of CO2 solubility 339 

observed. 340 
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Similarly to many black-boxes models and in contrast to using, e.g., on decision tree, random 341 

forests can be hard to interpret. As predictions are based on the combination of multiple decision 342 

trees, explanations are not direct as we have no clear dependency between the parameters and 343 

the final result. In order to understand the role of the compositional parameters in the prediction, 344 

the Shapley’s value of each nutrient was computed using the SHAP Python library. Shapley’s 345 

values are used in game theory to express a property’s contribution to a final result, considering 346 

both its individual contribution as well as its marginal contribution when combined with other 347 

properties (accounting for interactions): the higher it is in absolute value, the more this property 348 

has influenced the final decision. In the following, we distinguish positive and negative 349 

influences: in our case, the first tends to increase the CO2’s solubility value, while the second 350 

tends to decrease it. 351 

Fig. 2 shows the evolution of Shapley’s values depending on the parameters for every measure 352 

of our dataset. We can see that the repartition of the Shapley’s values for the temperature are 353 

strongly correlated to its value, as expected from the state of the art: the higher the temperature 354 

is (to the left of the figure, as indicated in the Feature value’s legend), the lower the Shapley’s 355 

value is, indicating a negative impact over the final solubility. On the contrary, a low 356 

temperature (this time on the right side) is correlated to positive Shapley’s values, and thus will 357 

have a positive effect on the solubility value. 358 

However, most of the compositional parameters’ influence cannot be characterized as easily: 359 

the fat, for instance, seems to have low SHAP values, lower than those obtained for water. Thus, 360 

it appears that fat might have lower effect than water on CO2 solubility and would positively or 361 

negatively impact this solubility (both positive and negative Shapley’s values were observed 362 

for fat), depending on other factors that are not shown in this figure and may be absent from the 363 

data set. Since Table 3 has highlighted a strong interaction between compositional parameters 364 

and the temperature, we display Shapley values on two axes (temperature + constituent) to 365 
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observe impact of this interaction on the final prediction in order to describe precisely these 366 

results. Fig. 3 shows an example of this interaction in the case of the water and temperature (a) 367 

and the fat and temperature (b). In contrast with Fig. 2, this now clearly shows how the addition 368 

of temperature increases the precision of the model. If we consider again the example of the fat 369 

(right-most figure), we can see that the Shapley’s value varies between -1 and 1.5 depending of 370 

the fat value and the temperature: for instance, given a fat composition of 10, lower 371 

temperatures (under 10°C) have a rather positive impact; while higher temperatures (over 15°C) 372 

have a rather negative impact. This tendency shifts for pure-fat products: here, a high 373 

temperature will have a positive impact, while a low temperature has a negative impact. On the 374 

other hand, the left-most figure shows an inverse tendency for the interaction between water 375 

and solubility on the temperature. 376 

However, it is important to note that in both cases, we have represented in red the combinations 377 

represented in the learning dataset. This is important, as we can see in the case of the 378 

temperature/fat graph that nearly all predictions between 30 and 100% of fat are inferred, as 379 

there was no product with that quantity of fat in our learning dataset (which is credible, since 380 

apart from certain particular food products such as oil or butter, products with fat content above 381 

30% are rather scarce). As a consequence, the model has extrapolated the result (and the 382 

importance of the parameters in its prediction) from similar results, and not from concrete and 383 

observed data. This could lead to false interpretations, and highlight the limit of our model in 384 

its current state: while predicting solubility of items similar to the ones used for the learning 385 

can be reasonably trusted, the more a food product will be remote from the original learning 386 

set, the more difficult and not trust-worthy its prediction will be. Put another way, while 387 

provided inferences in unexplored areas appear plausible, they should be further checked by 388 

concrete experiments.  389 

3.2.3. Comparison with mechanistic models from the literature  390 



 17 

The literature well highlighted the impact of temperature on CO2 solubility, which generally 391 

decreased with temperature following a Van’t Hoff type equation with a negative enthalpy of 392 

sorption (Chaix et al., 2014). For instance, (Acerbi et al., 2016) found a decrease of CO2 393 

solubility with increasing temperature in the range 2-25°C for Maasdam cheeses, in agreement 394 

with previous observations made by (Jakobsen et al., 2009) in similar semi-hard cheeses. CO2 395 

solubility of water is decreasing with temperature too (Carroll et al., 1991; Dean, 1999). 396 

