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Abstract

The Pythagorean theorem is perhaps the best known theorem in the vast world of mathematics.
A simple relation of square numbers, which encapsulates all the glory of mathematical science, is
also justifiably the most popular yet sublime theorem in mathematical science. The starting point
was Diophantus’ 20 th problem (Book VI of Diophantus’ Arithmetica), which for Fermat is for
n = 4 and consists in the question whether there are right triangles whose sides can be measured
as integers and whose surface can be square. This problem was solved negatively by Fermat in
the 17 th century, who used the wonderful method (ipse dixit Fermat) of infinite descent. The
difficulty of solving Fermat’s equation was first circumvented by Willes and R. Taylor in late
1994 ([1],[2]) and published in Taylor and Willes (1995) and Willes (1995). We present the proof
of Fermat’s last theorem and other accompanying theorems in 7 different independent ways. For
each of the methods (except the first one) we consider, we use the Pythagorean theorem as a
basic principle and also the fact that the proof of the first degree Pythagorean triad is absolutely
elementary and useful. The first is based on elementary inequalities and gives a solution to
every Diophantine equation of degree n, with respect to the number of variables d. The proof
of Fermat’s last theorem marks the end of a mathematical era; however, the urgent need for a
more educational proof seems to be necessary for undergraduates and students in general. Euler’s
method and Willes’ proof is still a method that does not exclude other equivalent methods. The
principle, of course, is the Pythagorean theorem and the Pythagorean triads, which form the basis
of all proofs and are also the main way of proving the Pythagorean theorem in an understandable
way. Other forms of proofs we will do will show the dependence of the variables on each other.
For a proof of Fermat’s theorem without the dependence of the variables cannot be correct and
will therefore give undefined and inconclusive results.

Part I. Generalized theorem of Diophantine equation of degree n
with d number of variables

I. Theorem 1[7,8,9,10]

We consider the sequence of variables x1, x2, x3, .., xd such that they are integers that are different in general
from each other and also that the equality xn

1 + xn
2 + xn

3 + . . . + xn
d−1 = xn

d , where n ∈ N>2, and d ∈ N>2

indicating the number of variables.

Prove the two basic inequalities:

a)
(

xd

xd−1

)n
< d− 1 <

(
xd

x1

)n
b) If xd = xd−1 + k, k ∈ N+ then k < xd−1 − (d− 1)
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Proof.

a) We assume that the equation is valid, xn
1 + xn

2 + xn
3 + . . . + xn

d−1 = xn
d (T.1), where n, d ∈ N>2, if

we assume in the context of generality that the inequality order x1 < x2 < x3 < . . . < xd−1 < xd ⇔ xn1 <
xn2 < xn3 < . . . < xnd−1 < xnd,n ∈ N>2 (T.2). Combining relations (T2&T1) we obtain that:

xn
1 + xn

1 + xn
1 + . . .+ xn

1 < xn
1 + xn

2 + xn
3 + . . .+ xn

d−1 = xn
d therefore we have

(d− 1)xn
1 < xn

d ⇔ (d− 1) <

(
xd

x1

)n

(T.3)

With the same logic it will hold that:

xn
d−1 + xn

d−1 + xn
d−1 + . . . + xn

d−1 > xn
1 + xn

2 + xn
3 + . . . + xn

d−1 = xn
d therefore we have (d − 1)xn

d−1 >

xn
d ⇔ (d− 1) >

(
xd

xn
d−1

)n
(T.4).

If we put relations (T3&T4) together we get the obvious but very elementary and at the same time impor-
tant relation: (

xd

xd−1

)n

< d− 1 <

(
xd

x1

)n

(T.5)

b) To complete the proof we continue with very simple inequality relations but very important ones, which
we will use for the final theorem 2 that will follow. We consider the truth of the inequality

if xd = xd−1 + k, k ∈ N+then k < xd−1 − (d− 1), where d ∈ N>2. (T.6)

The proof follows 2 different cases,

1. We consider the extreme case if x1 > k ≥ 1 where d ∈ N>2.

We therefore assume that x1 > k ≥ 1 where d ∈ N>2. It will also be true that:

xd > xd−1 > . . . > x2 > x1 > k ≥ 1 (T.7)

From relation (T.7) the inequalities arise as a direct consequence:
xd−1 ≥ xd−2 + 1, xd−2 ≥ xd−3 + 1, . . . , x2 ≥ x1 + 1, x1 ≥ k + 1 (T.8). Adding up in parts yields the general
relation we are interested xd−1 >= k + (d− 1) ⇔ k ≤ xd−1 − (d− 1) (T.9). For our case which d ≥ 3.

We will prove that k ̸= xd−1 − (d − 1) (T.10), since we have assumed that we want d ∈ N>2. For
equality to hold in general , we must k = x1 − 1 = x2 − 2 = . . . = xd−1 − (d − 1) (T.11). Which in more
general follows from (T.11) that k = xi − i = xd−1 − (d− 1) where 1 ≤ i ≤ d− 1 (T.12). But from (T.12)
follows the very basic relation that determines the wrong logic, i.e., 1 ≤ xi − xd−1 + d − 1 ≤ 0 + d − 1 or
1 ≤ d− 1 ⇔ d ≥ 2 his seems to contradict the hypothesis, because we have posited d ∈ N>2 or d ≥ 3.

2. We consider the intermediate case xi ≤ k ≤ xd−1 or xi−1 ≤ k < xi or 2 ≤ i ≤ d− 1.

According to the preceding and relation (T.8) we will have the inequality relations:

xd−1 ≥ xd−2 + 1, xd−2 ≥ xd−3 + 1, . . . , x2 ≥ x1 + 1, x1 ≥ k + 1 and as we know, it will add up as be-
fore the inequality xd−1 >= k + (d− 1) ⇔ k ≤ xd−1 − (d− 1).
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If we now assume that the inequality:

xd−1 − (d − 1) ≤ k ≤ xd−1 + (d − 1) ⇔ k ≤ xd−1 − (d − i) or −(d − 1) ≤ (d − i) ⇔ 1 ≤ i. (T.13).
But the last very decisive inequality relation 1 ≤ i contradicts our hypothesis, because 2 ≤ i < d− 1 there-
fore the relation will not apply i.e k ̸= xd−1 − (d− 1) (T.14), and only the relation we are interested in will
apply, i.e. k < xd−1 − (d − 1) (T.15). We have therefore proved 2 very basic inequalities which will guide
us to the final form of inequalities and indicate the minimum value of the exponent n of the generalized
diophantine equation:

xn
1 + xn

2 + xn
3 + . . . + xn

d−1 = xn
d , where d ∈ N>2 for which we are asked to find the restrictive integer

limit of the exponent n, so that there are solutions to this diophantine equation. With this procedure,
which has a simple but concise logic, we can solve this very difficult problem, for which no clear answer has
yet been given, except for the case of d = 3 and n ≥ 3 by various methods, generally called the proof of
Fermat’s Last Theorem Fermat.

II. Theorem 2.

The number of existing solutions of the exponent n for the equation xn
1 + xn

2 + xn
3 + . . . + xn

d−1 = xn
d ,

where d ∈ N>2

is given by relation ndown ≤ IntegerPart

[
log(d− 1)

log
(
d+1
d

) ] as a function of d (where IntegerPart[] is an integer

part of a number and log is the neper logarithm of a number). Therefore for values of n above the upper
bound i.e. for

nup ≥ lntegerPart

[
log(d− 1)

log
(
d+1
d

) ]+ 1 the diophantine equation has no solution.

Proof:

A) According to Theorem 1, two basic relations will hold

a)
(

xd

xd−1

)n
< d− 1 <

(
xd

x1

)n
b) If xd = xd−1 + k, k ∈ N+then k < xd−1 − (d− 1)

For the equation xn
1 + xn

2 + xn
3 + . . . + xn

d−1 = xn
d , where d, n ∈ N>2. If I isolate the first part of the first

relation i.e
(

xd

xd−1

)n
< d− 1 (Θ1) and the second part k < xd−1 − (d− 1) with xd = xd−1 + k, k ∈ N+(Θ.2)

then I will two inequalities will result

(d− 1)
1
n − 1 <

k

k + d− 1
(Θ.3)

(1)

(d− 1)
1
n − 1 >

k

k + d− 1
(Θ.4)
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for which, however, I will have to decide which of the two I will choose as acceptable for n. The previous
relations finally result for n in the forms associated with the integer part, which are:

n ≥ lntegerPart

 log(d− 1)

log
(

2k+d−1
d+k−1

)
+ 1 (Θ.5)

n ≤ lntegerPart

 log(d− 1)

log
(

2k+d−1
d+k−1

)
 (Θ.6)

But of course we want the cases where we have k = 1 because this will result in the minimum value for the
content of the integer part.This can be seen clearly if we take

ε =
log(d− 1)

log
(

2k+d−1
d+k−1

) =
log(d− 1)

log
(
1 + k

d+k−1

) =
log(d− 1)

log
(
1 + 1

1+ d−1
k

) (Θ.7)

and call The value for ε becomes minimum when k = 1 and will then take the value

εmin =
log(d− 1)

log
(
1 + 1

d

) =
log(d− 1)

log
(
d+1
d

) (Θ.8)

This will be the final minimum real value (Θ.8) we are interested in for the value of the exponent n, because
it reduces to the minimum the acceptable values it can take. Eventually we will clearly get its integer value
for the allowable value of the exponent. Any other value removes the exponent from the real values and
therefore will not be the one we are looking for. We therefore obtain the final forms of the relations for
exponent n

nup ≥ IntegerPart

[
log(d− 1)

log
(
d+1
d

) ]+ 1 (Θ.9)

ndown ≤ IntegerPart

[
log(d− 1)

log
(
d+1
d

) ] (Θ.10)

Since we have assumed k >= 1 & d >= 3 for the equation xn
1 + xn

2 + xn
3 + . . .+ xn

d−1 = xn
d , where d ∈ N>2,

in order for one of the two relations (Θ.9,Θ.10) to hold, it must include n = 1&n = 2 which are known to
be acceptable and valid.By this obvious logic it obviously follows that the second inequality will hold and
the first will not. The first will be the cases of n which are excluded to yield solutions for the diophantine
equation.

B) From relation (Θ.8), which refers to the integer minimum content

εmin =
log(d− 1)

log
(
d+1
d

) (Θ.11)

of the above relations, I can prove that it is always a real number, namely εmin ∈ R+ − Q+. This means
that in no case do the two limits of n coincide for every integer d. It is a correct expected result that rules
out the possibility of an error in choosing the correct integer that will lead us to the existence of solutions
and therefore this proof is absolutely useful. We will need a more understandable form to convert the neper
logarithm to an integer base and let us choose 2.

We therefore start from relation (Θ.11) and transform it

εmin =
log(d− 1)/ log 2

log
(
d+1
d

)
/ log 2

=
log2( d− 1)

log2
(
d+1
d

) (Θ.12)
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Assuming the replacements

d− 1 = 2m ⇔ d = 1 + 2m and therefore log2(d− 1) = m,m ∈ Z+.

