Fermat's Last Theorem Analysis in 7 understandable forms

The Pythagorean theorem is perhaps the best known theorem in the vast world of mathematics. A simple relation of square numbers, which encapsulates all the glory of mathematical science, is also justifiably the most popular yet sublime theorem in mathematical science. The starting point was Diophantus' 20 th problem (Book VI of Diophantus' Arithmetica), which for Fermat is for n = 4 and consists in the question whether there are right triangles whose sides can be measured as integers and whose surface can be square. This problem was solved negatively by Fermat in the 17 th century, who used the wonderful method (ipse dixit Fermat) of infinite descent. The difficulty of solving Fermat's equation was first circumvented by Willes and R. Taylor in late 1994 ([1],[2]) and published in Taylor and Willes (1995) and Willes (1995). We present the proof of Fermat's last theorem and other accompanying theorems in 7 different independent ways. For each of the methods (except the first one) we consider, we use the Pythagorean theorem as a basic principle and also the fact that the proof of the first degree Pythagorean triad is absolutely elementary and useful. The first is based on elementary inequalities and gives a solution to every Diophantine equation of degree n, with respect to the number of variables d. The proof of Fermat's last theorem marks the end of a mathematical era; however, the urgent need for a more educational proof seems to be necessary for undergraduates and students in general. Euler's method and Willes' proof is still a method that does not exclude other equivalent methods. The principle, of course, is the Pythagorean theorem and the Pythagorean triads, which form the basis of all proofs and are also the main way of proving the Pythagorean theorem in an understandable way. Other forms of proofs we will do will show the dependence of the variables on each other. For a proof of Fermat's theorem without the dependence of the variables cannot be correct and will therefore give undefined and inconclusive results.

Part I. Generalized theorem of Diophantine equation of degree n with d number of variables I. Theorem 1 [START_REF] Richinick | The Upside-Down Pythagorean Theorem[END_REF][START_REF] Carmichael | On the Impossibility of Certain Diophantine Equations and Systems of Equations[END_REF][START_REF] Kronecker | Lectures on Number Theory[END_REF][START_REF] Poulkas | A Brief New Proof to Fermat's Last Theorem and Its Generalization[END_REF] We consider the sequence of variables x 1 , x 2 , x 3 , .., x d such that they are integers that are different in general from each other and also that the equality x n 1 + x n 2 + x n 3 + . . . + x n d-1 = x n d , where n ∈ N >2 , and d ∈ N >2 indicating the number of variables.

Prove the two basic inequalities:

a) x d x d-1 n < d -1 < x d x1 n b) If x d = x d-1 + k, k ∈ N + then k < x d-1 -(d -1) 1 Proof.
a) We assume that the equation is valid, x n 1 + x n 2 + x n 3 + . . . + x n d-1 = x n d (T.1), where n, d ∈ N >2 , if we assume in the context of generality that the inequality order x 1 < x 2 < x 3 < . . . < x d-1 < x d ⇔ x n 1 < x n 2 < x n 3 < . . . < x n d-1 < x n d , n ∈ N >2 (T.2). Combining relations (T2&T1) we obtain that:

x n 1 + x n 1 + x n 1 + . . . + x n 1 < x n 1 + x n 2 + x n 3 + . . . + x n d-1 = x n d therefore we have (d -1)x n 1 < x n d ⇔ (d -1) < x d x 1 n (T.3)
With the same logic it will hold that:

x n d-1 + x n d-1 + x n d-1 + . . . + x n d-1 > x n 1 + x n 2 + x n 3 + . . . + x n d-1 = x n d therefore we have (d -1)x n d-1 > x n d ⇔ (d -1) > x d
x n d-1 n (T.4).

If we put relations (T3&T4) together we get the obvious but very elementary and at the same time important relation:

x d x d-1 n < d -1 < x d x 1 n (T.5) b)
To complete the proof we continue with very simple inequality relations but very important ones, which we will use for the final theorem 2 that will follow. We consider the truth of the inequality

if x d = x d-1 + k, k ∈ N + then k < x d-1 -(d -1), where d ∈ N >2 . (T.6)
The proof follows 2 different cases, 1. We consider the extreme case if x 1 > k ≥ 1 where d ∈ N >2 .

We therefore assume that x 1 > k ≥ 1 where d ∈ N >2 . It will also be true that:

x d > x d-1 > . . . > x 2 > x 1 > k ≥ 1 (T.7)
From relation (T.7) the inequalities arise as a direct consequence:

x d-1 ≥ x d-2 + 1, x d-2 ≥ x d-3 + 1, . . . , x 2 ≥ x 1 + 1, x 1 ≥ k + 1 (T.8). Adding up in parts yields the general relation we are interested x d-1 > = k + (d -1) ⇔ k ≤ x d-1 -(d -1) (T.9). For our case which d ≥ 3.

We will prove that k ̸ = x d-1 -(d -1) (T.10), since we have assumed that we want d ∈ N >2 . For equality to hold in general , we must k = x 1 -1 = x 2 -2 = . . . = x d-1 -(d -1) (T.11). Which in more general follows from (T.11) that k = x i -i = x d-1 - (d -1) where 1 ≤ i ≤ d -1 (T.12). But from (T.12) follows the very basic relation that determines the wrong logic, i.e., 1

≤ x i -x d-1 + d -1 ≤ 0 + d -1 or 1 ≤ d -1 ⇔ d ≥ 2
his seems to contradict the hypothesis, because we have posited d ∈ N >2 or d ≥ 3.

2. We consider the intermediate case

x i ≤ k ≤ x d-1 or x i-1 ≤ k < x i or 2 ≤ i ≤ d -1.
According to the preceding and relation (T.8) we will have the inequality relations:

x d-1 ≥ x d-2 + 1, x d-2 ≥ x d-3 + 1, . . . , x 2 ≥ x 1 + 1, x 1 ≥ k + 1 and as we know, it will add up as before the inequality x d-1 >= k + (d -1) ⇔ k ≤ x d-1 -(d -1).

If we now assume that the inequality:

x d-1 -(d -1) ≤ k ≤ x d-1 + (d -1) ⇔ k ≤ x d-1 -(d -i) or -(d -1) ≤ (d -i) ⇔ 1 ≤ i. (T.13).
But the last very decisive inequality relation 1 ≤ i contradicts our hypothesis, because 2 ≤ i < d -1 therefore the relation will not apply i.e k ̸ = x d-1 -(d -1) (T.14), and only the relation we are interested in will apply, i.e. k < x d-1 -(d -1) (T.15). We have therefore proved 2 very basic inequalities which will guide us to the final form of inequalities and indicate the minimum value of the exponent n of the generalized diophantine equation:

x n 1 + x n 2 + x n 3 + . . . + x n d-1 = x n d , where d ∈ N >2 for which we are asked to find the restrictive integer limit of the exponent n, so that there are solutions to this diophantine equation. With this procedure, which has a simple but concise logic, we can solve this very difficult problem, for which no clear answer has yet been given, except for the case of d = 3 and n ≥ 3 by various methods, generally called the proof of Fermat's Last Theorem Fermat.

II. Theorem 2.

The number of existing solutions of the exponent n for the equation Proof:

x n 1 + x n 2 + x n 3 + . . . + x n d-1 = x n d , where d ∈ N >2
A) According to Theorem 1, two basic relations will hold a)

x d x d-1 n < d -1 < x d x1 n b) If x d = x d-1 + k, k ∈ N + then k < x d-1 -(d -1)
For the equation

x n 1 + x n 2 + x n 3 + . . . + x n d-1 = x n d , where d, n ∈ N >2 . If I isolate the first part of the first relation i.e x d x d-1 n < d -1 (Θ1) and the second part k < x d-1 -(d -1) with x d = x d-1 + k, k ∈ N + (Θ.2) then I will two inequalities will result (d -1) 1 n -1 < k k + d -1 (Θ.3) (1) (d -1) 1 n -1 > k k + d -1 (Θ.4)
for which, however, I will have to decide which of the two I will choose as acceptable for n. The previous relations finally result for n in the forms associated with the integer part, which are:

n ≥ lntegerPart   log(d -1) log 2k+d-1 d+k-1   + 1 (Θ.5) n ≤ lntegerPart   log(d -1) log 2k+d-1 d+k-1   (Θ.6)
But of course we want the cases where we have k = 1 because this will result in the minimum value for the content of the integer part.This can be seen clearly if we take

ε = log(d -1) log 2k+d-1 d+k-1 = log(d -1) log 1 + k d+k-1 = log(d -1) log 1 + 1 1+ d-1 k (Θ.7)
and call The value for ε becomes minimum when k = 1 and will then take the value

ε min = log(d -1) log 1 + 1 d = log(d -1) log d+1 d (Θ.8)
This will be the final minimum real value (Θ.8) we are interested in for the value of the exponent n, because it reduces to the minimum the acceptable values it can take. Eventually we will clearly get its integer value for the allowable value of the exponent. Any other value removes the exponent from the real values and therefore will not be the one we are looking for. We therefore obtain the final forms of the relations for exponent n

n up ≥ IntegerPart log(d -1) log d+1 d + 1 (Θ.9
)

n down ≤ IntegerPart log(d -1) log d+1 d (Θ.10) Since we have assumed k >= 1 & d >= 3 for the equation x n 1 + x n 2 + x n 3 + . . . + x n d-1 = x n d
, where d ∈ N >2 , in order for one of the two relations (Θ.9, Θ.10) to hold, it must include n = 1&n = 2 which are known to be acceptable and valid.By this obvious logic it obviously follows that the second inequality will hold and the first will not. The first will be the cases of n which are excluded to yield solutions for the diophantine equation.

B) From relation (Θ.8), which refers to the integer minimum content

ε min = log(d -1) log d+1 d (Θ.11)
of the above relations, I can prove that it is always a real number, namely ε min ∈ R + -Q + . This means that in no case do the two limits of n coincide for every integer d. It is a correct expected result that rules out the possibility of an error in choosing the correct integer that will lead us to the existence of solutions and therefore this proof is absolutely useful. We will need a more understandable form to convert the neper logarithm to an integer base and let us choose 2.