However, this effect of temperature seems to interact with compositional parameters. Thus, 397 

solubility of CO2 was found to slightly increase in pure dairy fat (99% fat) with increasing 398 

temperature from 3 to 19 °C (Jakobsen et al., 2009). Therefore, a compensating effect may 399 

occur for products rich in fat, resulting in smaller temperature variation than expected for 400 

example in cheese with high fat content as observed by (Jakobsen et al., 2009) or even an 401 

increase of CO2 solubility with temperature as observed in fatty meat samples (Jakobsen & 402 

Bertelsen, 2006). This effect of temperature and its interaction with fat content effect is well 403 

captured by our model. Indeed, as shown on Fig.3 (a), for water content above 60-70%, the 404 

temperature has a strong negative effect on CO2 solubility as generally experimentally observed 405 

in aqueous-based phases with low fat content. In agreement with those findings, at low fat 406 

contents (below 30%) and, thus, corresponding assumed high moisture content, CO2 solubility 407 

is negatively correlated to temperature increase (Fig. 3 (b)). On the opposite, above the 408 

threshold fat content of 30% (and corresponding supposed lower moisture content) solubility 409 

becomes positively correlated with temperature, confirming findings of literature studies 410 

(Jakobsen et al., 2009; Jakobsen & Bertelsen, 2006). 411 

 412 

This antagonistic effect between fat and moisture contents is also obvious on Fig. 4 (a) 413 

presenting the interaction of the water and fat contents and the corresponding Shapley’s value. 414 

It is clearly visible that above 30% of fat content, the CO2 solubility is governed by the fat phase 415 
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that tends to negatively impact the solubility, while for fat content below this threshold value, 416 

moisture phase’s impact predominates with a slight trend to positively increase solubility until 417 

nevertheless a certain extend; above a threshold value of 60-70% of water content, its influence 418 

tends to become slightly negative. 419 

Fig.4 (b) shows interaction of the protein and fat contents and the corresponding Shapley’s 420 

value. It shows that for products with fat content below 30%, protein content tends to negatively 421 

impact CO2 solubility. On the contrary, above 30% of fat content, protein content positively 422 

impacts solubility. In other words, below 20% of protein, increasing fat content has a slight 423 

positive impact on CO2 solubility until a threshold value of 30%. Above this threshold value of 424 

30% of fat, this positive effect turns into a negative one. However, in both cases, the effect is 425 

low with absolute SHAP-value below 1. In addition, for fat content higher than 30%, there are 426 

only few data (red open symbols on Fig. 4 (a)) and data are thus mostly extrapolated by the 427 

model and should be considered cautiously. This interaction between protein and fat contents 428 

was never related in the literature. If the impact of protein contents was clearly identified on 429 

CO2 solubility, it was never clearly stated to what extent it would affect these solubility values. 430 

For instance, (Jakobsen & Bertelsen, 2006) observed that CO2 absorption increases along with the 431 

increasing fat content (from 2 to 65%) into mixtures of muscle and fat (from pig meat) but they 432 

did not mention the protein contents of their samples making difficult to align their study on 433 

the results shown in Fig. 4 (b). Nevertheless, supposing that pig meat contains a maximum of 434 

20% of proteins (from the French food composition table (Anses, 2020)), we can estimate that 435 

protein content varies from 19.6% for 2% of fat content to 7% at the lowest for the fattiest 436 

mixture. We are thus below the threshold value of 20% of proteins where increasing fat content 437 

tends to increase CO2 solubility into such samples (Fig. 4 (a)). Findings of (Jakobsen & Bertelsen, 438 

