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Résumé

Based on direct acyclic graphs, where vertices and edges respectively correspond to operators
and event data flow, Stream Processing Systems (SPSs) are used to process high amounts of data
in real time. Operators are allocated in the resources of the infrastructure (e.g., VMs) which are
usually replicated for performance sake. We propose in this paper a predictive SPS that dyna-
mically determines the current number of replicas required for each operator based not only
on the current resource utilization and data flow variation but also on the events that, due to
operator’s overloading, could not be processed yet and are, thus, kept in the operator’s queue.
Preliminary performance results with an application that processes Twitter stream, deployed
on Google Cloud Platform (GCP), are presented.

1. Introduction

Nowadays, there is an accelerated increase in the volume of data created by existing applica-
tions or systems on the Web, especially because of large-scale user interactions. Hence, proces-
sing such data in real-time, delivering useful information in short periods of time, is increasin-
gly requested by companies in different areas such as trading, security, and research, among
others. To this end, they use Stream Processing Systems (SPSs) [10].

SPSs are based on directed acyclic graphs (DAG) where vertices and unidirectional edges res-
pectively correspond to operators and event data flows [2]. An external source provides data
continuously. Operators are based on light programming tasks (such as filters, counters, sto-
rage, etc.) that process the desired information in short periods in a pipeline way. Deployed
in a processing infrastructure (e.g., Clouds, cluster, etc.), resources (e.g. VMs) are allocated to
operators and often replicated for performance sake. However, in most SPS the number of re-
plicas per operator is defined beforehand and does not change during execution. This static
behavior might induce bottlenecks in the processing of events due to the dynamic nature of
the dataflow. Sudden traffic spikes may increase some operators’ load, increasing end-to-end
processing latency as well. To overcome this issue it would be necessary to increase the number
of such operators’ replicas. On the other hand, in a down spike, resources may be underloaded,
and, therefore, their number of replicas should be reduced.

This article proposes a predictive DAG-based SPS algorithm that dynamically defines the cur-
rent number of per operator replicas necessary to process the input stream. The flow of events
is divided into time intervals and our SPS defines, for each operator O, the events that O should
process within each time interval. These events concern not only the ones that O’s direct ope-
rator predecessors sent to it but also those related to previous time intervals that O could not
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process yet and are thus kept in a queue. In order to process these events, the ideal number
O’s replicas should be estimated at each time interval by considering both the number of such
events and the average event execution time. Consequently, the number of O’s replicas dyna-
mically increases or decreases over the time according to its input rate.

Our SPS extends Apache Storm [10] and uses a predictive algorithm that follows a MAPE
model [3], which relies on a four-stage control loop widely used in autonomous systems.
Some preliminary experiments have been conducted on Google Cloud Platform (GCP) with an
application that processes Twitter streams. We have compared our predictive adaptive SPS with
the original Storm with fixed number operator replicas. Results related to some metrics, such
as latency, resource utilisation, and number of processed events are presented and discussed.

2. Storm stream processing system

Storm [13] is a SPS framework implemented in Java that enables the processing of unbounded
data flows. A Storm application is a DAG, denoted topology.

There are three types of components in a topology : Streams, Spouts, and Bolts. Streams or
data flows are shared among operators following the DAG model. They are composed of key-
values tuples. Spouts are responsible for capturing the input data of the topology from external
sources. They structure the information to send through one or more Streams to the following
components of the topology. Bolts are the operators. Similarly to Spouts, Bolts can send the pro-
cessed tuples through one or more Streams. At runtime, operators of the topology are executed
by several threads called executors, which are instances of the operators.

The architecture is composed of Storm and Zookeeper clusters. The Storm cluster contains
a master node, called Nimbus, and Supervisor nodes. The latter provides a fixed number of
processes, called workers, that run executors. The Nimbus is responsible for distributing the
application code across the cluster, scheduling executors to available workers, monitoring the
state of nodes, and detecting failures. Zookeeper provides a distributed coordination service
enabling communication among Storm cluster nodes, load balance, and fault tolerance.