We therefore start from relation (Θ.11) and transform it

ε min = log(d -1)/ log 2 log d+1 d / log 2 = log 2 ( d -1) log 2 d+1 d (Θ.12)
Assuming the replacements

d -1 = 2 m ⇔ d = 1 + 2 m and therefore log 2 (d -1) = m, m ∈ Z + . Also log 2 d+1 d = log 2 1 + 1 d = log 2 1 + 1 2 m +1 .
It will follow that

ε min = m log 2 1 + 1 2 m +1 , m ∈ Z + (Θ.13)
We have to prove that log 2 1 + 1 2 m +1 ∈ R + -Q + and then obviously it will hold that ε min ∈ R + -Q + .

We will need two partial proofs. First, we will develop the relation log 1

+ 1 2 m +1
in Maclaurin series. The expansion will be

(2 log[2] -log[3]) - 1 6 log[2](m -1) + 1 72 log[2] 2 (m -1) 2 + 1 81 log[2] 3 (m -1) 3 - 11 log[2] 4 (m -1) 4 5184 - 1 972 log[2] 5 (m -1) 5 + O[m -1] 6
But the final relationship we are interested in log

2 1 + 1 2 m +1
will be in final form

2 log[2] -log[3] log[2] - m -1 6 + 1 72 log[2](m -1) 2 + 1 81 log[2] 2 (m -1) 3 - 11 log[2] 3 (m -1) 4 5184 - 1 972 log[2] 4 (m -1) 5 + O[m -1] 6
We will therefore have a sum of terms that has two constant integers and the other terms will be in log 3/ log 2 form and the other terms in log 2 form. But log 2 is an Irrational number as is the ratio log 3/ log 2[A1, A2]. So the whole sum of the series will be an Irrational number and by extension the value of

ε min = m log 2 1 + 1 2 m +1 , m ∈ Z + , ε min ∈ R + -Q + ,
as a ratio of an integer to an irrational value of number.

Therefore it will hold n down ̸ = n up , ∀d ∈ Z + with acceptable values of the exponent n, so that there is a solution of the generalized diophantine

x n 1 + x n 2 + x n 3 + . . . + x n d-1 = x n d ,
where n ∈ N >2 only for its values of n down , ∀d ∈ Z + . Obviously for any arrangement with d number of variables we will follow the same procedure with the corresponding log base and come to the same conclusion, i.e.

if d ∈ Z + >2 , ε min ∈ R + -Q + .
III. Theorem 3. (F.L.T)

For any integer n > 2, the equation

x n 1 + x n 2 = x n 3 ,
where n ∈ N >2 has no positive integer solutions.

According to Theorem 2(Θ.11), the acceptable values for the exponent n will be given by the relation

n down ≤ IntegerPart log(d -1) log d+1 d , d = 3.
For this particular diophantine equation we will have

ε min = log 2 (d -1) log 2 d+1 d = 2.409421
and hence according to the minimum value the upper value for n will be fully defined

n down ≤ ln tegerP art log(d -1) log d+1 d = IntegerPart[2.409421] = 2
The forbidden values of n will therefore be

n up ≥ lntegerPart log(d -1) log d+1 d = lntegerPart[2.409421] + 1 = 3, n ≥ 3
Therefore, for Fermat's diophantine does not accept solutions. The proof with the given values is complete and complete and understandable but also determinative for the values of n.

IV. Indicative values of the allowed values of n, in relation to the number of variables d in the equation.

A concise procedure with logical inequalities therefore gives us a complete picture of the admissible solutions for n, without having to analyze each case separately, with procedures that are complex and time-consuming, especially as we go up in number of variables. The key the panelization is obviously the value of For n = 6 we know cases with d = 7, 8, 9, 10 and according to this theory it can 1 ≤ n ≤ n down = 7 if d = 5 so it can include n = 6 it just hasn't been found yet. The theory is therefore valid for d = 3 and d = 4 as has been shown.

ε min = log 2 (d -1) log 2 d+1 d , d ∈ Z + >2 from (Θ.

V.Theorem 4

We consider the sequence of variables x 1 , x 2 , x 3 , . . . x d such that they are integers that are different in general from each other and also that the equality

x n 1 + x n 2 + x n 3 + . . . + x n d-s-1 = x n d-s + x n d-s+1 + . . . + x n d
where {n ∈ N >2 , d ∈ N >3 } and s is a finite integer indicating the number of variables in the right part without the x d of equality, then:

Prove the two basic inequalities:

a) x d x d-1 n < d -1 -2 s < x d x1 n , if d = 2 m then 1 ≤ s ≤ d-2 2 or if d = 2 m + 1 then 1 ≤ s ≤ d-3 2 , m ∈ N + ≥2 b) If x d = x d-1 + k, k ∈ N + then k < x d-1 -(d -1) Proof a)
We assume that the equation is valid,

x n 1 + x n 2 + x n 3 + . . . + x n d-s-1 = x n d-s + x d-s+1 + . . . + x n d (T ′ .1)
, where n, d ∈ N >2 , if we assume in the context of generality that the inequality order

x 1 < x 2 < x 3 < . . . < x d-1 < x d ⇔ x n 1 < x n 2 < x n 3 < . . . < x n d-1 < x n d , n ∈ N 2 T ′ .2 .
Combining relations (T ′ .2&T ′ .1) we obtain that:

x n 1 + x n 1 + x n 1 + . . . + x n 1 -s • x n 1 < x n 1 + x n 2 + x n 3 + . . . + x n d-s-1 -x n d-s + . . . + x n d-1 = x n d therefore we have (d -1 -2 s)x n 1 < x n d ⇔ (d -1 -2 s) < x d x1 n T ′ .3 .
With the same logic it will hold that

x n d-1 + x n d-1 + x n d-1 + . . . + x n d-1 -s • x n d-1 > x n 1 + x n 2 + x n 3 + . . . + x n d-s-1 -x n d-s + . . . + x n d-1 = x n d therefore we have (d -1 -2s)x n d-1 > x n d ⇔ (d -1 -2s) > x d x d-1 n (T ′ .4)
If we put relations (T ′ .3&T ′ .4) together we get the obvious but very elementary and at the same time important relation:

x d x d-1 n < d -2s -1 < x d x 1 n (T'.5)
For inequalities (T'.5) to hold, the following must hold conditions

i) if d = 2 m then 1 ≤ s ≤ d-2 2 , because must d -2 s -1 ≥ 1, m ∈ N + ≥2 ii) if d = 2m + 1 then 1 ≤ s ≤ d-3 2 , because must d -2s -1 ≥ 2, m ∈ N + ≥2
which are easily demonstrated by substituting permissible cases.

b) To complete the proof we continue with very simple inequality relations but very important ones, which we will use for the final theorem 2 that will follow. We consider the truth of the inequality if [START_REF] Lenstra | On the Inverse Fermat Equation[END_REF]. This is true according to Theorem 1, case b.

x d = x d-1 + k, k ∈ N + then k < x d-1 -(d -1), where d ∈ N 3 (T ′ .
VI.Theorem 5.

The number of existing solutions of the exponent n for the equation 

x n 1 + x n 2 + x n 3 + . . . + x n d-s-1 = x n d-s + x n d-s+1 +. . .

Proof

For the equation

x n 1 + x n 2 + x n 3 + . . . + x n d-s-1 = x n d-s + x n d-s+1 + . . . + x n d , where n ≥ 3, d > 3 posi- tive integers if I isolate the first part of the first relation i.e x d x d-1 n < d -2s -1 (Θ ′ .1) and the second part k < x d-1 -(d -1) with x d = x d-1 + k, k ∈ N + (Θ ′ .2) then I will two inequalities will result (d -2s -1) 1 n -1 < k k + d -1 (Θ ′ .3) (d -2s -1) 1 n -1 > k k + d -1 (Θ ′ .4)
for which, however, I will have to decide which of the two I will choose as acceptable for n. The previous relations finally result for n in the forms associated with the integer part, which are:

n ≥ lntegerPart   log(d -2 s -1) log 2k+d-1 d+k-1   + 1 (Θ ′ .5) n ≤ lntegerPart   log(d -2 s -1) log 2k+d-1 d+k-1   (Θ ′ .6)
But of course we want the cases where we have k = 1 because this will result in the minimum value for the content of the integer part. This can be seen clearly if we take the content of the integer value and call

ε = log(d -2 s -1) log 2k+d-1 d+k-1 = log(d -2 s -1) log 1 + k d+k-1 = log(d -2 s -1) log 1 + 1 1+ d-1 k (Θ ′ .7)
The value for ε becomes minimum when k = 1 and will then take the value.

ε min = log(d -2 s -1) log 1 + 1 d = log(d -2 s -1) log d+1 d (Θ ′ .8)
This will be the final minimum real value (Θ.8) we are interested in for the value of the exponent n, because it reduces to the minimum the acceptable values it can take. We therefore obtain the final forms of the relations for exponent n

n up ≥ lntegerPart log(d-2s-1) log( d+1 d ) + 1 (Θ ′ .9) n down ≤ lntegerPart log(d-2s-1) log( d+1 d ) (Θ ′ .10)
Lemma 1.

The symmetric equation

x n 1 +x n 2 +x n 3 +. . .+x n d-s-1 = x n d-s +x n d-s+1 +. . .+x n d where n ≥ 0, d = 2m, m ∈ N + ≥2
always has a solution. The number of existing solutions of the exponent n for the equations are infinite if n = 0.

Proof

i) The value of s in this case is s = d 2 -1 therefore from relations Θ.9 and Θ.10 we obtain same value for n down = n up = 0, because log(d -2s -1) = log d -d

2 -1 -1 = log(1) = 0 -Therefore apply only for n = n down = 0, n ∈ N + 0 will always has infinite solutions.

ii) In each case we add 2 variables to both parts and equate them with a variable in the nth power.

Thus we come to a Diophantine nth degree with a number of variables d + 2, otherwise it is possible to have the lowest category we add 1 variable i.e. we have number variables d + 1.

i) Example:

2 0 + 3 0 + 6 0 = 7 0 + 8 0 + 10 0 ii) Example: x n 1 + x n 2 = x n 3 + x n 4 ⇔ x n 1 + x n 2 + x n e = x n 3 + x n 4 + x n e = x n v .
That is, once we add two variables integers x n e and x n v and we come to the upper minimum Diophantine nth power. According to the table in section IV page 6 , then n <= 4 corresponding to d = 4. Here we had to go up 2 variables because of the weak for n = 3. Otherwise it is possible to have the lowest category i.e. d + 1.