Also log2
(
d+1
d

)
= log2

(
1 + 1

d

)
= log2

(
1 + 1

2m+1

)
.

It will follow that
εmin =

m

log2

(
1 + 1

2m+1

) ,m ∈ Z+ (Θ.13)

We have to prove that log2

(
1 + 1

2m+1

)
∈ R+ −Q+ and then obviously it will hold that εmin ∈ R+ −Q+.

We will need two partial proofs. First, we will develop the relation log
(
1 + 1

2m+1

)
in Maclaurin series.

The expansion will be

(2 log[2]− log[3])− 1

6
log[2](m− 1) +

1

72
log[2]2(m− 1)2 +

1

81
log[2]3(m− 1)3

−11 log[2]4(m− 1)4

5184
− 1

972
log[2]5(m− 1)5 +O[m− 1]6

But the final relationship we are interested in log2

(
1 + 1

2m+1

)
will be in final form

2 log[2]− log[3]

log[2]
− m− 1

6
+

1

72
log[2](m− 1)2 +

1

81
log[2]2(m− 1)3 − 11 log[2]3(m− 1)4

5184

− 1

972
log[2]4(m− 1)5 +O[m− 1]6

We will therefore have a sum of terms that has two constant integers and the other terms will be in log 3/ log 2
form and the other terms in log 2 form. But log 2 is an Irrational number as is the ratio log 3/ log 2[A1,A2].
So the whole sum of the series will be an Irrational number and by extension the value of

εmin =
m

log2

(
1 + 1

2m+1

) ,m ∈ Z+, εmin ∈ R+ −Q+,

as a ratio of an integer to an irrational value of number.

Therefore it will hold ndown ̸= nup,∀d ∈ Z+with acceptable values of the exponent n, so that there is
a solution of the generalized diophantine xn

1 + xn
2 + xn

3 + . . .+ xn
d−1 = xn

d , where n ∈ N>2 only for its values
of ndown ,∀d ∈ Z+. Obviously for any arrangement with d number of variables we will follow the same pro-
cedure with the corresponding log base and come to the same conclusion, i.e. if d ∈ Z+

>2, εmin ∈ R+ −Q+.

III. Theorem 3. (F.L.T)

For any integer n > 2, the equation xn
1 + xn

2 = xn
3 , where n ∈ N>2 has no positive integer solutions.

According to Theorem 2(Θ.11), the acceptable values for the exponent n will be given by the relation

ndown ≤ IntegerPart

[
log(d− 1)

log
(
d+1
d

) ] , d = 3.

For this particular diophantine equation we will have

εmin =
log2(d− 1)

log2
(
d+1
d

) = 2.409421
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and hence according to the minimum value the upper value for n will be fully defined

ndown ≤ ln tegerPart

[
log(d− 1)

log
(
d+1
d

) ] = IntegerPart[2.409421] = 2

The forbidden values of n will therefore be

nup ≥ lntegerPart

[
log(d− 1)

log
(
d+1
d

) ] = lntegerPart[2.409421] + 1 = 3, n ≥ 3

Therefore, for Fermat’s diophantine does not accept solutions. The proof with the given values is complete
and complete and understandable but also determinative for the values of n.

IV. Indicative values of the allowed values of n, in relation to the number of variables d
in the equation.

A concise procedure with logical inequalities therefore gives us a complete picture of the admissible solutions
for n, without having to analyze each case separately, with procedures that are complex and time-consuming,
especially as we go up in number of variables. The key the panelization is obviously the value of

εmin =
log2(d− 1)

log2
(
d+1
d

) , d ∈ Z+
>2

from (Θ.11) and the 2 values nup and ndown as defined in Theorem 2.

The values of ndown , nup which determine when the Diophantine equation has a solution and when it
does not for 3 ≤ d ≤ 15

d εmin ndown nup

3 2,40942084 2 3
4 4,923343212 4 5
5 7,603568034 7 8
6 10,44067995 10 11
7 13,41826 13 14
8 16,52114108 16 17
9 19,73644044 19 20
10 23,05340921 23 24
11 26,46303475 26 27
12 29,95769812 29 30
13 33,53089523 33 34
14 37,17701992 37 38
15 40,89119619 40 41

Therefore for to 1 ≤ n ≤ ndown we always have solutions for the generalized Fermat’s Diophantine equa-
tion while for values n ≥ nup the equation cannot possibly have a solution and therefore any attempt to
find solutions is impossible for the variables xi, i ∈ N+

>2 d > 2 number of variables. Cases that have been
considered are d = 3 the known case of Fermat for d = 4 has been shown not to exist for n > 4 is known to
(Lander et al. 1967). For d = 5 as we can see there are cases such as 27∧5+84∧5+110∧5+133∧5 = 144∧5,
Lander and Parkin 1967, Lander et al. 1967, Ekl 1998. According to the above theory it can grow up to
n = 7.For n = 6 we know cases with d = 7, 8, 9, 10 and according to this theory it can 1 ≤ n ≤ ndown = 7
if d = 5 so it can include n = 6 it just hasn’t been found yet. The theory is therefore valid for d = 3 and
d = 4 as has been shown.
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V.Theorem 4

We consider the sequence of variables x1, x2, x3, . . . xd such that they are integers that are different in
general from each other and also that the equality xn

1 + xn
2 + xn

3 + . . .+ xn
d−s−1 = xn

d−s + xn
d−s+1 + . . .+ xn

d

where {n ∈ N>2, d ∈ N>3} and s is a finite integer indicating the number of variables in the right part
without the xd of equality, then:

Prove the two basic inequalities:

a)
(

xd

xd−1

)n
< d− 1− 2 s <

(
xd

x1

)n
, if d = 2 m then 1 ≤ s ≤ d−2

2

or if d = 2 m + 1 then 1 ≤ s ≤ d−3
2 , m ∈ N+

≥2

b) If xd = xd−1 + k, k ∈ N+then k < xd−1 − (d− 1)

Proof

a) We assume that the equation is valid,
xn
1 +xn

2 +xn
3 + . . .+xn

d−s−1 = xn
d−s+xd−s+1+ . . .+xn

d (T
′.1), where n, d ∈ N>2, if we assume in the context

of generality that the inequality order x1 < x2 < x3 < . . . < xd−1 < xd ⇔ xn1 < xn2 < xn3 < . . . < xnd−1 <

xnd ,n ∈ N2

(
T′.2

)
. Combining relations (T ′.2&T ′.1) we obtain that:

xn
1 + xn

1 + xn
1 + . . . + xn

1 − s · xn
1 < xn

1 + xn
2 + xn

3 + . . . + xn
d−s−1 −

(
xn
d−s + . . .+ xn

d−1

)
= xn

d therefore

we have (d− 1− 2 s)xn1 < xnd ⇔ (d− 1− 2 s) <
(

xd

x1

)n (
T′.3

)
.

With the same logic it will hold that

xn
d−1+xn

d−1+xn
d−1+ . . .+xn

d−1−s ·xn
d−1 > xn

1 +xn
2 +xn

3 + . . .+xn
d−s−1−

(
xn
d−s + . . .+ xn

d−1

)
= xn

d therefore

we have (d− 1− 2s)xn
d−1 > xn

d ⇔ (d− 1− 2s) >
(

xd

xd−1

)n
(T ′.4)

If we put relations (T ′.3&T ′.4) together we get the obvious but very elementary and at the same time
important relation: (

xd

xd−1

)n

< d− 2s− 1 <

(
xd

x1

)n

(T’.5)

For inequalities (T’.5) to hold, the following must hold conditions

i) if d = 2 m then 1 ≤ s ≤ d−2
2 , because must d− 2 s− 1 ≥ 1, m ∈ N+

≥2

ii) if d = 2m+ 1 then 1 ≤ s ≤ d−3
2 , because must d− 2s− 1 ≥ 2,m ∈ N+

≥2

which are easily demonstrated by substituting permissible cases.

b) To complete the proof we continue with very simple inequality relations but very important ones,
which we will use for the final theorem 2 that will follow. We consider the truth of the inequality if
xd = xd−1 + k, k ∈ N+then k < xd−1 − (d− 1), where d ∈ N3 (T

′.6). This is true according to Theorem 1,
case b.
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VI.Theorem 5.

The number of existing solutions of the exponent n for the equation xn
1 + xn

2 + xn
3 + . . .+ xn

d−s−1 = xn
d−s +

xn
d−s+1+. . .+xn

d where n ≥ 3, d > 3 positive integers is given by relation ndown ≤ lntegerPart

[
log(d−2s−1)

log( d+1
d )

]
as a function of d and s (where IntegerPart[] is an integer part of a number and log is the neper logarithm
of a number).

Therefore for values of n above the upper bound i.e. for nup ≥ lntegerPart

[
log(d−2s−1)

log( d+1
d )

]
+ 1 the Dio-

phantine equation has no solution.

Proof

For the equation xn
1 + xn

2 + xn
3 + . . . + xn

d−s−1 = xn
d−s + xn

d−s+1 + . . . + xn
d , where n ≥ 3, d > 3 posi-

tive integers if I isolate the first part of the first relation i.e
(

xd

xd−1

)n
< d− 2s− 1 (Θ′.1) and the second

part k < xd−1 − (d− 1) with xd = xd−1 + k, k ∈ N+ (Θ′.2) then I will two inequalities will result

(d− 2s− 1)
1
n − 1 <

k

k + d− 1
(Θ′.3)

(d− 2s− 1)
1
n − 1 >

k

k + d− 1
(Θ′.4)

for which, however, I will have to decide which of the two I will choose as acceptable for n. The previous
relations finally result for n in the forms associated with the integer part, which are:

n ≥ lntegerPart

 log(d− 2 s− 1)

log
(

2k+d−1
d+k−1

)
+ 1 (Θ′.5)

n ≤ lntegerPart

 log(d− 2 s− 1)

log
(

2k+d−1
d+k−1

)
 (Θ′.6)

But of course we want the cases where we have k = 1 because this will result in the minimum value for the
content of the integer part. This can be seen clearly if we take the content of the integer value and call

ε =
log(d− 2 s− 1)

log
(

2k+d−1
d+k−1

) =
log(d− 2 s− 1)

log
(
1 + k

d+k−1

) =
log(d− 2 s− 1)

log
(
1 + 1

1+ d−1
k

) (Θ′.7)

The value for ε becomes minimum when k = 1 and will then take the value.

εmin =
log(d− 2 s− 1)

log
(
1 + 1

d

) =
log(d− 2 s− 1)

log
(
d+1
d

) (Θ′.8)

This will be the final minimum real value (Θ.8) we are interested in for the value of the exponent n, because
it reduces to the minimum the acceptable values it can take. We therefore obtain the final forms of the
relations for exponent n
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nup ≥ lntegerPart

[
log(d−2s−1)

log( d+1
d )

]
+ 1 (Θ′.9)

ndown ≤ lntegerPart

[
log(d−2s−1)

log( d+1
d )

]
(Θ′.10)

Lemma 1.