2006) tend to confirm the prediction of our model. 439 

 440 
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The impact of proteins on CO2 solubility is quite complex and singular behavior has been 441 

observed in the literature that is not completely well captured by our model. For instance, 442 

(Lamichhane et al., 2021) noted that the relationship between moisture-to-protein ratio and CO2 443 

solubility was non-linear in casein matrices (~0% fat content). An increase of solubility was 444 

first observed for moisture-to-protein ratio ~0.03 to ~0.5 (e.g. protein content ~90 to ~70), then 445 

a slight decrease from ~0.5 to ~1.7 moisture-to-protein ratio followed by a small and significant 446 

increase (from ~1.7 to ~2.7 moisture-to-protein ratio, e.g. ~35 to ~23% of proteins). Such 447 

complex relationships observed between CO2 solubility and moisture-to-protein ratio which is 448 

ascribed to interactive effects of moisture and protein content on CO2 solubility, is not 449 

represented by our model (Fig. 4 (b), points obtained for fat contents close to 0) probably 450 

because those data with various moisture-to-protein ratios were not considered in the model 451 

learning.  452 

 453 

3.3. Validation experiment 454 

3.3.1. Prediction of CO2 solubility in the 4 food case studies 455 

The composition-based learned model previously presented was used to predict the solubility 456 

values for the 4 food case studies used in the validation approach. 457 

Results are presented in Table 4. 458 

3.3.2. Experimental and predicted CO2 headspace dynamic for the 4 food case studies 459 

Headspace CO2 composition was followed during the shelf-life experiment (Figure 5). 460 

Following the sealing, the CO2 content decreases in the headspace over time for each of the 461 

food matrices. After 5 days, CO2 contents in the ham packs and pâté packs were the lowest 462 

(respectively 59.0 +/- 0.5% and 59.9 +/- 0.7%, n = 4, P = 0.45) compared to the others (66.2 463 

+/- 0.1% (n = 2) for the cheese packs (P < 0.03) and 63.7 +/- 0.6% (n = 4) for the salmon packs 464 
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(P < 0.1)). CO2 content was not different over the first 5 days for cheese and salmon packs (P 465 

> 0.18). 466 

Simulations were carried out with the MAP OPT tool with the predicted CO2 solubilities as 467 

inputs (§ 3.3.1). Values of each parameter used in the MAP OPT tool were presented in Table 468 

5. Simulated data, with any adjustment of any input parameters, are shown in Figure 5. As 469 

evidenced in this figure, the composition-based statistical model predicted CO2 solubilities used 470 

as input parameters in the MAP OPT tool rather succeeded in representing the CO2 headspace 471 

dynamic as a function of time in the four case studies. Some variations of CO2 concentration 472 

into headspace are nevertheless noted. For cheese and paté, the prediction falls outside the 473 

upper/lower predicted curves corresponding to min and max of solubility predicted, 474 

respectively. It could be ascribed to uncertainty on the solubility model that tends to deviate 475 

when applied to food products that are not well represented in the database. Other sources of 476 

uncertainty may occur such as uncertainty on film CO2 permeability or on MAP OPT model 477 

hypothesis such as the fact that volume variations are neglected. We can nevertheless consider 478 

that the CO2 solubility model is quite satisfactory, in the sense that the error remains of limited 479 

value. 480 

The relatively good fitting is also confirmed by the RMSE values equal to 2.78% for ham, 481 

2.09% for salmon, 2.50% for cheese and 3.26% for pâté. We obtained a low value of RMSE 482 

which indicated that we can reasonably consider a validation of the gas concentration 483 

prediction. Considering the multiples sources of uncertainty in the MAP OPT simulation, taken 484 

together, the simulation results validate the composition-based statistical model predicted CO2 485 

solubilities developed in this study and its generic use for a wide range of products 486 

conventionally packaged in MAP. The composition-based statistical model could be included 487 

in the MAP OPT tool as a first estimation before further experimental refinement of CO2 488 
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solubility. It should also be noted that those results are obtained with very few features and a 489 

relatively small-size data set, meaning that there is still room for improvements. 490 