VIII.Indicative values of the allowed values of n, in relation to the number of variables d in the equation 2 parts of theorem 4.

By the same procedure we perform categorization with logical inequalities and have a complete picture of the acceptable values of n as well as those that are rejected. Thus we do not deal with each case separately, a process that is considered very time consuming and difficult. In each case we use the relations Θ ′ .9 and Θ ′ .10. For each value s, d we want we use the minimum value from (Θ.9) as defined in Theorem 5 Part II. Special theorems concerning only the last Fermat Last Theorem I.1. Theorem 1 (Pythagorean triples 1st degree)

ε min = log 2 (d -2s -1) log 2 d+1 d , d ∈ Z + >3 The values of n down , n up if s = 1, 2,
Let P 1 be the set of Pythagorean triples and defined as

P 1 = {(x, y, z) | a, b, c, x, y, z ∈ Z -{0} and a•x+b•y = c•z}. Let G 1 be the set defined as: G 1 = {(x = k•(c•λ-b), y = k•(a-c), z = k•(a•λ-b)), (x = k • (b -c), y = k • (c • λ -a), z = k • (b • λ -a)), (x = k • (c + b • λ), y = k • (c -a • λ), z = k • (α + b)) | k, λ ∈ Z + }.
We need to prove that the sets P 1 = G 1 .

Proof.

Given a triad (a, b, c) such that abc ̸ = 0 and are these positive integers, if we divide by y ̸ = 0, we get according to the set P 1 then apply a •(x/y) + b = c • (z/y) and we call X = x/y and Z = z/y. We declare now the sets:

F 1 = {(X, Z)} ∈ Q 2 -{0} | a • X + b = Z • c, where a, b, c ∈ Z -{0}, and where X, Z ∈ Q -{0} and S 1 = (X, Z) ∈ Q 2 -{0} | X = m -λ ∧ Z = m, where m, λ ∈ Q -{0}
The set F 1 ∩ S 1 has 3 points as a function of parameters m, λ and we have solutions for the corresponding final equations,

F 1 ∩ S 1 = < a • (m -λ) + b = m • c ⇔ m = a•λ-b a-c , a -c ̸ = 0 m -λ = c•λ-b a-c , a -c ̸ = 0, y = k • (a -c), k ∈ Z + x = c•λ-b a-c • y ∧ z = c•λ-b a-c • y, a -c ̸ = 0 x = (c • λ -b) • k, y = k • (a -c), z = k • (a • λ -b), k ∈ Z + , a -c ̸ = 0 > Therefore F 1 ∩ S 1 = ⟨x = (c • λ -b) • k, y = k • (a -c), z = k • (a • λ -b), k ∈ Z + , a -c ̸ = 0⟩ (I)
Dividing respectively by x ̸ = 0 we get the set and the relations we call Y = y/x and Z = z/x

F 2 = (Y, Z) ∈ Q 2 -{0} | a + b • (y/x) = c • (z/x), where a, b, c ∈ Z -{0}, and where Y, Z ∈ Q -{0} and S 2 = (Y, Z) ∈ Q 2 -{0} | Y = m -λ ∧ Z = m, where m, λ ∈ Q -{0}
Then as the type (I) we get the result

F 2 ∩ S 2 = ⟨x = (b -c) • k, y = k • (c • λ -a), z = k • (b • λ -a), k ∈ Z + , b -c ̸ = 0⟩ (II)
and finally dividing by z ̸ = 0 similarly as before we call X = x/z and Y = y/z

F 3 = (X, Y) ∈ Q 2 -{0} | a • (x/z) + b • (y/z) = c
, where a, b, c ∈ Z -{0}, and where X, Y ∈ Q -{0}

and

S 3 = (X, Y) ∈ Q 2 -{0} | X = m -λ ∧ Y = m, where m, λ ∈ Q -{0} . F 3 ∩ S 3 = ⟨x = (c + b • λ) • k, y = k • (c -a • λ), z = k • (a + b), k ∈ Z + , a + b ̸ = 0} (III)
As a complement we can state that the parameter λ can be equal with λ = p/q, where p and q relatively primes. Therefore P 1 = G 1 and the proof is complete.

I.2. Theorem 2 (Pythagorean triples 2nd degree).

Let P 2 be the set of Pythagorean triples and defined as P 2 = {(a, b, c) | a, b, c ∈ N and a 2 + b 2 = c 2 . Let G 2 be the set defined as: G 2 = k q 2 -p 2 , 2kpq, k p 2 + q 2 , 2kpq, k q 2 -p 2 , k p 2 + q 2 | k, p, q ∈ N + , p ≤ q, p and q relatively primes}. We need to prove that the sets P 2 = G 2 .

Proof.

Given a Pythagorean triad (a,b,c) such that abc ̸ = 0 and (a, b, c) are positive integers, if we divide by b 2 we get according to the set P 2 that (a/b) 2 + 1 = (c/b) 2 , with (c/b) > 1. We declare now the sets:

F = (x, y) ∈ Q 2 + | x 2 + 1 = y 2 , x = a/b ∧ y = c/b, where a, b, c ∈ Z + and S = (x, y) ∈ Q 2 + | x = m -r ∧ y = m, where m, r ∈ Q + .
The set F ∩S has two pairs points as a function of parameters m, r and we have solutions for the corresponding final equations as follow,

     (m -r) 2 + 1 = m 2 ⇔ m = r 2 +1 2•r , r ̸ = 0, where m, r ∈ Q + (1) (m -r) 2 = 0 ⇔ m = r ∧ r = 1 (2)
But we get from (1) i) If r = p q , {p, q prime numbers, p < q} we have m = p 2 +q 2 2•p•q and c = y

• b ie c = m • b = p 2 +q 2 2•p•q • b therefore b = 2 • p • q • k (3) and final c = p 2 + q 2 • k (4) ii) If a = (m -r) • b = q 2 -p 2 2•p•q • b = q 2 -p 2 • k (5)
Therefore the solutions is:

a = (q 2 -p 2 ) • k, b = 2 • p • q • k, c = (p 2 + q 2 ) • k
With cyclic alternation of relations (3), (4) because b can become c and vice versa. So as a final solution we have the set G 2 = k q 2 -p 2 , 2kpq, k p 2 + q 2 , 2kpq, k q 2 -p 2 , k p 2 + q 2 | k, p, q ∈ N + , q ∈ N * , p ≤ q, p and q relatively primes} (6). Therefore P 2 = G 2 and the proof is complete.

The set G 2 gives the total solution of the Pythagorean equation. But it is the landmark point for further consideration of Fermat's equation these relations proved because they are directly related to whatever method we engage and arrive at a general proof.

These proofs are elementary not only as a tool for proving Fermat but also for proving another more generalized conjecture of Beal's. A conjecture which requires Fermat's last theorem to hold in order to hold. The proofs briefly given here are documented both by the Pythagorean triads and by the correctness of the existence of integer solutions and variables.

Part III. Proof Fermat's Last Theorem Method I.

I.2.1. Theorem 3 (Basic theorem of Proof ).

Let P n be the set of Fermat triples and defined as:

P n = (a, b, c) | a, b, c, n > 2 ∈ N + and an a n + b n = c n , abc ̸ = 0}
Let G n be the set defined as:

G n = {((a = 0, c = b or b = 0, c = a or c = 0, a = -b or a = b = c = 0) | n = 2k + 1, (a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N + }.
We need to prove that the sets P n ̸ = G n and also P n = ∅.

Proof.

We have 2 sets P n and G n of solutions that we need to prove are not equal and G n is the complete set unconstrained, as we will prove of the diophantine Fermat equation. The basis of the method for the proof is the relations proved by theorems 1 & 2 of the Pythagorean triples. We start with the very basic equivalence:

a n + b n = c n ⇔ (a/b) n + 1 = (c/b) n ⇔ (c/b) n -(a/b) n = 1 ⇔ (c/b) n/2 2 -(a/b) n/2 2 = 1, n > 2, where a/b, c/b ∈ Q + , abc ̸ = 0 (M1.1)
We declare now the sets:

F n = (a/b, c/b) ∈ Q 2 + (c/b) n/2 2 -(a/b) n/2 2 = 1, n > 2, a, b, c ∈ N + , S n = (a/b, c/b) ∈ Q 2 + | m -λ = a/b ∧ m = c/b, m, λ ∈ Q +
From this point on, initially we solve the system freely without constraints for variables (a, b, c), i.e if apply (a, b, c) | a, b, c ∈ N + , m, λ ∈ Q + . This is because, as we will see below, the equations themselves result in at least one zero value for some variable. The following applies to the quadratic difference system:

The set F n ∩ S n leads to 2 categories of solutions let's look at it in detail:

m n/2 2 -(m -λ) n/2 2 = 1 ⇔            m n/2 -(m -λ) n/2 = 1 t m n/2 + (m -λ) n/2 = t            ⇔            m n/2 = t 2 +1 2•t (m -λ) n/2 = t 2 -1 2•t            ⇔            m = t 2 +1 2•t 2/n (m -λ) = t 2 -1 2•t 2/n            ⇔            m = t 2 +1 2•t 2/n λ = t 2 +1 2•t 2/n -t 2 -1 2•t 2/n            , t ∈ Q + (M1.2)
Let us further assume that t = p/q where p, q ∈ N + , p > q, p and q relatively primes if we substitute the value of t, in relation (M1.2) then we get:

         m = p 2 +q 2 2•p•q 2/n λ = p 2 +q 2 2•p•q 2/n -p 2 -q 2 2•p•q 2/n         
, p, q ∈ Z >0 , p and q relatively primes (M1.3)

We come to the most crucial point where we have to determine whether m and λ belong to Q + or not, because by definition they must belong to Q + . Because as it is in the form of relation M1.3 it is difficult to infer and therefore we will use a correlation trick. To this end, we make the following assumptions:

We define the relationships and we define as σ = m and ϵ = m -λ then apply:

If where σ, ε ∈ Q >0 , p and q relatively primes, p, q

∈ Z >0          σ n/2 = p 2 +q 2 2•p•q ε n/2 = p 2 -q 2 2•p•q          ⇔          p q = σ n/2 + ε n/2 q p = σ n/2 -ε n/2          ⇔ σ n/2 + ε n/2 σ n/2 -ε n/2 = 1 (M1.4)
We now distinguish 2 cases:

I) p ̸ = q, σ n/2 + ε n/2 • σ n/2 -ε n/2 = 1
This case is indeterminate for the σ, ε but it gives us informations in which set each one belongs. So we have the relations:

       σ = p 2 +q 2 2•p•q 2/n ε = p 2 -q 2 2•p•q 2/n       
where σ, ε ∈ Q >0 , p and q relatively primes, p, q ∈ Z >0 (M1.5)

If we divide ε and σ we get (M1.5):

                           ε σ = p 2 -q 2 p 2 + q 2 2/n ⇔ ε σ = p 2 -q 2 • p 2 + q 2 n/2-1 (p 2 + q 2 ) n/2 2/n ⇔ ε = σ p 2 + q 2 n/2 (p 2 -q 2 ) • (p 2 + q 2 ) n/2-1                            where σ p 2 + q 2 ∈ Q >0 , ε ∈ R + -Q + ,
p and q relatively primes, p, q ∈ Z >0 (M1.6)

The last relation gives rise to the following interesting relationship

ε = σ p 2 + q 2 n/2 (p 2 -q 2 ) • (p 2 + q 2 ) n/2-1 where σ p 2 + q 2 ∈ Q >0 , ε ∈ R + -Q + ,
p and q relatively primes, p, q ∈ Z >0 (M1.7)

Which if we analyse it section by section, is interpreted as follows

                   σ p 2 + q 2 ∈ Q >0 and n/2 (p 2 -q 2 ) • (p 2 + q 2 ) n/2-1 ∈ (R >0 -Q >0 ) i.e. ε is irrational number                    ε ∈ R + -Q + ,
p and q relatively primes, p, q ∈ Z >0 (M1.8)

For ε to be an positive rational number, must apply for the subroot (that it must be an integer) that:

p 2 -q 2 = p 2 + q 2 ⇔ q = 0, p and q relatively primes, p, q ∈ Z >0 (M1.9) But this i.e that q = 0 contradicts the assumption i.e that q must not be zero, so this case is impossible and is therefore rejected.

Hence impossible to be a Rational number and logically there will be 2 additional cases.

II) The t if is integer then similarly will apply σ (n/2) -ϵ (n/2) σ (n/2) + ϵ (n/2) = 1.

But from Theorem 4 in (method II page 13,14), for n odd or even, it is proved that valid λ = 1 & m = 1 if we accept that λ is an integer. We come to relationship (M1.2 page 10) then because we have the ratio m = t 2 + 1 /(2t)

(2/n) = 1 ⇔ t = 1. The value of t is therefore independent of n. But when t = 1 we will have t = p/q = 1 ⇔ p = q. There is now only one case left to consider what happens when t = 1 and completes the proof.

III) If t = 1 then p = q and furthermore σ (n/2) + ϵ (n/2) σ (n/2) + ϵ (n/2) = 1.

From relationship (M1.4) we have

       σ n/2 + ε n/2 = 1 σ n/2 -ε n/2 = 1        ⇔        σ = ±1, ε = 0, n = 2 • k, k ∈ N + , k > 1 σ = 1, ε = 0, n = 2 • k + 1, k ∈ N +        (M1.10) Aggregated results for 1.n = 2k + 1, k ∈ N * i).if apply: a/b = m -λ, c/b = m m = 1 ∧ m -λ = 0 ⇔ a = 0 ∧ c = b ii).if apply: b/a = m -λ, c/a = m and m = 1 ∧ m -λ = 0 ⇔ b = 0 ∧ c = a iii).If m -λ = -1 ∧ m = 0 ⇔ a = -b, c = 0 iv).If m -λ ̸ = 0 ∧ m ̸ = 0 ⇔ a = b = c = 0 2.n = 2k, k ∈ N + , k > 1 i).if apply: a/b = m -λ, c/b = m m = ±1 ∧ m -λ = 0 ⇔ a = 0 ∧ c = ±b ii).if apply: b/a = m -λ, c/a = m and m = ±1 ∧ m -λ = 0 ⇔ b = 0 ∧ c = ±a iii).If m -λ ̸ = 0 ∧ m ̸ = 0 ⇔ a = b = c = 0 (M1.11)
From these 2 cases we can easily conclude that the set of solutions of the intersection of the sets F n ∩ S n arises the G n which is: We need to prove that the sets P n ̸ = G n and also P n = ∅.

G n =

Proof

We have 2 sets P n and G n of solutions that we need to prove are not equal and G n is the complete set unconstrained, as we will prove of the diophantine Fermat equation. The basis of the method for the proof is the relations proved by theorems 1&2 of the Pythagorean triples. We start with the very basic equivalence

a n + b n = c n ⇔ (a/b) n + 1 = (c/b) n ⇔ (c/b) n -(a/b) n = 1, n > 2, {a/b, c/b} ∈ Q + , abc ̸ = 0 (M3.1)
The set F 0 ∩ S n leads to 2 categories of solutions let's look at it in detail for n i.e. n = 2r + 1, r ≥ 1 and n = 2r, r > 1, r = N + i) n = 2r + 1, r ∈ N +

We declare now the sets:

F n = (a/b, c/b) ∈ Q 2+ | (c/b) n -(a/b) n = 1, n > 2, a, b, c ∈ N + , S n = (a/b, c/b) ∈ Q 2+ | m -λ = a/b ∧ m = c/b, m, λ ∈ Q +
From this point on, initially we solve the system freely without constraints for variables (a, b, c), i.e if apply (a, b, c) | a, b, c ∈ N + , m, λ ∈ Q + : As we will see below, the equations themselves lead to at least one zero value for some variable that we will obviously exclude. The following applies to the system:

We define the function

F (m, λ) = (m -λ) (2r+1) -m 2r+1 + 1 = 0, m, λ ∈ Q + M(3.2)
To find the discriminant we need to find the first derivative and substitute it into the original function under the condition that it is >= 0.

Therefore:

D = ∂F (m, λ) ∂m = (2r + 1) • (m -λ) 2r -(2r + 1) • m 2r = 0 ⇔ m = λ 2 λ = 0 , but because
λ ̸ = 0 we accept only the m = λ 2 and with substitution in the original equation we have F (m, λ) ≥ 0 which must apply into discriminant:

F (m max , λ) = λ 2 -λ 2r+1 - λ 2 2r+1 + 1 = 1 -2 • λ 2 2r+1 ≥ 0 ⇔ λ ≤ 2 • 1 2 1/(2r+1) Therefore 0 < λ < 2 • 1 2 1/(2r+1)
But then λ < 2 • 1 2 1/(2r+1) and for r → ∞ then λ → 2. How ever because λ > 0 it follows that the only integer value of λ = 1 and therefore the unique solution m = 1 will also result ii) n = 2r, r > 1, r ∈ N + .

In this second case according to relation (M3.1) we declare now the sets:

F n = (a/c, b/c) ∈ Q 2 + | (a/c) n + (b/c) n = 1, n > 2, a, b, c ∈ N + , S n = (a/c, b/c) ∈ Q 2 + | m -λ = a/c ∧ m = b/c, m, λ ∈ Q + We define the function F (m, λ) = 1 -(m -λ) (2r) -m 2r = 0, m, λ ∈ Q + (M 3.
3). To find the discriminant we need to find the first derivative and substitute it into the original function under the condition that it is

>= 0. Therefore: D = ∂F (m, λ) ∂m = -(2r) • (m -λ) 2r-1 -(2r) • m 2r-1 = 0 ⇔ m = λ 2 , therefore m = λ
2 , and with substitution in the original equation F(m, λ) ≥ 0 which must apply into discriminant: 2r) and for r → ∞ then λ → 2. However because λ > 0 it follows that the only integer value of λ = 1 and therefore the unique solution m = 1 will also result.

F (m max , λ) = 1 - λ 2 -λ 2r - λ 2 2r = 1 -2 • λ 2 2r ≥ 0 ⇔ λ ≤ 2 • 1 2 1/(2r) . Therefore 0 < λ < 2 • 1 2 1/(2r) . But then λ < 2 • 1 2 1/(
This analysis is obtained for integer λ. If λ ∈ Q, then we use the result of Theorem 3 , as a lemma, in particular, it follows from (M1.9) that if p ̸ = q then this is impossible and therefore λ = p/q = 1. Consequently for n > 2 for values of λ = 1 as only integer and m = 1. These values for λ, m lead to the unique solution of the set: But according to the original hypothesis that abc ̸ = 0, implies that there can be no solution.

The only therefore integer value is (λ, m) = (1, 1) and therefore as we proved again Pn ̸ = Gn and Pn = ∅ since the assumptions we made must also hold must keep the integer positive value in each variable, which is absolutely necessary.

Method III.

Proof of FLT by maximum of discriminant using Frey's elliptic curves.

III.1. Theorem 5. (Basic theorem of Proof ).