The symmetric equation xn
1+xn

2+xn
3+. . .+xn

d−s−1 = xn
d−s+xn

d−s+1+. . .+xn
d where n ≥ 0, d = 2m,m ∈ N+

≥2

always has a solution. The number of existing solutions of the exponent n for the equations are infinite if
n = 0.

Proof

i) The value of s in this case is s = d
2 − 1 therefore from relations Θ.9 and Θ.10 we obtain same value

for ndown = nup = 0, because log(d− 2s− 1) = log
(
d−

(
d
2 − 1

)
− 1
)
= log(1) = 0 - Therefore apply only

for n = ndown = 0, n ∈ N+
0 will always has infinite solutions.

ii) In each case we add 2 variables to both parts and equate them with a variable in the nth power.
Thus we come to a Diophantine nth degree with a number of variables d+2, otherwise it is possible to have
the lowest category we add 1 variable i.e. we have number variables d+ 1.

i) Example: 20 + 30 + 60 = 70 + 80 + 100

ii) Example: xn
1 + xn

2 = xn
3 + xn

4 ⇔ xn
1 + xn

2 + xn
e = xn

3 + xn
4 + xn

e = xn
v . That is, once we add two

variables integers xn
e and xn

v and we come to the upper minimum Diophantine nth power. According to the
table in section IV page 6 , then n <= 4 corresponding to d = 4. Here we had to go up 2 variables because
of the weak for n = 3. Otherwise it is possible to have the lowest category i.e. d+ 1.

VIII.Indicative values of the allowed values of n, in relation to the number of variables d in
the equation 2 parts of theorem 4.

By the same procedure we perform categorization with logical inequalities and have a complete picture
of the acceptable values of n as well as those that are rejected. Thus we do not deal with each case sepa-
rately, a process that is considered very time consuming and difficult. In each case we use the relations Θ′.9
and Θ′.10. For each value s, d we want we use the minimum value from (Θ.9) as defined in Theorem 5

εmin =
log2(d− 2s− 1)

log2
(
d+1
d

) , d ∈ Z+
>3

The values of ndown , nup if s = 1, 2, 3, 4, 5, 6 which determine when the Diophantine equation 2 parts has a
solution and when it does not for 5 ≤ d ≤ 15

9



s = 1/d εmin ndown nup

5 3, 801784017 3 4
6 7, 12687281 7 8
7 10, 38178614 10 11
8 13, 66442887 13 14
9 17, 00598614 17 18
10 20, 41660348 20 21
11 23, 89850171 23 24
12 27, 4506528 27 28
13 31, 07068006 31 32
14 34, 75569608 34 35
15 38, 50268965 38 39

s = 2/d εmin ndown nup

7 5, 19089307 5 6
8 9, 327423789 9 10
9 13, 15762696 13 14
10 16, 88631703 16 17
11 20, 59224358 20 21
12 24, 31089859 24 25
13 28, 05962005 28 29
14 31, 84712464 31 32
15 35, 67768601 35 36

s = 3/d εmin ndown nup

9 6, 578813479 6 7
10 11, 52670461 11 12
11 15, 93233447 15 16
12 20, 10723974 20 21
13 24, 17768854 24 25
14 28, 20451022 28 29
15 32, 220161 32 33

The values of ndown , nup if s = 4, 5, 6 which determine when the Diophantine equation 2 parts has a
solution and when it does not for 5 ≤ d ≤ 15

s = 4/d εmin ndown nup

11 7, 966167236 7 8
12 13, 7253264 13 14
13 18, 70641337 18 19
14 23, 32759715 23 24
15 27, 76263598 27 28

s = 5/d εmin ndown nup
13 9, 353206685 9 10
14 15, 92356232 15 16
15 21, 48010733 21 22

s = 6/d εmin ndown nup
15 10, 74005367 10 11

10



Part II. Special theorems concerning only the last Fermat Last
Theorem

I.1. Theorem 1 (Pythagorean triples 1st degree)

Let P1 be the set of Pythagorean triples and defined as P1 = {(x, y, z) | a,b, c, x, y, z ∈ Z − {0} and
a ·x+b ·y = c ·z}. Let G1 be the set defined as: G1 = {(x = k ·(c ·λ−b), y = k ·(a−c), z = k ·(a ·λ−b)), (x =
k · (b− c), y = k · (c ·λ−a), z = k · (b ·λ−a)), (x = k · (c+b ·λ), y = k · (c−a ·λ), z = k · (α+b)) | k, λ ∈ Z+}.
We need to prove that the sets P1 = G1.

Proof.

Given a triad (a, b, c) such that abc ̸= 0 and are these positive integers, if we divide by y ̸= 0, we get
according to the set P1 then apply a ·(x/y) + b = c · (z/y) and we call X = x/y and Z = z/y. We declare
now the sets:

F1 = {(X,Z)} ∈ Q2 − {0} | a ·X+ b = Z · c, where a,b, c ∈ Z− {0}, and where X,Z ∈ Q− {0}
}

and
S1 =

{
(X,Z) ∈ Q2 − {0} | X = m− λ ∧ Z = m, where m, λ ∈ Q− {0}

}
The set F1 ∩ S1 has 3 points as a function of parameters m,λ and we have solutions for the corresponding
final equations,

F1 ∩ S1 = < a · (m− λ) + b = m · c ⇔ m = a·λ−b
a−c , a− c ̸= 0

m− λ = c·λ−b
a−c , a− c ̸= 0, y = k · (a− c), k ∈ Z+

x = c·λ−b
a−c · y ∧ z = c·λ−b

a−c · y, a− c ̸= 0

x = (c · λ− b) · k, y = k · (a− c), z = k · (a · λ− b), k ∈ Z+, a− c ̸= 0 >
Therefore

F1 ∩ S1 = ⟨x = (c · λ− b) · k, y = k · (a− c), z = k · (a · λ− b), k ∈ Z+, a− c ̸= 0⟩ (I)

Dividing respectively by x ̸= 0 we get the set and the relations we call Y = y/x and Z = z/x

F2 =
{
(Y,Z) ∈ Q2 − {0} | a + b · (y/x) = c · (z/x), where a,b, c ∈ Z− {0}, and where Y,Z ∈ Q− {0}

}
and

S2 =
{
(Y,Z) ∈ Q2 − {0} | Y = m− λ ∧ Z = m, where m, λ ∈ Q− {0}

}
Then as the type (I) we get the result

F2 ∩ S2 = ⟨x = (b− c) · k, y = k · (c · λ− a), z = k · (b · λ− a), k ∈ Z+, b− c ̸= 0⟩ (II)

and finally dividing by z ̸= 0 similarly as before we call X = x/z and Y = y/z

F3 =
{
(X,Y) ∈ Q2 − {0} | a · (x/z) + b · (y/z) = c, where a,b, c ∈ Z− {0}, and where X,Y ∈ Q− {0}

}
11



and
S3 =

{
(X,Y) ∈ Q2 − {0} | X = m− λ ∧Y = m, where m, λ ∈ Q− {0}

}
.

F3 ∩ S3 = ⟨x = (c+ b · λ) · k, y = k · (c− a · λ), z = k · (a+ b), k ∈ Z+, a+ b ̸= 0} (III)

As a complement we can state that the parameter λ can be equal with λ = p/q, where p and q relatively
primes. Therefore P1 = G1 and the proof is complete.

I.2. Theorem 2 (Pythagorean triples 2nd degree).

Let P2 be the set of Pythagorean triples and defined as P2 = {(a,b, c) | a,b, c ∈ N and a2 + b2 = c2
}
. Let G2

be the set defined as: G2 =
{(

k
(
q2 − p2

)
, 2kpq, k

(
p2 + q2

))
,
(
2kpq, k

(
q2 − p2

)
, k
(
p2 + q2

))
| k,p, q ∈ N+ ,

p ≤ q, p and q relatively primes}. We need to prove that the sets P2 = G2.

Proof.

Given a Pythagorean triad (a,b,c) such that abc ̸= 0 and (a, b, c) are positive integers, if we divide by
b2 we get according to the set P2 that (a/b)2 + 1 = (c/b)2, with (c/b) > 1. We declare now the sets:

F =
{
(x, y) ∈ Q2

+ | x2 + 1 = y2, x = a/b ∧ y = c/b, where a,b, c ∈ Z+
}

and
S =

{
(x, y) ∈ Q2

+ | x = m− r ∧ y = m, where m, r ∈ Q+
}
.

The set F∩S has two pairs points as a function of parameters m, r and we have solutions for the corresponding
final equations as follow,

(m− r)2 + 1 = m2 ⇔ m = r2+1
2·r , r ̸= 0, where m, r ∈ Q+ (1)

(m− r)2 = 0 ⇔ m = r ∧ r = 1 (2)

But we get from (1)

i) If r = p
q , {p, q prime numbers, p < q} we have m = p2+q2

2·p·q and c = y · b ie

c = m · b = p2+q2

2·p·q · b therefore b = 2 · p · q · k (3) and final c =
(
p2 + q2

)
· k (4)

ii) If a = (m− r) · b = q2−p2

2·p·q · b =
(
q2 − p2

)
· k (5)

Therefore the solutions is:
a = (q2 − p2) · k, b = 2 · p · q · k, c = (p2 + q2) · k

With cyclic alternation of relations (3), (4) because b can become c and vice versa. So as a final solution
we have the set

G2 =
{(

k
(
q2 − p2

)
, 2kpq, k

(
p2 + q2

))
,
(
2kpq, k

(
q2 − p2

)
, k
(
p2 + q2

))
| k,p, q ∈ N+, q ∈ N∗,p ≤ q,p and

q relatively primes} (6). Therefore P2 = G2 and the proof is complete.

The set G2 gives the total solution of the Pythagorean equation. But it is the landmark point for fur-
ther consideration of Fermat’s equation these relations proved because they are directly related to whatever
method we engage and arrive at a general proof.
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These proofs are elementary not only as a tool for proving Fermat but also for proving another more
generalized conjecture of Beal’s. A conjecture which requires Fermat’s last theorem to hold in order to
hold. The proofs briefly given here are documented both by the Pythagorean triads and by the correctness
of the existence of integer solutions and variables.

Part III. Proof Fermat’s Last Theorem

Method I.

I.2.1. Theorem 3 (Basic theorem of Proof).

Let Pn be the set of Fermat triples and defined as:

Pn =
{
(a,b, c) | a,b, c, n > 2 ∈ N+ and an an + bn = cn, abc ̸= 0}

Let Gn be the set defined as:

Gn = {((a = 0, c = b or b = 0, c = a or c = 0, a = −b or a = b = c = 0) | n = 2k + 1,

(a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N+}.

We need to prove that the sets Pn ̸= Gn and also Pn = ∅.

Proof.