4. Discussion 491 

It is important to keep in mind that our model best shines when presented with predictions 492 

similar to data represented in the learning dataset. Indeed, while it may be easy to consider a 493 

model learned using machine learning algorithms as objective, it is important to gauge the 494 

multiple hidden assumptions that guide its construction. Firstly, as we have seen, the dataset 495 

used for learning can easily be biased toward specific food’s compositions. Indeed, some food 496 

products are over-represented: for instance, the cheese product studied in Sect. 3.3.2. has a 497 

compositional profile very close to other food products in our dataset. On another hand, the pâté 498 

product, which is the least well predicted, has fewer products with the same profile in the 499 

dataset. This is verified by the fact that in Sect. 3.3.2., the second best result has been made on 500 

the cheese product (RMSE of 2.50% against 3.26% for pâté), which represents about half of 501 

our dataset. Yet, in this article, we propose a proof of concept of the feasibility to predict, using 502 

machine learning approaches, CO2 solubility based on food composition and temperature data. 503 

Even if extrapolation may be carried out to other food categories not yet quoted in the database 504 

used for machine learning, the composition-based statistical model proposed here would be 505 

more precise for products whose compositional profile closely matches the ones already 506 

represented in the database. Knowing that, it is clear that, for MAP applications where 507 

composition fall outside these limits, predictions will be less accurate in a extend that still need 508 

to be quantified. However, the database can always be enriched with other data to refine the 509 

overall precision, as predictions tend to be better when close to already represented products. 510 

Furthermore, it would be possible to send warnings to the user in case a product for which a 511 

prediction is given is poorly represented in the data base.  512 

 513 
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Moreover, the interpretations (and especially causal interpretations) proposed in this article, in 514 

particular using Shapley’s values, are made under the assumption that food composition has an 515 

impact over the CO2 solubility; which, as presented in our introduction, has been demonstrated 516 

by multiple previous works. In this article, we have verified these assumptions and given a 517 

general model able to quantify the impact of these parameters on CO2 solubility. Indeed, 518 

machine learning approaches can be used both to explore hypothesis and make predictions, with 519 

the former goal being at least as important as the later in experimental sciences.  520 

In the end, machine learning algorithms best shine to represent main tendencies and correlations 521 

within a given dataset. They allow to confirm hypotheses (in our case, the influence of a food 522 

product’s composition and the temperature’s measure over its solubility to CO2) and highlight 523 

the importance of a parameter in the final decision; however, one must keep in mind their 524 

dependency to the initial assumptions made during their learning and the selected features, in 525 

order to avoid abusive extrapolations.  526 

 527 

 5. Conclusion 528 

In this article, we have presented a novel approach for predicting CO2 solubility for food 529 

products, given their compositional characteristics and their temperature. To do so, we have 530 

first compiled an original dataset from 21 references over the past 40 years on the subject of 531 

CO2 solubility. This allowed us to build a learning base with 362 values of CO2 solubility from 532 

which different machine learning algorithms were tested in order to select a model able to 533 

predict CO2 solubility based on temperature on compositional parameters, with a reasonable 534 

precision margin. 535 

The model presented in this work is a Random Forest, which has been validated by two 536 

approaches: (1) theoretically by comparing to state-of-the-art results; and (2) experimentally by 537 

confronting experimental headspace CO2 concentrations measured on 4 different foodstuffs 538 
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packed in modified atmosphere packaging (MAP) with predicted ones using a virtual MAP 539 

modelling tool integrated the solubility values predicted by our best Random Forest model. In 540 

both cases, we have demonstrated the accuracy and genericity of our model. 541 

The purpose of this work is to propose a novel approach to the CO² solubility prediction, using 542 

classical machine learning algorithms. The interest was both its simplicity (in order to learn a 543 