In 1955, Taniyama noted that it was plausible that the N p attached to a given elliptic curve always arise in a simple way from a modular form (in modern terminology, that the elliptic curve is modular). In 1985 Frey observed that this did not appear to be true for the elliptic curve attached to a nontrivial solution of the Fermat equation an a p + b p = c p , p > 2. His observation prompted Serre to revisit some old conjectures implying this, and Ribet proved enough of his conjectures to deduce that Frey's observation is correct: the elliptic curve attached to a nontrivial solution of the Fermat equation is not modular. Finally, in 1994 Wiles (assisted by Taylor) proved that every elliptic curve in a large class is modular, there by proving Fermat's Last Theorem. It was Gerhard Frey [START_REF] Richinick | The Upside-Down Pythagorean Theorem[END_REF][START_REF]Solutions to Beal's Conjecture, Fermat's last theorem and Riemann Hypothesis[END_REF] who completely transformed FLT into a problem about elliptic curves. In essence, Frey said this: if I have a solution a n + b n = c n to the Fermat equation for some exponent n > 2, then I'll use it to construct the following elliptic curve:

E : y 2 = x (x -a n ) (x + b n ) = g(x) (M4.1)
Now if f is a polynomial of degree k and if r 1 , r 2 , . . . r k are all of its roots, then the discriminant ∆(f) of f is defined by

∆(f ) = 1<i<j≤k (r i -r j ) 2 (M4.2)
If f is monic with integer coefficients, it turns out that ∆(f) is an integer. The three roots of the polynomial g(x) on the right-hand side of the Frey curve are 0, a n and -b n using the fact that a n -(-b n ) = a n +b n = c n and a little algebra, we find that ∆(g) = (abc) 2n . Frey said that an elliptic curve with such a discriminant must be really strange. In particular, such a curve cannot possibly be what is called modular (never mind what that means). Now here's a thought, said he; what if you could manage to prove two things: first, that a large class of elliptic curves is modular, and second, that the Frey curve is always a member of that class of curves? Why, you'd have a contradiction-from which you could conclude that there is no such curve. That is, there is no such solution to the Fermat equation ... that there is no counterexample to Fermat's Last Theorem ... and so Fermat's Last Theorem is true. We will try to give another proof using the well-known theory of classical analysis using the discriminant more understandable and faster. The steps we follow are in order as: i). Since we have accepted as correct the relevant theory for Frey's elliptic curves equation (M4.1) will apply y 2 = x (x -a n ) (x + b n ) and if we differentiate it with respect to x we get the relations analytically:

< 2y dy dx = d dx x x 2 + (b n -a n ) x -(ab) n = d dx x 3 + (b n -a n ) x 2 -(ab) n x 2y dy dx = 3x 2 + (b n -a n ) 2x -(ab) n , y dy dx = 3 2 x 2 + (b n -a n ) x - (ab) n 2 dy dx = 3 2 x 2 + (b n -a n ) x -(ab) n 2 x 3 + (b n -a n ) x 2 -(ab) n x = 0 > (M4.3)
It must therefore be true that the numerator is equal to zero i.e.

< x 2 + 2 3 (b n -a n ) x - (ab) n 3 = 0, x + 1 3 (b n -a n ) 2 - (b n -a n ) 2 3 2 - (ab) n 3 = 0 x = - 1 3 (b n -a n ) ± 1 3 (b n -a n ) 2 + 3(ab) n x = -(b n -a n ) ± (a n + b n ) 2 -(ab) n 3 x = -(b n -a n ) ± a n + b n -(ab) n/2 a n + b n + (ab) n/2 3 = -(b n -a n ) ± √ ∆ 3 ∆ = is the discriminant and b > a > (M4.4)
Because a n + b n + (ab) n/2 > 0 and this after (a, b, c) ∈ N + , it follows that the representation a n + b n -(ab) n/2 ≥ 0 (M4.5). But apply a n + b n = c n (M 4.6) we will get (a • b) = c 2 (M 4.7). Finally, from relations (M4.5, M4.6, M4.7) it will follow that (a n + b n -c n ) ≥ 0 (M4.8). From relationships (M4.6 and M4.8) the equation results < But from (M4.8) apply only " = ", therefore we have:

a n + c 2 a n -c n = 0, (a n ) 2 -a n c n + (c n ) 2 = 0 a n - c n 2 2 + (c n ) 2 - 1 4 (c n ) 2 = 0, a n - c n 2 2 + 3 4 (c n ) 2 = 0 a = c (1 ± i √ 3) 2 1/n , i = √ -1 > (M4.9)
That is, there is a complex number for a related to c or b related to c respectively. So we do not find an integer relationship between the variables as has been proven. According to relation (M4.9) it follows that in relation (M4.4) the Discriminant ∆ = 0, another very basic conclusion, which leaves out as we see the variable c • ([8], [START_REF]Solutions to Beal's Conjecture, Fermat's last theorem and Riemann Hypothesis[END_REF]). Our penultimate goal is to calculate x with respect to our new discoveries and the final goal is to calculate y. From relation (M4.4) it follows that

     x = -(b n -a n ) ± √ ∆ 3 = -(b n -a n ) 3 ∆ = 0, the discriminant      (M4.10)
Finally, we have for the calculation of y the relationships

< b > a y = (b n -a n ) (b n + 2a n ) (a n + 2b n ) 3 3/2 must subroot of y > 0 d 2 y dx 2 = 3x 4 + 4 (b n -a n ) x 3 -6(ab) n x 2 -(ab) 2n 4 {x (x -a n ) (x + b n )} 3/2 d 2 y dx 2 y ′ =0 = - 3 9/2 4 (b n -a n ) 2 3 + (ab) n 2 [(b n -a n ) (b n + 2a n ) (a n + 2b n )] 3/2 ⟨0 > (M4.11)
So there is a maximum at this point but in fact we cannot accept its existence because there is no positive integer so that D = 0 is satisfied. This is what Frey has stated as the forbidden point of existence. In general we consider 2 cases in relation to

y 2 = x (x -a n ) (x + b n ):
A. y = 0. In this case there are 3 categories anaphorically with a,b,c.

A 1 : If x = 0 then apply a • b = 0 ⇔ a = 0 ∨ b = 0 which is rejected because a • b • c ̸ = 0 A 2 : If x = a n then apply c = 0, but is rejected because a • b • c ̸ = 0 A 3 : If x = -b n then apply c = 0, but is rejected because a • b • c ̸ = 0
B. y ̸ = 0 and y ∈ N + , in this case there are 2 categories anaphorically with a, b, c.

In principle it applies to that y =

(c n -2a n ) • (c n + a n ) • (2c n -a n ) 3 3 if we change b to a. From 2 relationship b • a = c 2 & a n + b n = c n implies a n = c n 1 2 (1 ± i √ 3) (a, b, c) ∈ N + .
So we have:

B 1 ) a n = c n 1 2 (1 -i √ 3) With replacement we have y = (c n -2a n ) • (c n + a n ) • (2c n -a n ) 3 3 = ic 3n 3 1/2 . If i replace with c n = 3 1/2 • i • k 2r , k, r ∈ N + then y = k 3r , i.e Integer positive. B 2 ) • a n = c n 1 2 (1 + i √ 3) With replacement we have y = (c n -2a n ) • (c n + a n ) • (2c n -a n ) 3 3 = - ic 3n 3 1/2 If i replace with c n = -3 1/2 • i • k 2r , k, r ∈ N + then y = k 3r , i.e Integer positive.
For Frey's curve with the original formula is forbidden to exist & cannot be drawn with Fermat's conditions under the resulting conditions.As we can see in these 2 cases, in order to have y an integer, we need (a, b, c) ∈ C -R. Therefore these 2 cases A, B rejected for the reasons explained and furthermore we have complex variable values and there is not solution for the Fermat equation a n + b h = c n for some exponent n > 2, in integers, with use of Frey's elliptic curves.

Method IV.

Method using the generalises Fermat equation

IV.1 Theorem 6

Any equation form x p + y q = z w with positive integers x, y, z, p, q, w where p, q, w > 1 , is transformed into a final Diophantine equation with GCD(x, y, z) = 1 then and only then, when at least one exponent equals 2. This equation will belong to a class of equations with exponents that be consistent with the criteria σ(p, q, r) > 1, σ(p, q, r) = 1 or σ(p, q, r) < 1 with a limited number equations, in accordance with chapter 4. [START_REF]Proof of Beal's conjecture[END_REF]4,[START_REF]A new approach of Fermat-Catalan conjecture Jamel Ghanouchi[END_REF] Proof

The number of the forms of x q + y p = z w , x, y, z, p, q, w ∈ Z + ∧ {q >= 2, p >= 2, w >= 2} after simplifying the terms of the GCD[x, y, z], Lemma 1, Lemma 2 limited to 6. Depending on the ascending order of exponents {p, q, w} of original Diophantine equation x p +y q = z w , x, y, z, p, q, w ∈ Z + ∧{q >= 2, p >= 2, w >= 2} and after simplifying the terms with the number ε = GCD[x, y, z], we receive a total of 6 cases where any stemming detail has as follows 1. λ p • ε p-q + µ q = ε w-q • σ w , w > p > q ∈ Z + 2. λ p + ε q-p µ q = ε w-p • σ w , w > q > p ∈ Z + 21 3. λ p • ε p-q + µ q = ε w-q • σ w , p > w > q ∈ Z + 4. λ p • ε p-w + ε q-w • µ q = σ w , p > q > w ∈ Z + 5. λ p • ε p-w + ε q-w µ q = σ w , q > p > w ∈ Z + 6. λ p + ε q-p µ q = ε w-p • σ w , q > w > p ∈ Z + But these exhibitors must comply with the Fermat-Catalan criteria, but here we will analyse them in general terms, distinguishing 3 general cases:

if we accept that p,q and w are fixed positive integers and that these exponents must satisfy the criteria of chapter 4, and after first accepting p, q, w >= 2, we will prove that at least one exponent equals 2 using these criteria alone. So according to this logic the following 3 cases will apply:

Case 1 rd 0 < 1/p + 1/q + 1/w < 1

In order to we calculate the exhibitors present in the open interval (0, 1) solve the inequality as z and we get

1/w < 1 - p + q p • q ⇒ w > p • q p(q -1) -q
The inequality has integer solutions which arise only in accordance with the 3 equations:

(1). p • (q -1) -q = 1 (2). q = φ • (p • (q -1) -q) (3). p = ε • (p • (q -1) -q) ε, φ ∈ Z 1.
From the first equation it follows that p • (q -1) = q + 1 ⇒ p = 1+q q-1 = 1 + 2 q-1 which implies 2 prerequisites: i) q -1 = 1 ⇒ q = 2 ∧ p = 3 ii) q -1 = 2 ⇒ q = 3 ∧ p = 2 because should the (q -1) must divide 2 And for 2 exhibitor cases we get w > 6 ⇒ w ≥ 7 Therefore Thus arise the two triads p = 3, q = 2, w ≥ 7 and p = 2, q = 3, w ≥ 7 2. Similarly from the second equation q = ϕ • (p • (q -1) -q) we get:

q = ϕ • p • (q -1) -q • φ ⇒ p = q • (1 + ϕ) ϕ • (q -1) i)ϕ(q -1) = 1 ⇒ ϕ = 1 q -1 = 1 ∧ q -1 = 1 ⇒ q = 2 p = q • (1 + ϕ) ϕ • (q -1) = 2 • 2 1 = 4 w > p • q p(q -1) -q = 4 • 2 4 • 1 -2 = 4, w ≥ 5
Hence the triad p = 4, q = 2, w ≥ 5

ii)q = σ(q -1)