We have 2 sets Pn and Gn of solutions that we need to prove are not equal and Gn is the complete
set unconstrained, as we will prove of the diophantine Fermat equation. The basis of the method for the
proof is the relations proved by theorems 1 & 2 of the Pythagorean triples. We start with the very basic
equivalence:

an + bn = cn ⇔ (a/b)n + 1 = (c/b)n ⇔ (c/b)n − (a/b)n = 1 ⇔
(
(c/b)n/2

)2
−
(
(a/b)n/2

)2
= 1,

n > 2, where a/b, c/b ∈ Q+, abc ̸= 0 (M1.1)

We declare now the sets:

Fn =

{
(a/b, c/b) ∈ Q2

+

∣∣∣∣ ((c/b)n/2)2 − ((a/b)n/2)2 = 1,n > 2, a,b, c ∈ N+

}
,

Sn =
{
(a/b, c/b) ∈ Q2

+ | m− λ = a/b ∧m = c/b,m, λ ∈ Q+
}

From this point on, initially we solve the system freely without constraints for variables (a, b, c),
i.e if apply (a,b, c) | a,b, c ∈ N+,m, λ ∈ Q+. This is because, as we will see below, the equations themselves
result in at least one zero value for some variable. The following applies to the quadratic difference system:

13



The set Fn ∩ Sn leads to 2 categories of solutions let’s look at it in detail:

{(
mn/2

)2 − ((m− λ)n/2
)2

= 1
}
⇔

{
mn/2 − (m− λ)n/2 = 1

t

mn/2 + (m− λ)n/2 = t

⇔


mn/2 = t2+1

2·t

(m− λ)n/2 = t2−1
2·t

⇔


m =

(
t2+1
2·t

)2/n
(m− λ) =

(
t2−1
2·t

)2/n
⇔


m =

(
t2+1
2·t

)2/n
λ =

(
t2+1
2·t

)2/n
−
(

t2−1
2·t

)2/n
 , t ∈ Q+

(M1.2)

Let us further assume that t = p/q where p, q ∈ N+, p > q,p and q relatively primes if we substitute
the value of t, in relation (M1.2) then we get:

m =
(

p2+q2

2·p·q

)2/n
λ =

(
p2+q2

2·p·q

)2/n
−
(

p2−q2

2·p·q

)2/n
 , p, q ∈ Z>0, p and q relatively primes (M1.3)

We come to the most crucial point where we have to determine whether m and λ belong to Q+ or not,
because by definition they must belong to Q+. Because as it is in the form of relation M1.3 it is difficult to
infer and therefore we will use a correlation trick. To this end, we make the following assumptions:

We define the relationships and we define as σ = m and ϵ = m− λ then apply:

If where σ, ε ∈ Q>0, p and q relatively primes, p, q ∈ Z>0
σn/2 =

(
p2+q2

2·p·q

)
εn/2 =

(
p2−q2

2·p·q

)
⇔


p
q =

(
σn/2 + εn/2

)
q
p =

(
σn/2 − εn/2

)
⇔

(
σn/2 + εn/2

)(
σn/2 − εn/2

)
= 1 (M1.4)

We now distinguish 2 cases:

I) p ̸= q,
(
σn/2 + εn/2

)
·
(
σn/2 − εn/2

)
= 1

This case is indeterminate for the σ, ε but it gives us informations in which set each one belongs. So
we have the relations:

σ =
(

p2+q2

2·p·q

)2/n
ε =

(
p2−q2

2·p·q

)2/n
 where σ, ε ∈ Q>0, p and q relatively primes, p, q ∈ Z>0 (M1.5)
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If we divide ε and σ we get (M1.5):



ε

σ
=

(
p2 − q2

p2 + q2

)2/n

⇔

ε

σ
=

((
p2 − q2

)
·
(
p2 + q2

)n/2−1

(p2 + q2)
n/2

)2/n

⇔

ε =
σ

p2 + q2

n/2
√

(p2 − q2) · (p2 + q2)
n/2−1



where
σ

p2 + q2
∈ Q>0, ε ∈

(
R+ −Q+

)
,

p and q relatively primes, p, q ∈ Z>0

(M1.6)

The last relation gives rise to the following interesting relationship

{
ε =

σ

p2 + q2
n/2

√
(p2 − q2) · (p2 + q2)

n/2−1

}
where

σ

p2 + q2
∈ Q>0, ε ∈

(
R+ −Q+

)
,

p and q relatively primes, p, q ∈ Z>0

(M1.7)

Which if we analyse it section by section, is interpreted as follows



σ

p2 + q2
∈ Q>0 and

n/2

√
(p2 − q2) · (p2 + q2)

n/2−1 ∈ (R>0 −Q>0)

i.e. ε is irrational number


ε ∈

(
R+ −Q+

)
,

p and q relatively primes, p, q ∈ Z>0

(M1.8)

For ε to be an positive rational number, must apply for the subroot (that it must be an integer)
that:

{(
p2 − q2

)
=
(
p2 + q2

)}
⇔ q = 0, p and q relatively primes, p, q ∈ Z>0 (M1.9)

But this i.e that q = 0 contradicts the assumption i.e that q must not be zero, so this case is impossible
and is therefore rejected.

Hence impossible to be a Rational number and logically there will be 2 additional cases.

II) The t if is integer then similarly will apply
(
σ(n/2) − ϵ(n/2)

) (
σ(n/2) + ϵ(n/2)

)
= 1.

But from Theorem 4 in (method II page 13,14), for n odd or even, it is proved that valid λ = 1 &
m = 1 if we accept that λ is an integer. We come to relationship (M1.2 page 10) then because we have the

ratio m =
((
t2 + 1

)
/(2t)

)(2/n)
= 1 ⇔ t = 1. The value of t is therefore independent of n. But when t = 1

we will have t = p/q = 1 ⇔ p = q. There is now only one case left to consider what happens when t = 1
and completes the proof.
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III) If t = 1 then p = q and furthermore
(
σ(n/2) + ϵ(n/2)

) (
σ(n/2) + ϵ(n/2)

)
= 1.

From relationship (M1.4) we have
(
σn/2 + εn/2

)
= 1(

σn/2 − εn/2
)
= 1

⇔


σ = ±1, ε = 0, n = 2 · k, k ∈ N+, k > 1

σ = 1, ε = 0, n = 2 · k + 1, k ∈ N+

 (M1.10)

Aggregated results for

1.n = 2k + 1, k ∈ N∗

i).if apply: a/b = m− λ, c/b = m

m = 1 ∧m− λ = 0 ⇔ a = 0 ∧ c = b

ii).if apply: b/a = m− λ, c/a = m

and m = 1 ∧m− λ = 0 ⇔ b = 0 ∧ c = a

iii).If m− λ = −1 ∧m = 0 ⇔ a = −b, c = 0

iv).If m− λ ̸= 0 ∧m ̸= 0 ⇔ a = b = c = 0

2.n = 2k, k ∈ N+, k > 1

i).if apply: a/b = m− λ, c/b = m

m = ±1 ∧m− λ = 0 ⇔ a = 0 ∧ c = ±b

ii).if apply: b/a = m− λ, c/a = m

and m = ±1 ∧m− λ = 0 ⇔ b = 0 ∧ c = ±a

iii).If m− λ ̸= 0 ∧m ̸= 0 ⇔ a = b = c = 0

(M1.11)

From these 2 cases we can easily conclude that the set of solutions of the intersection of the sets Fn ∩ Sn

arises the Gn which is:

Gn = {((a = 0, c = b or b = 0, c = a or c = 0, a = −b or a = b = c = 0) | n = 2k + 1,

(a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N+}.

Finally, we proved that the solution sets Pn ̸= Gn, since the assumptions we made must hold and we
must keep the integer positive value in each variable, which is absolutely necessary. Since the results of the
solution (in table (M1.11)) contradict the hypothesis because abc ̸= 0 and since {(a, b, c) | a, b, c ∈ N+}
holds for the variables. Therefore, there is no solution to F.L.T for n > 2 in N+ and hence Pn = ∅.
Of course, we accept solutions to Fermat’s equation only if our variables take values from the set Z, as
shown in table (M1.11).
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Method II.

II.1. Theorem 4 (Basic theorem of Proof).

Let Pn be the set of Fermat triples and defined as Pn = {(a, b, c) | a.b.c, n > 2 ∈ N∗ and an an + bn = cn,
abc ̸= 0}. Let Gn be the set defined as:

Gn = {((a = 0, c = b or b = 0, c = a or c = 0, a = −b or a = b = c = 0) | n = 2k + 1,

(a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N+}.

We need to prove that the sets Pn ̸= Gn and also Pn = ∅.

Proof

We have 2 sets Pn and Gn of solutions that we need to prove are not equal and Gn is the complete set
unconstrained, as we will prove of the diophantine Fermat equation. The basis of the method for the proof
is the relations proved by theorems 1&2 of the Pythagorean triples. We start with the very basic equivalence

an + bn = cn ⇔ (a/b)n + 1 = (c/b)n ⇔ (c/b)n − (a/b)n = 1,n > 2, {a/b, c/b} ∈ Q+, abc ̸= 0 (M3.1)

The set F0 ∩ Sn leads to 2 categories of solutions let’s look at it in detail for n i.e. n = 2r + 1, r ≥ 1 and
n = 2r, r > 1, r = N+

i) n = 2r + 1, r ∈ N+

We declare now the sets:

Fn =
{
(a/b, c/b) ∈ Q2+ | (c/b)n − (a/b)n = 1, n > 2, a, b, c ∈ N+

}
,

Sn =
{
(a/b, c/b) ∈ Q2+ | m− λ = a/b ∧m = c/b,m, λ ∈ Q+

}
From this point on, initially we solve the system freely without constraints for variables (a, b, c), i.e if
apply (a, b, c) | a, b, c ∈ N+,m, λ ∈ Q+: As we will see below, the equations themselves lead to at least one
zero value for some variable that we will obviously exclude. The following applies to the system:

We define the function F (m,λ) = (m− λ)(2r+1) −m2r+1 + 1 = 0,m, λ ∈ Q+ M(3.2)

To find the discriminant we need to find the first derivative and substitute it into the original function
under the condition that it is >= 0.

Therefore: D =
∂F (m,λ)

∂m
= (2r + 1) · (m − λ)2r − (2r + 1) · m2r = 0 ⇔

{
m = λ

2
λ = 0

}
, but because

λ ̸= 0 we accept only the m = λ
2 and with substitution in the original equation we have F (m,λ) ≥ 0 which

must apply into discriminant:

F (mmax, λ) =

(
λ

2
− λ

)2r+1

−
(
λ

2

)2r+1

+ 1 = 1− 2 ·
(
λ

2

)2r+1

≥ 0 ⇔ λ ≤ 2 ·
(
1

2

)1/(2r+1)

Therefore 0 < λ < 2 ·
(
1
2

)1/(2r+1)
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But then λ < 2 ·
(
1
2

)1/(2r+1)
and for r → ∞ then λ → 2. How ever because λ > 0 it follows that the

only integer value of λ = 1 and therefore the unique solution m = 1 will also result

ii) n = 2r, r > 1, r ∈ N+.