model, we only needed a dataset with the raw values), and the possibilities of explanation 544 

provided by tools such as the SHAP values. We wanted to assess whether rather generic 545 

machine learning methods were enough to tackle our problem. While we have demonstrated it, 546 

it should be interesting to compare their results to more statistical approaches, such as 547 

extensions of linear models. Moreover, as mentioned in Section 4, the model’s prediction could 548 

benefit from the addition of new products, not only from the types considered here, but also 549 

from others: this should strengthen the precision of our predictions. 550 

 551 

Funding 552 

The data acquired within the framework of the OPTIMAP project was supported by grants from 553 

the Regional Council of Brittany, the Departmental Council of Finistère and Quimper Bretagne 554 

Occidentale to ADRIA. 555 

 556 

This project has received funding from the European Union’s Horizon 2020 research and 557 

innovation program under grant agreement No 773375 (GLOPACK project). 558 

 559 

Declaration of Interests 560 

The authors declare that they have no known competing financial interests or personal 561 

relationships that could have appeared to influence the work reported in this paper. 562 

 563 



 24 

Ethics statements 564 

This work neither involves human subject nor animal experiments. 565 

 566 

CRediT Authors Statements 567 

Patrice Buche: Conceptualization 568 

Sébastien Destercke: Conceptualization, Methodology, Formal Analysis, Review and Editing 569 

Mélanie Münch: Conceptualization, Software, Formal Analysis, Writing – Original, Review 570 

and Editing, Visualization 571 

Sébastien Gaucel: Conceptualization, Methodology, Review and Editing 572 

Valérie Guillard: Conceptualization, Validation, Formal Analysis, Writing – Original, Review 573 

and Editing 574 

Jonathan Thévenot: Resources, Software, Validation, Writing – Original, Review and Editing 575 

 576 

References 577 

 578 

Abel, N., Rotabakk, B. T., Rustad, T., & Lerfall, J. (2018). The influence of lipid composition, storage 579 

temperature, and modified atmospheric gas combinations on the solubility of CO 2 in a seafood 580 

model product. Journal of Food Engineering, 216, 151–158. 581 

https://doi.org/10.1016/j.jfoodeng.2017.08.020 582 

Acerbi, F., Guillard, V., Guillaume, C., & Gontard, N. (2016). Impact of selected composition and 583 

ripening conditions on CO2 solubility in semi-hard cheese. Food Chemistry, 192, 805–812. 584 

https://doi.org/10.1016/j.foodchem.2015.07.049 585 

Anses. (2020). Ciqual French food composition table. Https://Ciqual.Anses.Fr. 586 

Bengio, Y., & Grandvalet, Y. (2004). No Unbiased Estimator of the Variance of K-Fold Cross-Validation. 587 

The Journal of Machine Learning Research, 5, 1089–1105. 588 

Boobier, S., Hose, D. R. J., Blacker, A. J., & Nguyen, B. N. (2020). Machine learning with 589 

physicochemical relationships: solubility prediction in organic solvents and water. Nature 590 

Communications, 11(1), 5753. https://doi.org/10.1038/s41467-020-19594-z 591 

Buche, P., Cufi, J., Dervaux, S., Dibie, J., Ibanescu, L., Oudot, A., & Weber, M. (2021). How to Manage 592 

Incompleteness of Nutritional Food Sources? International Journal of Agricultural and 593 

Environmental Information Systems, 12(4), 1–26. https://doi.org/10.4018/IJAEIS.20211001.oa4 594 



 25 

Buche, P., Dibie-Barthelemy, J., Ibanescu, L., & Soler, L. (2013). Fuzzy Web Data Tables Integration 595 

Guided by an Ontological and Terminological Resource. IEEE Transactions on Knowledge and 596 

Data Engineering, 25(4), 805–819. https://doi.org/10.1109/TKDE.2011.245 597 

Carroll, J. J., Slupsky, J. D., & Mather, A. E. (1991). The Solubility of Carbon Dioxide in Water at Low 598 