∧ (1 + ϕ) = λ • ϕ a)ϕ = 1 λ -1 ⇒ λ -1 = 1 ⇒ (λ = 2 ∧ ϕ = 1) β)q • (σ -1) = σ ⇒ q = σ σ -1 = 1 + 1 σ -1 == 2 ∧ σ -1 = 1 ⇒ (σ = 2 ∧ q = 2) p = q • (1 + ϕ) ϕ • (q -1) = 2 • 2 1 • 1 = 4, w > p • q p(q -1) -q = 4 • 2 4 • (2 -1) -2 = 4, w ≥ 5
Therefore resulting triad

|p = 4, q = 2, w ≥ 5| iii)q = σ • ϕ ∧ (1 + ϕ) = λ • (y -1) a)λ = 1 + ϕ y -1 = 1 q -1 + ϕ q -1 ∧ q -1 = 1 ⇒ (q = 2 ∧ λ = 3) σ • ϕ = 2 ⇒ (σ = 1 ∧ ϕ = 2), (σ = 2 ∧ ϕ = 1) q = 2 ∧ ϕ = 1 ⇒ p = q • (1 + ϕ) ϕ • (q -1) = 2 1 2 1 = 4, w > p • q p(q -1) -q = 4 • 2 4 • 1 -2 = 4 q = 2 ∧ ϕ = 2 ⇒ p = q • (1 + ϕ) ϕ • (q -1) = 2 2 3 1 = 3, w > p • q p(q -1) -q = 3 • 2 3 • 1 -2 = 6
Thus arise the two triads p = 4, q = 2, w ≥ 5 and p = 3, q = 2, w ≥ 7

3.Similarly from equation p = ε • (p • (q -1) -q) take that:

p = ε • p • (q -1) -q • ε ⇒ q = p • (1 + ε) ε • (p -1) i)ε(p -1) = 1 ⇒ ε = 1 p -1 = 1 ∧ p -1 = 1 ⇒ p = 2 q = p • (1 + ε) ε • (p -1) = 2 • 2 1 = 4 w > p • q p(q -1) -q = 4 • 2 2 • 3 -4 = 4, w ≥ 5
Therefore shows the triad

q = 4, p = 2, w ≥ 5 ii)p = ε(p -1) ∧ (1 + ε) = λ • ε a)ε = 1 λ -1 ⇒ λ -1 = 1 ⇒ (λ = 2 ∧ ε = 1) b)p • (ε -1) = ε ⇒ p = ε ε -1 = 1 + 1 ε -1 == 2 ∧ ε -1 = 1 ⇒ (ε = 2 ∧ p = 2) q = p • (1 + ε) ε • (p -1) = 2 • 2 1 • 1 = 4, w > p • q p(q -1) -q = 4 • 2 2 • (4 -1) -4 = 4, w ≥ 5
Hence the triad

p = 2, q = 4, w ≥ 5 iii)p = ε • ϕ ∧ (1 + ε) = λ • (p -1) a)λ = 1 + ε p -1 = 1 p -1 + ε p -1 ∧ p -1 = 1 ⇒ (p = 2) ε • ϕ = 2 ⇒ (ε = 1 ∧ ϕ = 2), (ε = 2 ∧ ϕ = 1) p = 2 ∧ ϕ = 1 ⇒ q = p • (1 + ϕ) ϕ • (p -1) = 2 1 2 1 = 4, w > p • q p(q -1) -q = 4 • 2 2 • 3 -4 = 4 p = 2 ∧ ϕ = 2 ⇒ q = p • (1 + ϕ) ϕ • (p -1) = 2 2 3 1 = 3, w > p • q p(q -1) -q = 3 • 2 2 • 1 -2 = 6
Thus arise the two triads q = 4, p = 2, w ≥ 5 and q = 3, p = 2, w ≥ 7

The generalized Fermat conjecture (Darmon and Granville, 1995; Darmon, 1997), also known as the Tijdeman-Zagier conjecture and as the Beal conjecture (Beukers, 2012),is concerned with the case if χ < 1. It states that the only non-trivial primitive solutions to x q + y p = z w with σ(p, g, r) < 1 are 2 5 + 7 2 = 3 4 , 7 3 + 13 2 = 2 9 , 2 7 + 17 Case 2rd. 1/p + 1/q + 1/w = 1 i) From case 1 shows that overall we have 12 cases for exhibitors and and we roundly take:

Part A.

The equivalent Diophantine trigonometric equation sin 2k+1 (x) + cos 2k+1 (x) = 1(4.4) has no solutions with sin(x) ̸ = 0 and cos(x) ̸ = 0 for k ∈ N + .

Proof.

Let's assume that x is a solution of equation (4.4). We can easily (because 0 ≤ cos(x) ≤ 1 & 0 ≤ sin(x) ≤ 1 find that:

cos 2k+1 (x) ≤ cos 2 (x)& sin 2k+1 (x) ≤ sin 2 (x) (4.5)
if in at least one of the relations (4.5), the inequality applies then if we add in parts we will have

sin 2k+1 (x) + cos 2k+1 (x) ≤ 1 (4.6)
Therefore the trigonometric solution of (i1) will result from the group

s = cos 2k+1 (x) = cos 2 (x) sin 2k+1 (x) = sin 2 (x) ⇒ cos 2 (x) cos 2k-1 (x) -1 = 0 sin 2 (x) sin 2k-1 (x) -1 = 0 ⇒ cos(x) = 0 ∨ cos(x) = 1 sin(x) = 0 ∨ sin(x) = 1 ⇒ (4.7) The system < s > leads to the solutions (t ∈ Z, x = 2πt)∥ {t ∈ Z, x = π 2 + 2πt (4.8)
This is the only solution of the system and we will get the results.

Great results

1. Sin(x) = 1, cos(x) = 0 ⇒ b = 0 and c = a 2. Sin(x) = 0, cos(x) = 1 ⇒ a = 0 and c = b (4.9)

Part B.

The equivalent Diophantine trigonometric equation sin 2k (x) + cos 2k (x) = 1 (4.10) has no solutions with sin(x) ̸ = 0 and cos(x) ̸ = 0 for k ∈ N + , k > 1.

Proof.

For the same reasons as before we assume that x is a solution of equation (4.9 & 4.10). If we Apply the restrictions 0 ≤ cos(x) ≤ 1 & 0 ≤ sin(x) ≤ 1) we find that:

cos 2k (x) ≤ cos 2 (x)& sin 2k (x) ≤ sin 2 (x) (4.11)
The trigonometric solution of (4.10) as clustered system will take the form:

s ′ = cos 2k (x) = cos 2 (x) sin 2k (x) = sin 2 (x) ⇒ cos 2 (x) cos 2k-2 (x) -1 = 0 sin 2 (x) sin 2k-2 (x) -1 = 0 ⇒ cos(x) = 0 ∨ cos(x) = ±1 sin(x) = 0 ∨ sin 2 (x) = 1 ⇒ ⇒ cos(x) = 0 ∨ cos(x) = ±1 sin(x) = 0 ∨ sin(x) = ±1 (4.12)
The < s ′ > system results in the solutions.

1. (t ∈ Z, x = 2πt)∥ t ∈ Z, x = -π 2 + 2πt, x = π 2 + 2πt (4.13) 2. (t ∈ Z, x = 2πt + π)∥ t ∈ Z, x = -π 2 + 2πt, x = π 2 + 2πt (4.14)
The only system solutions will be Great results We finally proved that the sets of solutions P n ̸ = G nT , because the results of the solution in (Tables (4.9 & 4.15)) contradicts the hypothesis since abc ̸ = 0 and since for the variables apply {(a, b, c) | a, b, c ∈ N + . As we observe the proofs of Theorems 3 and 4 are equivalent according to the results. Also according to trigonometry. in Theorem 4, we do not accept that the terms sin(x) and cos(x) are simultaneously zero, which is known to be excluded trigonometrically. Summarizing we can accept that both forms of proof belong to the same Method I.

sin(x

Method VI.

VI.1. Theorem 10. (Basic theorem of Proof ). [START_REF] Lenstra | On the Inverse Fermat Equation[END_REF] Let P n be the set of Fermat triples and defined as P n = {(x, y, z) | x, y, z, n > 2 ∈ N + and an x n + y n n = z n , xyz ̸ = 0}. Let G n be the set defined as:

G n = {((G 1 | n = 2k + 1) and (G 2 | n = 2k, k > 1)) | k ∈ N +
The solutions of the system (12) as we see are analytically 1. Because n = 2k and k = -1 which means that n = -2 which is rejected because must n > 0 2. Because n = 2k and k = 1 which means that n = 2 in this case the solution is known.

Therefore the only solution that is accepted is n = 2.

II. Also from the relation (3) we get ...

(x/y) k = m -l => x k = 1 -l 2 2l y k (13) 
Similar to the variable y, we will have a form relation y = 1 + l 2 f • 1 -l 2 t • (2l) s • g (14), where g = w • q 2 , l = p/q (15) where (p.g) relatively primes and (w, p, q, f, s, t) ∈ Z + .