In this second case according to relation (M3.1) we declare now the sets:

Fn =
{
(a/c,b/c) ∈ Q2+ | (a/c)n + (b/c)n = 1,n > 2, a,b, c ∈ N+

}
,

Sn =
{
(a/c,b/c) ∈ Q2+ | m− λ = a/c ∧m = b/c,m, λ ∈ Q+

}
We define the function F (m,λ) = 1− (m− λ)(2r) −m2r = 0,m, λ ∈ Q+ (M 3.3). To find the discriminant
we need to find the first derivative and substitute it into the original function under the condition that it is

>= 0. Therefore: D =
∂F (m,λ)

∂m
= −(2r) · (m− λ)2r−1 − (2r) ·m2r−1 = 0 ⇔

{
m = λ

2

}
, therefore m = λ

2 ,

and with substitution in the original equation F(m, λ) ≥ 0 which must apply into discriminant:

F (mmax, λ) = 1−
(
λ

2
− λ

)2r

−
(
λ

2

)2r

= 1− 2 ·
(
λ

2

)2r

≥ 0 ⇔ λ ≤ 2 ·
(
1

2

)1/(2r)

.

Therefore 0 < λ < 2 ·
(
1
2

)1/(2r)
. But then λ < 2 ·

(
1
2

)1/(2r)
and for r → ∞ then λ → 2. However because

λ > 0 it follows that the only integer value of λ = 1 and therefore the unique solution m = 1 will also result.

This analysis is obtained for integer λ. If λ ∈ Q, then we use the result of Theorem 3 , as a lemma,
in particular, it follows from (M1.9) that if p ̸= q then this is impossible and therefore λ = p/q = 1.
Consequently for n > 2 for values of λ = 1 as only integer and m = 1. These values for λ,m lead to
the unique solution of the set:

Gn = {((a = 0, c = b or b = 0, c = a or c = 0, a = −b or a = b = c = 0) | n = 2k + 1,

(a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N+}.

But according to the original hypothesis that abc ̸= 0, implies that there can be no solution.

The only therefore integer value is (λ,m) = (1, 1) and therefore as we proved again Pn ̸= Gn and Pn = ∅
since the assumptions we made must also hold must keep the integer positive value in each variable, which
is absolutely necessary.

Method III.

Proof of FLT by maximum of discriminant using Frey’s elliptic curves.

III.1. Theorem 5. (Basic theorem of Proof).

In 1955, Taniyama noted that it was plausible that the Np attached to a given elliptic curve always arise
in a simple way from a modular form (in modern terminology, that the elliptic curve is modular). In 1985
Frey observed that this did not appear to be true for the elliptic curve attached to a nontrivial solution of
the Fermat equation an ap + bp = cp, p > 2. His observation prompted Serre to revisit some old conjectures
implying this, and Ribet proved enough of his conjectures to deduce that Frey’s observation is correct: the
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elliptic curve attached to a nontrivial solution of the Fermat equation is not modular. Finally, in 1994 Wiles
(assisted by Taylor) proved that every elliptic curve in a large class is modular, there by proving
Fermat’s Last Theorem. It was Gerhard Frey [7,11] who completely transformed FLT into a problem about
elliptic curves. In essence, Frey said this: if I have a solution an + bn = cn to the Fermat equation for some
exponent n > 2, then I’ll use it to construct the following elliptic curve:

E : y2 = x (x− an) (x+ bn) = g(x) (M4.1)

Now if f is a polynomial of degree k and if r1, r2, . . . rk are all of its roots, then the discriminant ∆(f) of f is
defined by

∆(f) =
∏

1<i<j≤k

(ri − rj)
2

(M4.2)

If f is monic with integer coefficients, it turns out that ∆(f) is an integer. The three roots of the polynomial
g(x) on the right-hand side of the Frey curve are 0, an and −bn using the fact that an−(−bn) = an+bn = cn

and a little algebra, we find that ∆(g) = (abc)2n. Frey said that an elliptic curve with such a discriminant
must be really strange. In particular, such a curve cannot possibly be what is called modular (never mind
what that means). Now here’s a thought, said he; what if you could manage to prove two things: first, that
a large class of elliptic curves is modular, and second, that the Frey curve is always a member of that class of
curves? Why, you’d have a contradiction-from which you could conclude that there is no such curve. That
is, there is no such solution to the Fermat equation ... that there is no counterexample to Fermat’s Last
Theorem ... and so Fermat’s Last Theorem is true. We will try to give another proof using the well-known
theory of classical analysis using the discriminant more understandable and faster. The steps we follow are
in order as:

i). Since we have accepted as correct the relevant theory for Frey’s elliptic curves equation (M4.1) will
apply y2 = x (x− an) (x + bn) and if we differentiate it with respect to x we get the relations analytically:

< 2y
dy

dx
=

d

dx

{
x
[
x2 + (bn − an)x− (ab)n

]}
=

d

dx

{
x3 + (bn − an)x2 − (ab)nx

}
2y

dy

dx
= 3x2 + (bn − an) 2x− (ab)n, y

dy

dx
=

3

2
x2 + (bn − an)x− (ab)n

2

dy

dx
=

3
2x

2 + (bn − an)x− (ab)n

2√
x3 + (bn − an)x2 − (ab)nx

= 0 > (M4.3)

It must therefore be true that the numerator is equal to zero i.e.

< x2 +
2

3
(bn − an)x− (ab)n

3
= 0,

(
x+

1

3
(bn − an)

)2

− (bn − an)
2

32
− (ab)n

3
= 0

x = −1

3
(bn − an)± 1

3

√
(bn − an)

2
+ 3(ab)n

x =
− (bn − an)±

√
(an + bn)

2 − (ab)n

3

x =
− (bn − an)±

√(
an + bn − (ab)n/2

) (
an + bn + (ab)n/2

)
3

=
− (bn − an)±

√
∆

3
∆ = is the discriminant and b > a

> (M4.4)

Because
(
an + bn + (ab)n/2

)
> 0 and this after (a, b, c) ∈ N+, it follows that the representation(

an + bn − (ab)n/2
)
≥ 0 (M4.5). But apply an+ bn = cn(M4.6) we will get (a · b) = c2(M4.7). Finally, from
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relations (M4.5, M4.6, M4.7) it will follow that (an + bn − cn) ≥ 0 (M4.8). From relationships (M4.6 and
M4.8) the equation results

< But from (M4.8) apply only ” = ”, therefore we have:

an +

(
c2

a

)n

− cn = 0, (an)
2 − ancn + (cn)

2
= 0(

an − cn

2

)2

+ (cn)
2 − 1

4
(cn)

2
= 0,

(
an − cn

2

)2

+
3

4
(cn)

2
= 0

a = c

[
(1± i

√
3)

2

]1/n
, i =

√
−1 > (M4.9)

That is, there is a complex number for a related to c or b related to c respectively. So we do not find an
integer relationship between the variables as has been proven. According to relation (M4.9) it follows that
in relation (M4.4) the Discriminant ∆ = 0, another very basic conclusion, which leaves out as we see the
variable c · ([8], [11]). Our penultimate goal is to calculate x with respect to our new discoveries and the
final goal is to calculate y. From relation (M4.4) it follows that

x =
− (bn − an)±

√
∆

3
=

− (bn − an)

3

∆ = 0, the discriminant

 (M4.10)

Finally, we have for the calculation of y the relationships

< b > a

y =

√
(bn − an) (bn + 2an) (an + 2bn)

33/2
must subroot of y > 0

d2y

dx2
=

3x4 + 4 (bn − an)x3 − 6(ab)nx2 − (ab)2n

4 {x (x− an) (x+ bn)}3/2

d2y

dx2

∣∣∣∣
y′=0

= −39/2

4

[
(bn−an)2

3 + (ab)n
]2

[(bn − an) (bn + 2an) (an + 2bn)]
3/2

⟨0 > (M4.11)

So there is a maximum at this point but in fact we cannot accept its existence because there is no positive
integer so that D = 0 is satisfied. This is what Frey has stated as the forbidden point of existence. In
general we consider 2 cases in relation to y2 = x (x− an) (x+ bn):

A. y = 0. In this case there are 3 categories anaphorically with a,b,c.

A1 : If x = 0 then apply a · b = 0 ⇔ a = 0 ∨ b = 0 which is rejected because a · b · c ̸= 0

A2 : If x = an then apply c = 0, but is rejected because a · b · c ̸= 0

A3 : If x = −bn then apply c = 0, but is rejected because a · b · c ̸= 0

B. y ̸= 0 and y ∈ N+, in this case there are 2 categories anaphorically with a,b, c.
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In principle it applies to that y =

√
(cn − 2an) · (cn + an) · (2cn − an)

33
if we change b to a.

From 2 relationship
(
b · a = c2 & an + bn = cn

)
implies an = cn

(
1
2 (1± i

√
3)
)
(a, b, c) ∈ N+.

So we have:

B1) a
n = cn

(
1
2 (1− i

√
3)
)

With replacement we have y =

√
(cn − 2an) · (cn + an) · (2cn − an)

33
=

√
ic3n

31/2
.

If i replace with cn = 31/2 · i · k2r, k, r ∈ N+ then y = k3r, i.e Integer positive.

B2) · an = cn
(
1
2 (1 + i

√
3)
)

With replacement we have y =

√
(cn − 2an) · (cn + an) · (2cn − an)

33
=

√
− ic3n

31/2

If i replace with cn = −31/2 · i · k2r, k, r ∈ N+ then y = k3r, i.e Integer positive.

For Frey’s curve with the original formula is forbidden to exist & cannot be drawn with Fermat’s con-
ditions under the resulting conditions.As we can see in these 2 cases, in order to have y an integer, we need
(a, b, c) ∈ C−R. Therefore these 2 cases A,B rejected for the reasons explained and furthermore we have
complex variable values and there is not solution for the Fermat equation an+bh = cn for some exponent
n > 2, in integers, with use of Frey’s elliptic curves.

Method IV.