Pressure. Journal of Physical and Chemical Reference Data, 20(6), 1201–1209. 599 

https://doi.org/10.1063/1.555900 600 

Chaix, E., Broyart, B., Couvert, O., Guillaume, C., Gontard, N., & Guillard, V. (2015). Mechanistic 601 

model coupling gas exchange dynamics and Listeria monocytogenes growth in modified 602 

atmosphere packaging of non respiring food. Food Microbiology, 51, 192–205. 603 

https://doi.org/10.1016/j.fm.2015.05.017 604 

Chaix, E., Guillaume, C., & Guillard, V. (2014). Oxygen and Carbon Dioxide Solubility and Diffusivity in 605 

Solid Food Matrices: A Review of Past and Current Knowledge. Comprehensive Reviews in Food 606 

Science and Food Safety, 13(3), 261–286. https://doi.org/10.1111/1541-4337.12058 607 

Dean, J. (1999). Physical properties. Solubilities of gases in water. In Lange’s Handbook of Chemistry 608 

(15e Ed) (McGraw-Hill Inc., pp. 375–380). 609 

Dinno, A. (2019). dunn.test: Dunn’s test of multiple comparisons using rank sums. R Package Version 610 

1.3.5. 611 

Duan, Z., & Sun, R. (2003). An improved model calculating CO2 solubility in pure water and aqueous 612 

NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology, 193(3–4), 257–271. 613 

https://doi.org/10.1016/S0009-2541(02)00263-2 614 

Farber, J. M. (1991). Microbiological Aspects of Modified-Atmosphere Packaging Technology - A 615 

Review1. Journal of Food Protection, 54(1), 58–70. https://doi.org/10.4315/0362-028X-54.1.58 616 

Fava, P., & Piergiovanni, L. (1992). Carbon dioxide solubility in foods packaged with modified 617 

atmosphere. 2: Correlation with some chemical-physical characteristics and composition. Ind. 618 

Aliment, 297–302. 619 

Guillard, V., Buche, P., Dibie, J., Dervaux, S., Acerbi, F., Chaix, E., Gontard, N., & Guillaume, C. (2016). 620 

CO2 and O2 solubility and diffusivity data in food products stored in data warehouse structured 621 

by ontology. Data in Brief, 7, 1556–1559. https://doi.org/10.1016/j.dib.2016.04.044 622 

Guillard, V., Couvert, O., Stahl, V., Buche, P., Hanin, A., Denis, C., Dibie, J., Dervaux, S., Loriot, C., 623 

Vincelot, T., Huchet, V., Perret, B., & Thuault, D. (2017). MAP-OPT: A software for supporting 624 

decision-making in the field of modified atmosphere packaging of fresh non respiring foods. 625 

Packaging Research, 2(1), 28–47. https://doi.org/10.1515/pacres-2017-0004 626 

Guillard, V., Couvert, O., Stahl, V., Hanin, A., Denis, C., Huchet, V., Chaix, E., Loriot, C., Vincelot, T., & 627 

Thuault, D. (2016). Validation of a predictive model coupling gas transfer and microbial growth 628 

in fresh food packed under modified atmosphere. Food Microbiology, 58, 43–55. 629 

https://doi.org/10.1016/j.fm.2016.03.011 630 

Henry, W. (1832). Experiments on the quantity of gases absorbed by water, at different 631 

temperatures, and under different pressures. Abstracts of the Papers Printed in the 632 

Philosophical Transactions of the Royal Society of London, 1, 103–104. 633 

https://doi.org/10.1098/rspl.1800.0063 634 



 26 

Jakobsen, M., & Bertelsen, G. (2006). Solubility of carbon dioxide in fat and muscle tissue. Journal of 635 

Muscle Foods, 17(1), 9–19. https://doi.org/10.1111/j.1745-4573.2006.00029.x 636 

Jakobsen, M., Jensen, P. N., & Risbo, J. (2009). Assessment of carbon dioxide solubility coefficients for 637 

semihard cheeses: the effect of temperature and fat content. European Food Research and 638 