By combining relations (13, 14, 15) we get the relation,

x k = q 2 -p 2 (2p) • q q 2 + p 2 q 2 f •k • q 2 -p 2 q 2 t•k • ((2p)/q) k•s • w k • q 2k (16) 
Doing factorization we come to form,

x k = q 2 + p 2 f •k • q 2 -p 2 t•k+1 • (2 • p) k•s-1 w k • q 2k-2f •k-2•t•k-k•s-1 (17) 
From the relationship (17) comparing to the desirable powers for all terms we will have the system,

t • k + 1 = t 1 • k k • s -1 = t 2 • k 2 • k -s • k -2 • t • k -2f • k -1 = t 3 • k (18)
The solve of this system is,

If f, t 2 ∈ Z∧ ((a ∈ Z ∧ t = a ∧ t 1 = -1 + a ∧ k = -1) ∨ (a ∈ Z ∧ t = a ∧ t 1 = 1 + a ∧ k = 1)) ∧ ∧ (t 3 = 2 -2f -2t 1 -t 2 ∧ s = -t + t 1 + t 2 ) (19) 
The specific solutions of the system(19) are two, as we see, are analytically.

1. Because n = 2k and k = -1 which means that n = -2 which is rejected because must n > 0 2. Because n = 2k and k = 1 which means that n = 2 in this case the solution is known.

Therefore the only solution that is accepted is n = 2.

Part B.

The Diophantine equation x 2k+1 + y 2k+1 = z 2k+1 has no solution to the positive integers for k ∈ N + .

1. Because n = 2k + 1 and k = -1 which means that n = -1 which is rejected because must n > 0 2. Because n = 2k + 1 and k = 0 which means that n = 1 in this case the solution is known.

Therefore the only solution that is accepted is n = 1.

II. Also from the relation (3*) we get (x/y) 2k+1 = (m -l) 2 ⇒ x 2(k+1/2) = 1 -I 2 2l 2 y 2(k+1/2) ⇒ ⇒ x k+1/2 = 1 -I 2 2l y k+1/2 (13 * )

Similar to the variable y, we will have a form relation y = 1 + l 2 f • 1 -l 2 t • (2l) s • g (14 * ), where g = w • q 2 , l = p/q (15 * ) where (p, q)) relatively primes and (w, p, q, f, s, t) ∈ Z + By combining relations (13 * , 14 * , 15 * ) we get the relation,

x k+1/2 = q 2 -p 2 (2p) • q • q 2 + p 2 q 2 f •(k+1/2)
• q 2 -p 2 q 2 t(k+1/2)

• ((2p)/q) (k+1/2)•s • w k+1/2 • q 2(k+1/2) (16 * ) Doing factorization we come to form, x k+1/2 = q 2 + p 2 f(k+1/2) • q 2 -p 2 1+t(k+1/2) •(2•p) (k+1/2)s-1 w k+1/2 •q 2(k+1/2)-2f(k+1/2)-2•t(k+1/2)-(k+1/2)•s-1 (17 * )

From the relationship (17 * ) comparing to the desirable powers for all terms we will have the system, t • (k + 1/2) + 1 = t 1 • (k + 1/2)

(k + 1/2) • s -1 = t 2 • (k + 1/2) 2 • (k + 1/2) -s • (k + 1/2) -2t • (k + 1/2) -2f • (k + 1/2) -1 = t 3 • (k + 1/2) (18 * )
The solve of this last system is,

If f, t 2 ∈ Z∧ ((a ∈ Z ∧ t = a ∧ t 1 = -2 + a ∧ k = -1) ∨ (a ∈ Z ∧ t = a ∧ t 1 = 2 + a ∧ k = 0)) ∧ ∧ (t 3 = 2 -2f -2t 1 -t 2 ∧ s = -t + t 1 + t 2 ) (19 * )
The solutions of the system (19*) are analytically 1. Because n = 2k + 1 and k = -1 which means that n = -1 which is rejected because must n > 0 2. Because n = 2k + 1 and k = 0 which means that n = 1 in this case the solution is known.

Therefore the only solution that is accepted is n = 1.

If we assume as we proved on pages 1 -3 that G 1 and G 2 are the solutions for n = 1 and 2 of the general Fermat equation a n + b n = c n . Therefore we have after the analysis we did: G n = {((G 1 | n = 2k + 1) and (G 2 | n = 2k, k > 1)) | k ∈ N + }. This means that we proved that the sets P n ̸ = G n and also P n = ∅ because n > 2 ∈ N + for x n + y n = z n , and should apply xyz ̸ = 0.

Finally, after examining the two parts, it was proved that for Fermat's equation x n + y n = z n there is no solution in positive integers, for n > 2, n ∈ N + and x, y, z ̸ = 0.

Epilogue

According to the methods developed, the first two methods satisfy the assumption that the solution set for the Fermat equation with n > 2 in positive integers is the empty set, because it turns out that at least one variable is equal to zero. Frey's 3 rd method for elliptic functions shows us that at least, one variable will necessarily be zero and therefore agrees with the hypothesis that there can be no solution. The 4th method follows from the condition that for the generalized equation x p + y q = z w , at least one exponent must be equal to 2 , and thus falls under the Pythagorean diophantine equation. Finally for the last 2, namely the trigonometric proof and the exponents equation method are two simulations, which otherwise prove that there is no solution, i.e. for the first one at least one variable must be equal to zero while the second one restricts the exponents to be equal to n = 1 or n = 2, which are known the solutions them, from Theorems 1 and 2.

  is given by relation n down ≤ IntegerPart log(d -1) log d+1 d as a function of d (where IntegerPart[] is an integer part of a number and log is the neper logarithm of a number). Therefore for values of n above the upper bound i.e. for n up ≥ lntegerPart log(d -1) log d+1 d + 1 the diophantine equation has no solution.

+x n d where n ≥ 3 ,

 3 d > 3 positive integers is given by relation n down ≤ lntegerPart log(d-2s-1) log( d+1 d ) as a function of d and s (where IntegerPart[] is an integer part of a number and log is the neper logarithm of a number).Therefore for values of n above the upper bound i.e. for n up ≥ lntegerPart log(d-2s-1)

  {((a = 0, c = b or b = 0, c = a or c = 0, a = -b or a = b = c = 0) | n = 2k + 1, (a = b = c = 0 or a = 0, c = ±b or b= 0, c = ±a) | n = 2k, k > 1) | k ∈ N + }.Finally, we proved that the solution sets P n ̸ = Gn, since the assumptions we made must hold and we must keep the integer positive value in each variable, which is absolutely necessary. Since the results of the solution (in table (M1.11)) contradict the hypothesis because abc ̸ = 0 and since {(a, b, c) | a, b, c ∈ N + } holds for the variables. Therefore, there is no solution to F.L.T for n > 2 in N + and hence Pn = ∅. Of course, we accept solutions to Fermat's equation only if our variables take values from the set Z, as shown in table (M1.11). Method II. II.1. Theorem 4 (Basic theorem of Proof ). Let P n be the set of Fermat triples and defined as P n = {(a, b, c) | a.b.c, n > 2 ∈ N * and an a n + b n = c n , abc ̸ = 0}. Let G n be the set defined as: G n = {((a = 0, c = b or b = 0, c = a or c = 0, a = -b or a = b = c = 0) | n = 2k + 1, (a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N + }.

G

  n = {((a = 0, c = b or b = 0, c = a or c = 0, a = -b or a = b = c = 0) | n = 2k + 1, (a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N + }.

  ) = 1, cos(x) = 0 ⇒ b = 0 and c = a 2. sin(x) = -1, cos(x) = 0 ⇒ b = 0 and c = -a 3. sin(x) = 0, cos(x) = 1 ⇒ c = 0 and b = a 4. sin(x) = 0, cos(x) = -1 ⇒ c = 0 and b = -a (4.15) From these 2 parts we can easily conclude that as set of solutions arises the G nT which is: G nT = {((a = 0, c = b or b = 0, c = a) | n = 2k+1, (a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N + }

  [START_REF]Solutions to Beal's Conjecture, Fermat's last theorem and Riemann Hypothesis[END_REF] and the 2 values n up and n down as defined in Theorem 2.

	The values of n down , n up which determine when the Diophantine equation has a solution and when it
	does not for 3 ≤ d ≤ 15			
	d	ε min	n down	n up
	3	2,40942084	2	3
	4 4,923343212	4	5
	5 7,603568034	7	8
	6 10,44067995	10	11
	7	13,41826	13	14
	8 16,52114108	16	17
	9 19,73644044	19	20
	10 23,05340921	23	24
	11 26,46303475	26	27
	12 29,95769812	29	30
	13 33,53089523	33	34
	14 37,17701992	37	38
	15 40,89119619	40	41
	Therefore for to 1 ≤ n ≤ n down we always have solutions for the generalized Fermat's Diophantine equa-
	tion while for values n ≥ n up the equation cannot possibly have a solution and therefore any attempt to
	find solutions is impossible for the variables x i , i ∈ N + >2 d > 2 number of variables. Cases that have been
	considered are d = 3 the known case of Fermat for d = 4 has been shown not to exist for n > 4 is known to
	(Lander et al. 1967). For d = 5 as we can see there are cases such as 27 ∧ 5 + 84 ∧ 5 + 110 ∧ 5 + 133 ∧ 5 = 144 ∧ 5,
	Lander and Parkin 1967, Lander et al. 1967, Ekl 1998. According to the above theory it can grow up to
	n = 7.			

  3, 4, 5, 6 which determine when the Diophantine equation 2 parts has a solution and when it does not for 5 ≤ d ≤ 15

	s = 1/d	ε min	n down n up
	5	3, 801784017	3	4
	6	7, 12687281	7	8
	7	10, 38178614	10	11
	8	13, 66442887	13	14
	9	17, 00598614	17	18
	10	20, 41660348	20	21
	11	23, 89850171	23	24
	12	27, 4506528	27	28
	13	31, 07068006	31	32
	14	34, 75569608	34	35
	15	38, 50268965	38	39
	s = 2/d	ε min	n down n up
	7	5, 19089307	5	6
	8	9, 327423789	9	10
	9	13, 15762696	13	14
	10	16, 88631703	16	17
	11	20, 59224358	20	21
	12	24, 31089859	24	25
	13	28, 05962005	28	29
	14	31, 84712464	31	32
	15	35, 67768601	35	36
	s = 3/d	ε min	n down n up
	9	6, 578813479	6	7
	10	11, 52670461	11	12
	11	15, 93233447	15	16
	12	20, 10723974	20	21
	13	24, 17768854	24	25
	14	28, 20451022	28	29
	15	32, 220161	32	33
	The values of n s = 4/d	ε min	n down n up
	11	7, 966167236	7	8
	12	13, 7253264	13	14
	13	18, 70641337	18	19
	14	23, 32759715	23	24
	15	27, 76263598	27	28
	s = 5/d	ε min	n down nup
	13	9, 353206685	9	10
	14	15, 92356232	15	16
	15	21, 48010733	21	22
	s = 6/d	ε min	n down nup
	15	10, 74005367	10	11

down , n up if s = 4, 5, 6 which determine when the Diophantine equation 2 parts has a solution and when it does not for 5 ≤ d ≤ 15

  3 = 71 2 , 3 5 + 11 4 = 122 2 , 17 7 + 76271 3 = 21063928 2 , 1414 3 + 2213459 2 = 65 7 , 9262 3 + 15312283 2 = 113 7 , 43 8 + 96222 3 = 30042907 2 and 33 8 + 1549034 2 = 15613 3 .