Method using the generalises Fermat equation

IV.1 Theorem 6

Any equation form xp + yq = zw with positive integers x, y, z, p, q, w where p, q, w > 1 , is transformed
into a final Diophantine equation with GCD(x, y, z) = 1 then and only then, when at least one exponent
equals 2. This equation will belong to a class of equations with exponents that be consistent with the
criteria σ(p, q, r) > 1, σ(p, q, r) = 1 or σ(p, q, r) < 1 with a limited number equations, in accordance with
chapter 4.[3,4,5]

Proof

The number of the forms of xq + yp = zw, x, y, z, p, q, w ∈ Z+ ∧ {q >= 2, p >= 2, w >= 2} after simplifying
the terms of the GCD[x, y, z], Lemma 1, Lemma 2 limited to 6. Depending on the ascending order of expo-
nents {p, q, w} of original Diophantine equation xp+yq = zw, x, y, z, p, q, w ∈ Z+∧{q >= 2, p >= 2, w >= 2}
and after simplifying the terms with the number ε = GCD[x, y, z], we receive a total of 6 cases where any
stemming detail has as follows

1. λp · εp−q + µq = εw−q · σw, w > p > q ∈ Z+

2. λp + εq−pµq = εw−p · σw, w > q > p ∈ Z+
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3. λp · εp−q + µq = εw−q · σw, p > w > q ∈ Z+

4. λp · εp−w + εq−w · µq = σw, p > q > w ∈ Z+

5. λp · εp−w + εq−wµq = σw, q > p > w ∈ Z+

6. λp + εq−pµq = εw−p · σw, q > w > p ∈ Z+

But these exhibitors must comply with the Fermat-Catalan criteria, but here we will analyse them in
general terms, distinguishing 3 general cases:

if we accept that p,q and w are fixed positive integers and that these exponents must satisfy the crite-
ria of chapter 4, and after first accepting p, q, w >= 2, we will prove that at least one exponent equals 2
using these criteria alone. So according to this logic the following 3 cases will apply:

Case 1rd

0 < 1/p+ 1/q + 1/w < 1

In order to we calculate the exhibitors present in the open interval (0, 1) solve the inequality as z and
we get

1/w < 1− p+ q

p · q
⇒ w >

p · q
p(q − 1)− q

The inequality has integer solutions which arise only in accordance with the 3 equations:

(1). p · (q − 1)− q = 1

(2). q = φ · (p · (q − 1)− q)

(3). p = ε · (p · (q − 1)− q)

ε, φ ∈ Z

1.From the first equation it follows that

p · (q − 1) = q + 1 ⇒ p = 1+q
q−1 = 1 + 2

q−1 which implies 2 prerequisites:

i) q − 1 = 1 ⇒ q = 2 ∧ p = 3

ii) q − 1 = 2 ⇒ q = 3 ∧ p = 2

because should the (q − 1) must divide 2

And for 2 exhibitor cases we get w > 6 ⇒ w ≥ 7

Therefore Thus arise the two triads p = 3, q = 2, w ≥ 7 and p = 2, q = 3, w ≥ 7

2. Similarly from the second equation q = ϕ · (p · (q − 1) − q) we get:

q = ϕ · p · (q − 1)− q · φ ⇒ p =
q · (1 + ϕ)

ϕ · (q − 1)
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i)ϕ(q − 1) = 1 ⇒ ϕ =
1

q − 1
= 1 ∧ q − 1 = 1 ⇒ q = 2

p =
q · (1 + ϕ)

ϕ · (q − 1)
=

2 · 2
1

= 4

w >
p · q

p(q − 1)− q
=

4 · 2
4 · 1− 2

= 4, w ≥ 5

Hence the triad

p = 4, q = 2, w ≥ 5

ii)q = σ(q − 1) ∧ (1 + ϕ) = λ · ϕ

a)ϕ =
1

λ− 1
⇒ λ− 1 = 1 ⇒ (λ = 2 ∧ ϕ = 1)

β)q · (σ − 1) = σ ⇒ q =
σ

σ − 1
= 1 +

1

σ − 1
== 2 ∧ σ − 1 = 1 ⇒ (σ = 2 ∧ q = 2)

p =
q · (1 + ϕ)

ϕ · (q − 1)
=

2 · 2
1 · 1

= 4, w >
p · q

p(q − 1)− q
=

4 · 2
4 · (2− 1)− 2

= 4, w ≥ 5

Therefore resulting triad

|p = 4, q = 2, w ≥ 5|

iii)q = σ · ϕ ∧ (1 + ϕ) = λ · (y − 1)

a)λ =
1 + ϕ

y − 1
=

1

q − 1
+

ϕ

q − 1
∧ q − 1 = 1 ⇒ (q = 2 ∧ λ = 3)

σ · ϕ = 2 ⇒ (σ = 1 ∧ ϕ = 2), (σ = 2 ∧ ϕ = 1)

q = 2 ∧ ϕ = 1 ⇒ p =
q · (1 + ϕ)

ϕ · (q − 1)
=

2

1

2

1
= 4, w >

p · q
p(q − 1)− q

=
4 · 2

4 · 1− 2
= 4

q = 2 ∧ ϕ = 2 ⇒ p =
q · (1 + ϕ)

ϕ · (q − 1)
=

2

2

3

1
= 3, w >

p · q
p(q − 1)− q

=
3 · 2

3 · 1− 2
= 6

Thus arise the two triads

p = 4, q = 2, w ≥ 5 and p = 3, q = 2, w ≥ 7

3.Similarly from equation p = ε · (p · (q − 1) − q) take that:

p = ε · p · (q − 1)− q · ε ⇒ q =
p · (1 + ε)

ε · (p− 1)
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i)ε(p− 1) = 1 ⇒ ε =
1

p− 1
= 1 ∧ p− 1 = 1 ⇒ p = 2

q =
p · (1 + ε)

ε · (p− 1)
=

2 · 2
1

= 4

w >
p · q

p(q − 1)− q
=

4 · 2
2 · 3− 4

= 4, w ≥ 5

Therefore shows the triad

q = 4, p = 2, w ≥ 5

ii)p = ε(p− 1) ∧ (1 + ε) = λ · ε

a)ε =
1

λ− 1
⇒ λ− 1 = 1 ⇒ (λ = 2 ∧ ε = 1)

b)p · (ε− 1) = ε ⇒ p =
ε

ε− 1
= 1 +

1

ε− 1
== 2 ∧ ε− 1 = 1 ⇒ (ε = 2 ∧ p = 2)

q =
p · (1 + ε)

ε · (p− 1)
=

2 · 2
1 · 1

= 4, w >
p · q

p(q − 1)− q
=

4 · 2
2 · (4− 1)− 4

= 4, w ≥ 5

Hence the triad

p = 2, q = 4, w ≥ 5

iii)p = ε · ϕ ∧ (1 + ε) = λ · (p− 1)

a)λ =
1 + ε

p− 1
=

1

p− 1
+

ε

p− 1
∧ p− 1 = 1 ⇒ (p = 2)

ε · ϕ = 2 ⇒ (ε = 1 ∧ ϕ = 2), (ε = 2 ∧ ϕ = 1)

p = 2 ∧ ϕ = 1 ⇒ q =
p · (1 + ϕ)

ϕ · (p− 1)
=

2

1

2

1
= 4, w >

p · q
p(q − 1)− q

=
4 · 2

2 · 3− 4
= 4

p = 2 ∧ ϕ = 2 ⇒ q =
p · (1 + ϕ)

ϕ · (p− 1)
=

2

2

3

1
= 3, w >

p · q
p(q − 1)− q

=
3 · 2

2 · 1− 2
= 6

Thus arise the two triads

q = 4, p = 2, w ≥ 5 and q = 3, p = 2, w ≥ 7
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Total we have 12 cases for exhibitors and cyclically we will have

(i)

p = 3, q = 2, w ≥ 7 ∨ p = 2, q = 3, w ≥ 7

w = 3, p = 2, q ≥ 7 ∨ w = 2, p = 3, q ≥ 7

w = 3, q = 2, p ≥ 7 ∨ w = 2, q = 3, p ≥ 7

q = 4, p = 2, w ≥ 5 ∨ q = 2, p = 4, w ≥ 5

w = 4, p = 2, q ≥ 5 ∨ w = 2, p = 4, q ≥ 5

w = 4, q = 2, p ≥ 5 ∨ w = 2, q = 4, p ≥ 5

Which in relation to equations take the form

(ii)

x3 + y2 = zw, w ≥ 7

x2 + y3 = zw, w ≥ 7

x2 + yq = z3, q ≥ 7

x3 + yq = z2, q ≥ 7

xp + y2 = z3, p ≥ 7

xp + y3 = z2, p ≥ 7

x2 + yq = z4, q ≥ 5

x4 + yq = z2, q ≥ 5

x2 + y4 = zw, w ≥ 5

x4 + y2 = zw, w ≥ 5

xp + y2 = z4, p ≥ 5

xp + y4 = z2, p ≥ 5

Characteristics mention the work of Jamel Ghanouchi ”A new approach of Fermat-Catalan conjecture” that
achieves the same result.

The generalized Fermat conjecture (Darmon and Granville, 1995; Darmon, 1997), also known as the
Tijdeman-Zagier conjecture and as the Beal conjecture (Beukers, 2012),is concerned with the case if χ < 1.
It states that the only non-trivial primitive solutions to xq + yp = zw with σ(p, g, r) < 1 are

25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712, 35 + 114 = 1222,

177 + 762713 = 210639282, 14143 + 22134592 = 657, 92623 + 153122832 = 1137,

438 + 962223 = 300429072 and 338 + 15490342 = 156133.

The generalized Fermat conjecture has been documented for many signatures (p, q, r), including many in-
finite families of signatures, starting with Fermat’s last theorem (p, p, p) by Wiles (1995). The remaining
cases are reported in Chapter 4[3,4,5].

Case 2rd. 1/p+ 1/q + 1/w = 1

i) From case 1 shows that overall we have 12 cases for exhibitors and and we roundly take:
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p = 3, q = 2, w ≥ 7 ∨ p = 2, q = 3, w ≥ 7

w = 3, p = 2, q ≥ 7 ∨ w = 2, p = 3, q ≥ 7

w = 3, q = 2, p ≥ 7 ∨ w = 2, q = 3, p ≥ 7

q = 4, p = 2, w ≥ 5 ∨ q = 2, p = 4, w ≥ 5

w = 4, p = 2, q ≥ 5 ∧ w = 2, p = 4, q ≥ 5

w = 4, q = 2, p ≥ 5 ∨ w = 2, q = 4, p ≥ 5

⇔

p = 3, q = 2, w > 6 ∨ p = 2, q = 3, w > 6

w = 3, p = 2, q > 6 ∨ w = 2, p = 3, q > 6

w = 3, q = 2, p > 6 ∨ w = 2, q = 3, p > 6

q = 4, p = 2, w > 4 ∨ q = 2, p = 4, w > 4

w = 4, p = 2, q > 4 ∨ w = 2, p = 4, q > 4

w = 4, q = 2, p > 4 ∨ w = 2, q = 4, p > 4

(i) (ii)

But the inequality (ii), for example, p = 3, q = 2, w > 6 as well as the inequality q = 4, p = 2, w > 4 which
is characteristic of the group of exhibitors according to the criterion 0 < 1/p + 1/q + 1/w < 1, so for the
exponent group to have equality, 12 relations will apply cyclically as follows:

(iii)

p = 3, q = 2, w = 6 ∨ p = 2, q = 3, w = 6

w = 3, p = 2, q = 6 ∨ w = 2, p = 3, q = 6

w = 3, q = 2, p = 6 ∨ w = 2, q = 3, p = 6

q = 4, p = 2, w = 4 ∨ q = 2, p = 4, w = 4

w = 4, p = 2, q = 4 ∨ w = 2, p = 4, q = 4

w = 4, q = 2, p = 4 ∨ w = 2, q = 4, p = 4

ii) Pending from only the case 3/p = 1 ⇒ p = 3 which implies p = q = w = 3. But this case according to
the proof of Fermat’s theorem does not accept solutions with exponents greater than 2.