Technology, 229(2), 287–294. https://doi.org/10.1007/s00217-009-1059-3 639 

Lamichhane, P., Sharma, P., Kelly, A. L., Risbo, J., Rattray, F. P., & Sheehan, J. J. (2021). Solubility of 640 

carbon dioxide in renneted casein matrices: Effect of pH, salt, temperature, partial pressure, 641 

and moisture to protein ratio. Food Chemistry, 336, 127625. 642 

https://doi.org/10.1016/j.foodchem.2020.127625 643 

Lentschat, M., Buche, P., Menut, L., Guari, R., & Roche, M. (2022). Partial n-Ary relation instances on 644 

food packaging composition and permeability extracted from scientific publication tables. Data 645 

in Brief, 41, 108000. https://doi.org/10.1016/j.dib.2022.108000 646 

Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Advances 647 

in Neural Information Processing Systems, 30, 4765–4774. 648 

Munch, M., Buche, P., Guillard, V., & Gaucel, S. (2022). CO2 solubility and composition data of food 649 

products annotated from the scientific litterature. Https://Doi.Org/10.15454/4SFE64. 650 

Pauchard, J., Flückiger, E., Bosset, J., & Blanc, B. (1980). CO2 Löslichkeit, Konzentration bei 651 

Entstehung der Löcher und Verteilung in Emmentalerkäse. Schweizerische Milchwirtschaftliche 652 

Forschung, 69–73. 653 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 654 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., 655 

Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of 656 

Machine Learning Research, 12(85), 2825–2830. 657 

R. C. Team. (2019). R: A language and environment for statistical computing. R Foundation for 658 

Statistical Computing. 659 

Rotabakk, B. T., Lekang, O. I., & Sivertsvik, M. (2007). Volumetric method to determine carbon 660 

dioxide solubility and absorption rate in foods packaged in flexible or semi rigid package. 661 

Journal of Food Engineering, 82(1), 43–50. https://doi.org/10.1016/j.jfoodeng.2007.01.013 662 

Schwartz, S. (2003). Presentation of Solubility Data: Units and Applications. In P. G. T. Fogg & J. 663 

Sangster (Eds.), Chemicals in the Atmosphere - Solubility, Sources and Reactivity. Brookhaven 664 

National Laboratory. 665 

Simpson, R., Almonacid, S., & Acevedo, C. (2001). Mass transfer in Pacific Hake (Merluccius australis) 666 

packed in refrigerated modified atmosphere. Journal of Food Process Engineering, 24(6), 405–667 

421. https://doi.org/10.1111/j.1745-4530.2001.tb00551.x 668 

Vo Thanh, H., Yasin, Q., Al-Mudhafar, W. J., & Lee, K.-K. (2022). Knowledge-based machine learning 669 

techniques for accurate prediction of CO2 storage performance in underground saline aquifers. 670 

Applied Energy, 314, 118985. https://doi.org/10.1016/j.apenergy.2022.118985 671 

  672 

  673 



 27 

Table 1: Nutritional composition information of food products used for the validation 674 

Food product Moisture content 1 Proteins 2 Salt 2 Carbohydrates ² Fibers ² Lipids ² 

Ham 70.7% 22% 1.9% 0.6% 0% 4.8% 

Salmon 66.5% 20% 0.09% 0.5% 0% 15% 

Cheese 40% 27% 1.5% 0.1% 0% 27.5% 

Pâté 51.2% 15% 2.2% 0.5% 1.1% 22% 

1 From the ANSES-CIQUAL French food composition table (Anses, 2019); ² From nutrition facts label of food product. 675 

 676 

Figure 1. 4-folds cross validation. In order to evaluate the performance of a model, the dataset 677 

is separated into four folds with two sets each: the training set (used to learn a model), and the 678 

testing set (used to test the learned model).  679 

Table 2. Performances of different models on our dataset. Average R² [variance computed over 680 