	The generalized Fermat conjecture has been documented for many signatures (p, q, r), including many in-
	finite families of signatures, starting with Fermat's last theorem (p, p, p) by Wiles (1995). The remaining
	cases are reported in Chapter 4[3,4,5].

Which in relation to equations take the form (ii)x 3 + y 2 = z w , w ≥ 7 x 2 + y 3 = z w , w ≥ 7 x 2 + y q = z 3 , q ≥ 7 x 3 + y q = z 2 , q ≥ 7 x p + y 2 = z 3 , p ≥ 7 x p + y 3 = z 2 , p ≥ 7 x 2 + y q = z 4 , q ≥ 5 x 4 + y q = z 2 , q ≥ 5 x 2 + y 4 = z w , w ≥ 5 x 4 + y 2 = z w , w ≥ 5 x p + y 2 = z 4 , p ≥ 5 x p + y 4 = z 2 , p ≥ 5Characteristics mention the work of Jamel Ghanouchi "A new approach of Fermat-Catalan conjecture" that achieves the same result.

Total we have 12 cases for exhibitors and cyclically we will have (i) p = 3, q = 2, w ≥ 7 ∨ p = 2, q = 3, w ≥ 7 w = 3, p = 2, q ≥ 7 ∨ w = 2, p = 3, q ≥ 7 w = 3, q = 2, p ≥ 7 ∨ w = 2, q = 3, p ≥ 7 q = 4, p = 2, w ≥ 5 ∨ q = 2, p = 4, w ≥ 5 w = 4, p = 2, q ≥ 5 ∨ w = 2, p = 4, q ≥ 5 w = 4, q = 2, p ≥ 5 ∨ w = 2, q = 4, p ≥ 5 p = 3, q = 2, w ≥ 7 ∨ p = 2, q = 3, w ≥ 7 w = 3, p = 2, q ≥ 7 ∨ w = 2, p = 3, q ≥ 7 w = 3, q = 2, p ≥ 7 ∨ w = 2, q = 3, p ≥ 7 q = 4, p = 2, w ≥ 5 ∨ q = 2, p = 4, w ≥ 5 w = 4, p = 2, q ≥ 5 ∧ w = 2, p = 4, q ≥ 5 w = 4, q = 2, p ≥ 5 ∨ w = 2, q = 4, p ≥ 5 ⇔ p = 3, q = 2, w > 6 ∨ p = 2, q = 3, w > 6 w = 3, p = 2, q > 6 ∨ w = 2, p = 3, q > 6 w = 3, q = 2, p > 6 ∨ w = 2, q = 3, p > 6 q = 4, p = 2, w > 4 ∨ q = 2, p = 4, w > 4 w = 4, p = 2, q > 4 ∨ w = 2, p = 4, q > 4 w = 4, q = 2, p > 4 ∨ w = 2, q = 4, p > 4

But the inequality (ii), for example, p = 3, q = 2, w > 6 as well as the inequality q = 4, p = 2, w > 4 which is characteristic of the group of exhibitors according to the criterion 0 < 1/p + 1/q + 1/w < 1, so for the exponent group to have equality, 12 relations will apply cyclically as follows:

(iii)

ii) Pending from only the case 3/p = 1 ⇒ p = 3 which implies p = q = w = 3. But this case according to the proof of Fermat's theorem does not accept solutions with exponents greater than 2.

Case 3 rd . 1/p + 1/q + 1/w > 1

Originally accept that p >= 2, q >= 2 and w >= 2. We examine three cases: i) p = q = w = 2 which is true ii) p = q = 2 ⇒ w > 2 which is true we cyclically for the other exhibitors that p = w = 2 ⇒ q > 2 and q = w = 2 => p > 2.

iii) For all other cases will apply in accordance with the relation (iii) the second case, because now would force the inequality < 6, i.e total of 12 relations for all exhibitors.

IV.2 Theorem 7

The equation x p + y q = z w with positive integers x, y, z and extra (p, q, w >= 2) and p, q and w are fixed positive integers is solved if and only if apply the conditions of Theorem 6, (1, 2, 3) cases for exponents p, q, w with extra (x, y, z) = 1, and at least one of them equal 2. Therefore Beal's Conjecture is true with the above conditions, because accepts that there is no solution under the condition that all values of the exponents greater of 2.

Proof

For the equation x p + y q = z w with positive integers x, y, z, (p, q, w >= 2) demonstrated that solved if and only if apply the conditions of Theorem 6 (i, ii, iii) for the exponents p, q, w with extra (x, y, z) = 1, so we have analytical i) 1/p + 1/q + 1/w < 1

According to Theorem 6, and 1 case, there is a solution to obtain values for the group of exhibitors {p, q, w} as follows:

Which clearly shows that p = 2 or q = 2 or w = 2. Therefore least one exponent = 2.

ii) 1/p + 1/q + 1/w = 1

It happens the second case, Theorem 6, for exist solution will arrive at values for the group of exhibitors {p, q, w} as follows:

Which also seems that p = 2 or q = 2 or w = 2. Therefore least one exponent equal 2.

iii) 1/p + 1/q + 1/w > 1

For the third case, the Theorem 6, to obtain a solution we will arrive at values for the group of exhibitors {p, q, w} as follows:

in which at least appear that one of the p = 2 or q = 2 or w = 2.

Therefore at least one exponent equals 2 to have a solution and hence play Beal's Conjecture is true, because it recognizes that there is no solution if all values of the exponents greater 2. Part IV. 2 Solutions of F.L.T. by simulation method V.1. Theorem 9.(Trigonometric simulation of Fermat's equation -Pythagorean equation). [START_REF]A new approach of Fermat-Catalan conjecture Jamel Ghanouchi[END_REF] Let P n be the set of Fermat triples and defined as:

Let G n set of simulation be the set defined as:

We need to prove that the ts P n ̸ = G nT and also P n = ∅.

Proof.

Using a similar procedure as Theorem 3, we will prove Theorem 4 under the conditions we assumed for Fermat's equation to hold. If the solutions are identical then the solutions are equivalent and the simulation is true with respect to the solution sets. As we have mentioned we can equate the equation and a n + b n = c n (4.1) with the trigonometric equation sin n (x) + cos n (x) = 1(4.2) and a n /c n = sin n (x) ∧ b n /c n = cos n (x), | a, b, c ∈ N + (4.3). The proof passes though 2 parts to prove that it does not apply for power for even positive numbers integers greater than 2, i.e. n > 2 and the proof is divided into 2 parts:

We need to prove that the sets P n ̸ = G n and also P n = ∅.

Part A.

The Diophantine equation x 2k + y 2k = z 2k has no solution to the positive integers for k > 1, k ∈ N + .

Proof.

We bring the original equation x n + y n = z n and we put n = 2 • k where k ∈ N + and then x 2k + y 2k = z 2k (1) which comes into the form (x/y) 2k + 1 = (z/y) 2k after we divide by y, since y ̸ = 0. A basic effort to solve the equation can be done with one replacement of the original variables which is done:

I. From the relation (2) we get ...

But then for the variable y we will have a relation of form

, where g = w • q 2 , l = p/q (8) where (p, q) relatively primes and (w, p, q, f, s, t) ∈ Z + Combining relations [START_REF] Lenstra | On the Inverse Fermat Equation[END_REF][START_REF] Richinick | The Upside-Down Pythagorean Theorem[END_REF][START_REF] Carmichael | On the Impossibility of Certain Diophantine Equations and Systems of Equations[END_REF] we get the final relation,

if we order each and every one term and equalize them i.e Powers with the Power of z (that is factorization) will have,

From relation [START_REF] Poulkas | A Brief New Proof to Fermat's Last Theorem and Its Generalization[END_REF] by comparing the powers for all terms we will have the system,

The solve of this system is,

Proof.

We start from the original equation x n + y n = z n and we put n = 2 • k + 1 where k ∈ Z + and then x 2k+1 + y 2k+1 = z 2k+1 (1 * ) which becomes at the form (x/y) 2k+1 + 1 = (z/y) 2k+1 after we divide by y, since y ̸ = 0.

The effort to solve the equation can be done by replacing the primary variables as follows:

If we call (z/y) 2(k+1/2) = m 2 (2 * ) and (x/y) 2(k+1/2) = (m -l) 2 (3 * ) then from (1 * ) =>

I. From the relation (2*) we get...

But then for the variable y we will have a relation of form,

) where g = w • q 2 , l = p/q (8 * ) where (p, q) relatively primes and (w, p, q, f, s, t) ∈ Z + Combining relations (6 * , 7 * , 8 * ) we get the final relation,

t(k+1/2)

• ((2p)/q) (k+1/2)•s • w k+1/2 • q 2(k+1/2) (9 * ) if we order each and every one term and equalize them Powers with the Power of z (that is factorization) will have, z k+1/2 = q 2 + p 2 1+f (k+1/2) • q 2 -p 2 t•(k+1/2) • (2 • p) -1+(k+1/2)•5 w k+1/2 • q 2(k+1/2)-2f (k+1/2)-2•t(k+1/2)-(k+1/2)•s-1 (10 * )

From the relationship (10 * ) comparing to the desirable powers for all terms we will have the system, f

We get the solve of the last system, If t, t 2 ∈ Z∧

The solutions of the system (12*) are analytical