3. Our predictive Storm-based SPS

The aim of a predictive model is to dynamically adapt the system in order to process all input
events and fast react to system adaptation requirements. Hence, the design of a predictive algo-
rithm is based on the dynamic estimation of the number of replicas of each operator, necessary
for processing all incoming events the latter receives. The prediction of the number of replicas
depends on the dynamics of the event input rate.
At initialization, our SPS assigns, for each operator, a set of replicas, deployed by the Storm
scheduler. Replicas can be either in an active or inactive state. An inactive replica does not
consume CPU but can be dynamically activated when the system detects the need for increa-
sing the resources for the operator in question. The concept of the initial set of replicas was
proposed in [14]. Note that, if an operator has several replicas, the input assigned to it will be
equally divided among its replicas.

S ;et 1) Ar= Ax B ) A=A+ Aq (3)
The number of active replicas of an operator O is dynamically recomputed by the Equation
1, where A is the total number of events received by the operator in a time interval ti and et
is the average execution time of an event by the operator. In other words, the objective of this
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equation is to estimate, how many replicas would be necessary to process all A incoming events
within ti, considering that each of them is processed in et units of time.

Considering that the time interval equals to ti = 1 sec, Figure 1 shows an example composed
by three operators with the same input rate and initial number of replicas (equals to 2) but
with different event execution times. Due to this difference, Equation 1 will render r = 2,
T = 1,and v = 4 for Oy, Oy, and O3 respectively. Therefore, such results inform that the
number of O7’s active replicas should not change but that of O, (resp.,03) is overestimated
(resp.,underestimated) and should be reduced (resp., increased) to one (resp., four).

A =10 events A =10 events A =10 events
e;=200 ms et=100 ms et=400 ms
i =2 i =2 ri =2
Mti+1 = 2 Mtisq = 1 Mi+1 =4

FIGURE 1 — Number of replicas according to equation (1)

Since data stream flows between adjacent operators, A should express the dependency among
them in order to avoid a bottleneck in one operator due to the debottlenecking of the previous
ones in the stream data. Events received by an operator and not processed in a time interval
are kept in a queue q associated with the operator.

For example, Figure 2a shows two operators O; and O;, where A and p respectively correspond
to the total number of received and sent events by an operator. Let’s consider that O; cannot
process all incoming events in the time interval ti. If the number of O4’s replicas increases, O
might be able to process more events. Consequently, in this case, O;’s A would increase as well.
However, it might happen that, in its turn, O, would not be able to process all the incoming
events as shown in Figure 2b. We should point out that for long SPS DAGs, the impact of an
operator’s debottlenecking can induce a domino effect.

A =100 events Ay = 50 events A =100 events A2 =100 events

A Aoy

py1=50events p2 =20 events p1 =100 events p2 =70 events

(a) Number of events in ti (b) Number of events in ti + 1

FIGURE 2 — Operators bottleneck

Let A, denote the input total number of events that an operator O receives from its direct pre-
decessors in the SPS DAG, considering that each predecessor P sends a percentage, denoted 0,
of its processed events to O. The 0, parameter is necessary since not all the processed events
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of P will be sent to O as P can split its output stream into several ones, sending each of them to
different operators. Equation 2 expresses A;.

Furthermore, the number of events A that an operator O effectively receives in a time interval
ti should consider not only A, but also existing non-processed events kept in O’s queue in
previous time intervals. Otherwise, if it takes into account only A,, the predictive algorithm
might reduce the number of O’s replicas, which would not be a good decision if the number of
events of the queue is high.

For instance, in Figure 3a, there are a high number of queued events in the time interval tiy.
Hence, if in the time window tiy,; the number of received events decreases, the number of
replicas of the operator should not be reduced since queued events must also be processed
in tix, 1. Equation 3, expresses A where A, and A4 respectively correspond to the total events
received by the operator within a time interval and the queued events from the previous time
intervals injected to the operator.

q =5 events

g =5events Ar = 10 events
Ar =10 events MRS Joperator M =5 events Aq =5 events p =5 events
A =15 events
(a) Number of events in tiy. (b) Number of events in tix1, considering the queue.