Case 3rd. 1/p+ 1/q + 1/w > 1

Originally accept that p >= 2, q >= 2 and w >= 2. We examine three cases:

i) p = q = w = 2 which is true

ii) p = q = 2 ⇒ w > 2 which is true we cyclically for the other exhibitors that p = w = 2 ⇒ q > 2
and q = w = 2 => p > 2.

iii) For all other cases will apply in accordance with the relation (iii) the second case, because now would
force the inequality < 6, i.e total of 12 relations for all exhibitors.

p = 3, q = 2, {2 <= w <= 5} ∨ p = 2, q = 3, {2 <= w <= 5}
w = 3, p = 2, {2 <= q <= 5} ∨ w = 2, p = 3, {2 <= q <= 5}
w = 3, q = 2, {2 <= p <= 5} ∨ w = 2, q = 3, {2 <= p <= 5}
q = 4, p = 2, {2 <= w <= 3} ∨ q = 2, p = 4, {2 <= w <= 3}
w = 4, p = 2, {2 <= q <= 3} ∨ w = 2, p = 4, {2 <= q <= 3}
w = 4, q = 2, {2 <= p <= 3} ∨ w = 2, q = 4, {2 <= p <= 3}

(iv)
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IV.2 Theorem 7

The equation xp + yq = zw with positive integers x, y, z and extra (p, q, w >= 2) and p, q and w are
fixed positive integers is solved if and only if apply the conditions of Theorem 6, (1, 2, 3) cases for exponents
p, q, w with extra (x, y, z) = 1, and at least one of them equal 2. Therefore Beal’s Conjecture is true with
the above conditions, because accepts that there is no solution under the condition that all values of the
exponents greater of 2.

Proof

For the equation xp + yq = zw with positive integers x, y, z, (p, q, w >= 2) demonstrated that solved if
and only if apply the conditions of Theorem 6 (i, ii, iii) for the exponents p, q, w with extra (x, y, z) = 1, so
we have analytical

i) 1/p+ 1/q + 1/w < 1

According to Theorem 6, and 1 case, there is a solution to obtain values for the group of exhibitors {p, q, w}
as follows:

p = 3, q = 2, w ≥ 7 ∨ p = 2, q = 3, w ≥ 7

w = 3, p = 2, q ≥ 7 ∨ w = 2, p = 3, q ≥ 7

w = 3, q = 2, p ≥ 7 ∨ w = 2, q = 3, p ≥ 7

q = 4, p = 2, w ≥ 5 ∨ q = 2, p = 4, w ≥ 5

w = 4, p = 2, q ≥ 5 ∨ w = 2, p = 4, q ≥ 5

w = 4, q = 2, p ≥ 5 ∨ w = 2, q = 4, p ≥ 5

Which clearly shows that p = 2 or q = 2 or w = 2. Therefore least one exponent = 2.

ii) 1/p+ 1/q + 1/w = 1

It happens the second case, Theorem 6, for exist solution will arrive at values for the group of exhibitors
{p, q, w} as follows:

p = 3, q = 2, w = 6 ∨ p = 2, q = 3, w = 6

w = 3, p = 2, q = 6 ∨ w = 2, p = 3, q = 6

w = 3, q = 2, p = 6 ∨ w = 2, q = 3, p = 6

q = 4, p = 2, w = 4 ∨ q = 2, p = 4, w = 4

w = 4, p = 2, q = 4 ∨ w = 2, p = 4, q = 4

w = 4, q = 2, p = 4 ∨ w = 2, q = 4, p = 4

Which also seems that p = 2 or q = 2 or w = 2. Therefore least one exponent equal 2.

iii) 1/p+ 1/q + 1/w > 1

For the third case, the Theorem 6, to obtain a solution we will arrive at values for the group of exhibitors
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{p, q, w} as follows:

p = 3, q = 2, {2 <= w <= 5} ∨ p = 2, q = 3, {2 <= w <= 5}
w = 3, p = 2, {2 <= q <= 5} ∨ w = 2, p = 3, {2 <= q <= 5}
w = 3, q = 2, {2 <= p <= 5} ∨ w = 2, q = 3, {2 <= p <= 5}
q = 4, p = 2, {2 <= w <= 3} ∨ q = 2, p = 4, {2 <= w <= 3}
w = 4, p = 2, {2 <= q <= 3} ∨ w = 2, p = 4, {2 <= q <= 3}
w = 4, q = 2, {2 <= p <= 3} ∨ w = 2, q = 4, {2 <= p <= 3}

in which at least appear that one of the p = 2 or q = 2 or w = 2.

Therefore at least one exponent equals 2 to have a solution and hence play Beal’s Conjecture is true,
because it recognizes that there is no solution if all values of the exponents greater 2.

6.3.Theorem 8. (F.L.T) For any integer n > 2, the equation xn + yn = zn has no positive
integer solutions

An equation of the form xa + yb = zc (Beals’) to have a solution, according to theorems {6, 7}, must
have at least one exponent equal to 2. And since in Fermat’s last theorem we have a = b = c = n, it follows
directly that the only solution that Fermat’s equation xn + yn = zn can have is when n = 2. So for n > 2
there is no solution.

Part IV. 2 Solutions of F.L.T. by simulation method

V.1. Theorem 9.(Trigonometric simulation of Fermat’s equation - Pythagorean equa-
tion).[5]

Let Pn be the set of Fermat triples and defined as:

Pn = {(a, b, c) | a, b, c, n > 2 ∈ N and an + bn = cn, abc ̸= 0} .

Let Gn set of simulation be the set defined as:

GnT = { If an/cn + bn/cn = 1, an/cn = sinn(x) ∧ bn/cn = cosn(x), | a,b, c ∈ N+, sinn(x) < sin2(x) <
1, cosn(x) < cos2(x) < 1. The solutions are ((sin(x) = 1, cos(x) = 0) or (sin(x) = 0, cos(x) = 1)) | n =
2k + 1, k ∈ N+, ((sin(x) = ±1, cos(x) = 0 or (sin(x) = 0, cos(x) = ±1) | n = 2k, k > 1, k ∈ N+}. We need
to prove that the ts Pn ̸= GnT and also Pn = ∅.

Proof.

Using a similar procedure as Theorem 3, we will prove Theorem 4 under the conditions we assumed for
Fermat’s equation to hold. If the solutions are identical then the solutions are equivalent and the simu-
lation is true with respect to the solution sets. As we have mentioned we can equate the equation and
an+bn = cn(4.1) with the trigonometric equation sinn(x)+cosn(x) = 1(4.2) and an/cn = sinn(x)∧bn/cn =
cosn(x), | a, b, c ∈ N + (4.3). The proof passes though 2 parts to prove that it does not apply for power for
even positive numbers integers greater than 2, i.e. n > 2 and the proof is divided into 2 parts:
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Part A.

The equivalent Diophantine trigonometric equation sin2k+1(x) + cos2k+1(x) = 1(4.4) has no
solutions with sin(x) ̸= 0 and cos(x) ̸= 0 for k ∈ N+.

Proof.

Let’s assume that x is a solution of equation (4.4). We can easily (because 0 ≤ cos(x) ≤ 1 & 0 ≤ sin(x) ≤ 1
find that:

cos2k+1(x) ≤ cos2(x)& sin2k+1(x) ≤ sin2(x) (4.5)

if in at least one of the relations (4.5), the inequality applies then if we add in parts we will have

sin2k+1(x) + cos2k+1(x) ≤ 1 (4.6)

Therefore the trigonometric solution of (i1) will result from the group

s =

〈
cos2k+1(x) = cos2(x)

sin2k+1(x) = sin2(x)

〉
⇒
〈

cos2(x)
(
cos2k−1(x)− 1

)
= 0

sin2(x)
(
sin2k−1(x)− 1

)
= 0

〉
⇒
〈

cos(x) = 0 ∨ cos(x) = 1
sin(x) = 0 ∨ sin(x) = 1

〉
⇒

(4.7)
The system < s > leads to the solutions

(t ∈ Z, x = 2πt)∥
(
{t ∈ Z,

(
x = π

2 + 2πt
))

(4.8)

This is the only solution of the system and we will get the results.

Great results

1.Sin(x) = 1, cos(x) = 0 ⇒ b = 0 and c = a

2.Sin(x) = 0, cos(x) = 1 ⇒ a = 0 and c = b

(4.9)

Part B.

The equivalent Diophantine trigonometric equation sin2k(x) + cos2k(x) = 1 (4.10) has no so-
lutions with sin(x) ̸= 0 and cos(x) ̸= 0 for k ∈ N+, k > 1.

Proof.

For the same reasons as before we assume that x is a solution of equation (4.9 & 4.10). If we Apply
the restrictions 0 ≤ cos(x) ≤ 1 & 0 ≤ sin(x) ≤ 1) we find that:

cos2k(x) ≤ cos2(x)& sin2k(x) ≤ sin2(x) (4.11)
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The trigonometric solution of (4.10) as clustered system will take the form:

s′ =

〈
cos2k(x) = cos2(x)

sin2k(x) = sin2(x)

〉
⇒
〈

cos2(x)
(
cos2k−2(x)− 1

)
= 0

sin2(x)
(
sin2k−2(x)− 1

)
= 0

〉
⇒
〈

cos(x) = 0 ∨ cos(x) = ±1
sin(x) = 0 ∨ sin2(x) = 1

〉
⇒

⇒
〈

cos(x) = 0 ∨ cos(x) = ±1
sin(x) = 0 ∨ sin(x) = ±1

〉
(4.12)

The < s′ > system results in the solutions.

1. (t ∈ Z, x = 2πt)∥
(
t ∈ Z,

(
x = −π

2 + 2πt, x = π
2 + 2πt

))
(4.13)

2. (t ∈ Z, x = 2πt+ π)∥
(
t ∈ Z,

(
x = −π

2 + 2πt, x = π
2 + 2πt

))
(4.14)

The only system solutions will be

Great results

1. sin(x) = 1, cos(x) = 0 ⇒ b = 0 and c = a

2. sin(x) = −1, cos(x) = 0 ⇒ b = 0 and c = −a

3. sin(x) = 0, cos(x) = 1 ⇒ c = 0 and b = a

4. sin(x) = 0, cos(x) = −1 ⇒ c = 0 and b = −a

(4.15)

From these 2 parts we can easily conclude that as set of solutions arises the GnT which is:

GnT = {((a = 0, c = b or b = 0, c = a) | n = 2k+1, (a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N+}

We finally proved that the sets of solutions Pn ̸= GnT , because the results of the solution in (Tables (4.9 &
4.15)) contradicts the hypothesis since abc ̸= 0 and since for the variables apply {(a, b, c) | a, b, c ∈ N+. As
we observe the proofs of Theorems 3 and 4 are equivalent according to the results. Also according
to trigonometry. in Theorem 4, we do not accept that the terms sin(x) and cos(x) are simultaneously zero,
which is known to be excluded trigonometrically. Summarizing we can accept that both forms of proof
belong to the same Method I.

Method VI.

VI.1. Theorem 10. (Basic theorem of Proof).[6]

Let Pn be the set of Fermat triples and defined as Pn = {(x, y, z) | x, y, z, n > 2 ∈ N+ and an xn+
ynn = zn, xyz ̸= 0}. Let Gn be the set defined as:

Gn = {((G1 | n = 2k + 1) and (G2 | n = 2k, k > 1)) | k ∈ N+
}
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We need to prove that the sets Pn ̸= Gn and also Pn = ∅.

Part A.