10 repetitions] (Higher=better) 681 

 
Linear methods Local methods Ensemble methods 

 
Linear 

Regression 

Ridge 

Regression 

Decision 

Tree 

K-nearest 

neighbors 

Gradient 

Boosting 

Random 

Forest  

10-

folds 

CV 

0.38 [0.03] 0.35 [0.03] 0.44 [0.04] 0.51 [0.03] 0.56 [0.17] 0.68 [0.03] 
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LOO 0.42 [0] 0.42 [0] 0.55 [0.02] 0.58 [0] 0.69 [0] 0.70 [0.0] 

 682 

Table 3. R2 scores calculated from a 10-folds CV with a model learned from a single 683 

compositional parameter with and without the temperature. Average R² [variance computed 684 

over 10 repetitions] 685 

 
Without Temperature With Temperature 

Fat 0.32 [0.008] 0.44 [0.008] 

Proteins 0.40 [0.006] 0.53 [0.01] 

Water 0.35 [0.009] 0.60 [0.003] 

 686 

 687 

Figure 2. Variation of the SHAP value (no unit) for each feature of the model. For a given line, 688 

each dot represents a measure of our learning dataset. The SHAP value axis shows the 689 

importance of the given feature on the solubility’s value’s prediction. A positive SHAP value 690 

represents a positive impact (for instance, the more water there is, the higher the predicted 691 

solubility will be); on the contrary, a negative SHAP value has a negative impact (for instance, 692 

the higher the temperature is, the more it will have a negative impact on the solubility).  693 
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(a) Interaction of the temperature and water 

 

(b) Interaction of the temperature and fat 

Figure 3. Interaction of the water (a) and fat (b) (expressed in %) with the temperature 694 

(expressed in °C), and their Shapley’s value. Red points show data represented in the learning 695 

dataset; other points are simulated and represent how the model would infer their solubility.  696 

 

(a) Interaction of the water and fat content (b) Interaction of the protein and fat content 

Figure 4. Interaction of water (a) and protein (b) with fat content (expressed in %) and their 697 

Shapley’s value (no unit). Red dots show data present in the learning dataset; other points are 698 

simulated and represent how the model would infer their impact on the solubility. As the sum 699 

of constituents cannot be greater than 100, we only showed physically feasible points on the 700 

graph (i.e., below the line x+y=100). 701 

Table 4. Solubility values predicted with the machine learning model for the food case studies 702 

used in the validation approach. Intervals represent the prediction with a confidence of 90%. 703 

Food Product Ham Pâté Cheese Salmon 
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CO2 solubility (mmol.kg-

1.atm-1) 

55.4 

[35.5;74] 

42.9 

[26.3;56.3] 

34.7 

[28.4;40.9] 

54 

[38.1;89.1] 

 704 

 705 

Figure 5: Impact of food composition on CO2 concentration in the headspace. A: Ham; B: 706 

Salmon; C: Cheese; D: Pâté; dot: experimental measurement; black solid line:  run with the CO2 707 

solubilities predicted by the machine learning model as inputs; red dashed line: model output 708 

with the upper predicted CO2 solubilities as inputs; blue dashed line: model output with the 709 

lower predicted CO2 solubilities as inputs. 710 

 Table 5: Fixed parameters used in simulations 711 

Argument Unit Ham Salmon Cheese Pâté 

Tray exposed area cm² 260 

Lid exposed area cm² 167 

Food thickness cm 0.6 1.8 1.5 1 

Food surface cm² 165 60 80 100 

Density - 1.00 1.06 1.20 1.00 
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Diffusion coefficient of CO2* m²/s 2.44 x 10-9 5.5 x 10-9 9.25 x 10-9 7.6 x 10-9 

* The CO2 diffusion coefficient of each food matrix was calculated using the linear regression DCO2 = 3 x 10-10 %fat + 1 x 10-9  712 

(Chaix et al., 2014). 713 