The Diophantine equation x2k + y2k = z2k has no solution to the positive integers for k > 1,
k ∈ N+.

Proof.

We bring the original equation xn+yn = zn and we put n = 2 ·k where k ∈ N+and then x2k+y2k = z2k (1)
which comes into the form (x/y)2k + 1 = (z/y)2k after we divide by y, since y ̸= 0. A basic effort to solve
the equation can be done with one replacement of the original variables which is done:

If we call (z/y)k = m (2) and (x/y)k = m−l (3) then from (1)⇒ −2ml+l2+1 = 0 ⇒ m = l2+1
2l ,m, l ∈ Q+(4)

&m− l = 1−l2

2l ,m, l ∈ Q+ (5)

I. From the relation (2) we get ...

(z/y)k = m => zk =

(
1 + l2

)
2l

yk (6)

But then for the variable y we will have a relation of form y =
(
1 + l2

)f ·
(
1− l2

)t · (2l)s · g (7), where
g = w · q2, l = p/q (8) where (p, q) relatively primes and (w, p, q, f, s, t) ∈ Z+ Combining relations (6, 7, 8)
we get the final relation,

zk =

(
q2 + p2

(2p) · q

)(
q2 + p2

q2

)f ·k

·
(
q2 − p2

q2

)t.k

· ((2p)/q)k·s · wk · q2k (9)

if we order each and every one term and equalize them i.e Powers with the Power of z (that is factorization)
will have,

zk =
(
q2 + p2

)f ·k+1 ·
(
q2 − p2

)t·k · (2 · p)k·s−1wk · q2k−2f ·k−2t·k−k·s−1 (10)

From relation (10) by comparing the powers for all terms we will have the system,

f · k + 1 = t1 · k

k · s− 1 = t2 · k

2 · k − s · k − 2 · t · k − 2 · f · k − 1 = t3 · k

(11)

The solve of this system is,

If t, t2 ∈ Z∧

((a ∈ Z ∧ f = a ∧ t1 = −1 + a ∧ k = −1) ∨ (a ∈ Z ∧ f = a ∧ t1 = 1 + a ∧ k = 1))∧

∧ (t3 = 2− 2t− 2t1 − t2 ∧ s = −f + t1 + t2)

(12)
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The solutions of the system (12) as we see are analytically

1. Because n = 2k and k = −1 which means that n = −2 which is rejected because must n > 0

2. Because n = 2k and k = 1 which means that n = 2 in this case the solution is known.

Therefore the only solution that is accepted is n = 2.

II. Also from the relation (3) we get ...

(x/y)k = m− l => xk =

(
1− l2

)
2l

yk (13)

Similar to the variable y, we will have a form relation y =
(
1 + l2

)f ·
(
1− l2

)t · (2l)s · g (14), where
g = w · q2, l = p/q (15) where (p.g) relatively primes and (w, p, q, f, s, t) ∈ Z+.

By combining relations (13, 14, 15) we get the relation,

xk =

(
q2 − p2

(2p) · q

)(
q2 + p2

q2

)f ·k

·
(
q2 − p2

q2

)t·k

· ((2p)/q)k·s · wk · q2k (16)

Doing factorization we come to form,

xk =
(
q2 + p2

)f ·k ·
(
q2 − p2

)t·k+1 · (2 · p)k·s−1wk · q2k−2f ·k−2·t·k−k·s−1 (17)

From the relationship (17) comparing to the desirable powers for all terms we will have the system,

t · k + 1 = t1 · k
k · s− 1 = t2 · k
2 · k− s · k− 2 · t · k− 2f · k− 1 = t3 · k

(18)

The solve of this system is,

If f, t2 ∈ Z∧

((a ∈ Z ∧ t = a ∧ t1 = −1 + a ∧ k = −1) ∨ (a ∈ Z ∧ t = a ∧ t1 = 1 + a ∧ k = 1))∧

∧ (t3 = 2− 2f − 2t1 − t2 ∧ s = −t + t1 + t2)

(19)

The specific solutions of the system(19) are two, as we see, are analytically.

1. Because n = 2k and k = −1 which means that n = −2 which is rejected because must n > 0

2. Because n = 2k and k = 1 which means that n = 2 in this case the solution is known.

Therefore the only solution that is accepted is n = 2.

Part B.

The Diophantine equation x2k+1 + y2k+1 = z2k+1 has no solution to the positive integers
for k ∈ N+.
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Proof.

We start from the original equation xn + yn = zn and we put n = 2 · k + 1 where k ∈ Z+and then
x2k+1 + y2k+1 = z2k+1 (1∗) which becomes at the form (x/y)2k+1 + 1 = (z/y)2k+1 after we divide by y,
since y ̸= 0.

The effort to solve the equation can be done by replacing the primary variables as follows:

If we call (z/y)2(k+1/2) = m2 (2∗) and (x/y)2(k+1/2) = (m− l)2 (3∗) then from (1∗) =>

−2ml + l2 + 1 = 0 ⇒ m =
l2 + 1

2l
(4∗)& m− l =

1− l2

2 |
,m, l ∈ Q+ (5∗) .

I. From the relation (2*) we get...

(z/y)2(k+1/2) = m2 ⇒ z2(k+1/2) =

((
1 + l2

)
2l

)2

y2(k+1/2) ⇒

⇒ z(k+1/2) =

((
1 + l2

)
2l

)
y(k+1/2)

(6∗)

But then for the variable y we will have a relation of form, y =
(
1 + l2

)f ·
(
1− l2

)t · (2l)s · g (7∗) where
g = w · q2, l = p/q (8∗) where (p, q) relatively primes and (w, p, q, f, s, t) ∈ Z+ Combining relations
(6∗, 7∗, 8∗) we get the final relation,

zk+1/2 =

(
q2 + p2

(2p) · q

)(
q2 + p2

q2

)f(k+1/2)

·
(
q2 − p2

q2

)t(k+1/2)

· ((2p)/q)(k+1/2)·s · wk+1/2 · q2(k+1/2) (9∗)

if we order each and every one term and equalize them Powers with the Power of z (that is factorization)
will have,

zk+1/2 =
(
q2 + p2

)1+f(k+1/2) ·
(
q2 − p2

)t·(k+1/2) · (2 · p)−1+(k+1/2)·5wk+1/2 · q2(k+1/2)−2f(k+1/2)−2·t(k+1/2)−(k+1/2)·s−1 (10∗)

From the relationship (10∗) comparing to the desirable powers for all terms we will have the system,

f · (k + 1/2) + 1 = t1 · (k + 1/2)

(k + 1/2) · s− 1 = t2 · (k + 1/2)

2 · (k + 1/2)− s · (k + 1/2)− 2t · (k + 1/2)− 2f · (k + 1/2)− 1 = t3 · (k + 1/2)

(11∗)

We get the solve of the last system,

If t, t2 ∈ Z∧

((a ∈ Z ∧ f = a ∧ t1 = −2 + a ∧ k = 0) ∨ (a ∈ Z ∧ f = a ∧ t1 = 2 + a ∧ k = −1))∧

∧ (t3 = 2− 4f − 2t+ 2t1 − t2 ∧ s = f − t1 + t2)

(12∗)

The solutions of the system (12*) are analytical
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1. Because n = 2k + 1 and k = −1 which means that n = −1 which is rejected because must n > 0

2. Because n = 2k + 1 and k = 0 which means that n = 1 in this case the solution is known.

Therefore the only solution that is accepted is n = 1.

II. Also from the relation (3*) we get

(x/y)2k+1 = (m− l)2 ⇒ x2(k+1/2) =

((
1− I2

)
2l

)2

y2(k+1/2) ⇒

⇒ xk+1/2 =

((
1− I2

)
2l

)
yk+1/2

(13∗)

Similar to the variable y, we will have a form relation y =
(
1 + l2

)f ·
(
1− l2

)t · (2l)s · g (14∗), where
g = w · q2, l = p/q (15∗) where (p, q)) relatively primes and (w, p, q, f, s, t) ∈ Z+ By combining relations
(13∗, 14∗, 15∗) we get the relation,

xk+1/2 =

(
q2 − p2

(2p) · q

)
·
(
q2 + p2

q2

)f ·(k+1/2)

·
(
q2 − p2

q2

)t(k+1/2)

· ((2p)/q)(k+1/2)·s · wk+1/2 · q2(k+1/2) (16∗)

Doing factorization we come to form,

xk+1/2 =
(
q2 + p2

)f(k+1/2)·
(
q2 − p2

)1+t(k+1/2)·(2·p)(k+1/2)s−1wk+1/2·q2(k+1/2)−2f(k+1/2)−2·t(k+1/2)−(k+1/2)·s−1

(17∗)

From the relationship (17∗) comparing to the desirable powers for all terms we will have the system,

t · (k + 1/2) + 1 = t1 · (k + 1/2)

(k + 1/2) · s− 1 = t2 · (k + 1/2)

2 · (k + 1/2)− s · (k + 1/2)− 2t · (k + 1/2)− 2f · (k + 1/2)− 1 = t3 · (k + 1/2)

(18∗)

The solve of this last system is,

If f, t2 ∈ Z∧

((a ∈ Z ∧ t = a ∧ t1 = −2 + a ∧ k = −1) ∨ (a ∈ Z ∧ t = a ∧ t1 = 2 + a ∧ k = 0))∧

∧ (t3 = 2− 2f − 2t1 − t2 ∧ s = −t + t1 + t2)

(19∗)

The solutions of the system (19*) are analytically

1. Because n = 2k + 1 and k = −1 which means that n = −1 which is rejected because must n > 0

2. Because n = 2k + 1 and k = 0 which means that n = 1 in this case the solution is known.

Therefore the only solution that is accepted is n = 1.
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If we assume as we proved on pages 1− 3 that G1 and G2 are the solutions for n = 1 and 2 of the general
Fermat equation an + bn = cn. Therefore we have after the analysis we did: Gn = {((G1 | n = 2k + 1)
and (G2 | n = 2k, k > 1)) | k ∈ N+}. This means that we proved that the sets Pn ̸= Gn and also Pn = ∅
because n > 2 ∈ N+ for xn + yn = zn, and should apply xyz ̸= 0.

Finally, after examining the two parts, it was proved that for Fermat’s equation xn + yn = zn

there is no solution in positive integers, for n > 2, n ∈ N+ and x, y, z ̸= 0.

Epilogue

According to the methods developed, the first two methods satisfy the assumption that the solution set for
the Fermat equation with n > 2 in positive integers is the empty set, because it turns out that at least one
variable is equal to zero. Frey’s 3 rd method for elliptic functions shows us that at least, one variable will
necessarily be zero and therefore agrees with the hypothesis that there can be no solution. The 4th method
follows from the condition that for the generalized equation xp + yq = zw, at least one exponent must be
equal to 2 , and thus falls under the Pythagorean diophantine equation. Finally for the last 2, namely the
trigonometric proof and the exponents equation method are two simulations, which otherwise prove that
there is no solution, i.e. for the first one at least one variable must be equal to zero while the second one
restricts the exponents to be equal to n = 1 or n = 2, which are known the solutions them, from Theorems
1 and 2.
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