FIGURE 3 — Input number of events of an operator (A)

3.1. MAPE implementation
The MAPE loop control is in charge of providing the self-adaptation feature of our SPS. Each
of the four MAPE modules performs a specific task :

1. Monitor : module in charge of gathering and centralizing statistics from the graph ope-
rators, required to determine the number of replicas for each operator. The monitor re-
quests, at each time interval, the values of A, et, and the number of queued events q.

2. Analysis : module in charge of computing Equation 3 in order to get A. Note that the
analysis will be performed from the beginning of the graph till the last operator.

3. Plan : module that, based on the previous analysis and the current number of active
replicas of an operator, defines whether it is necessary or not to modify the operator’s
current number of active replicas. Algorithm 1 shows the pseudo-code of the Plan mo-
dules which increase/decrease the current number of active replicas, if necessary. The
getReplicas(O) function returns the number of current active replicas of O.

4. Execute : module which is in charge of carrying out the change in the current number of
replicas of an operator, if required by the Plan module.

4. Performance Evaluation

Testbed : Experiments were conducted on Google Cloud Platform (GCP) using eleven Virtual
Machines (VMs) : three in charge of Zookeeper, seven as Supervisor nodes, and one for running
both the Nimbus and the adaptive SPS. Two types of machines were used : anl-standard-1
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Algorithm 1 Adaptive Plan algorithm for operator O;.

1: Ty = computeReplicas(A, , et, ti)
ki = 11 - getReplicas(O;)
if k > 0 then
Add k active replicas to O;
else if k <0 then
Remove k active replicas from O;
end if

(1 CPU, 2.2 GHz, 3.75 GB of RAM) machine for hosting Zookeeper VMs, the Nimbus, and the
adaptive system, and a n1-highcpu-4 (4 CPU, 2.2GHz, 3.6GB of RAM) machine for the Su-
pervisors VMs. Complementary, we used for the experiments low priority machines, denoted
Preemptible, which are cheaper than the former ones, but they are only available for 24 hours

Application and scenarios : We deployed an application composed of four operators which is
in charge of analyzing and classifying events, as shown in Figure 4. The traffic model is based
on data from Twitter related to COVID-19. Even if the database has 237 millions tweets [5], we
have only used a sample for the deployment of the application.

In order to evaluate the r parameter impact, we have considered four scenarios with both the
original Storm, with fixed number of replicas, and our SPS :

(i) Storm with no replication, r = 1; (iii) Storm with r = 5; (iii) Storm with r = 10; and (iv)
Our SPS (adaptive replication). The scenario (iii) corresponds to a overprovisioning one, i.e.,
unnecessary allocated replicas.

Metrics : We have defined four evaluation metrics : (1) Saved resources (difference between the
number of active replicas and the overestimated one), (2) Difference in the number of processed
events (difference between the total number of processed events and the received ones), (3)
Throughput degradation, and (4) Latency.See [14] or the appendix for more details about them.

Twitter Detect Detect Detect Detect
streaming Topic ubtopi ategory, ubcategory

FIGURE 4 - Twitter application in SPS.

4.1. Results

Table 1 summarizes our evaluation metric results for each of the four scenarios.

Figure 5 presents the number of replicas used by the different scenarios. We observe that our
SPS can dynamically adapt the number of replicas according to the variation of the input rate.
Likewise, results in Table 1 show that our SPS saves 21.75% and 71.75% of resources when
compared to Storm with r = 5 and v = 10 respectively. We should also point out that such
resource saving does not compromise the output quality of the system since, as confirmed by
the same table, the loss of events is negligible .

The output rate (throughput) for each scenario is shown in Figure 6. For r = 1, since there is
no replication, the performance is quite poor. For r = 5, although it processes a greater amount
of events than the previous one, there are still not enough resources to cope with input spikes.
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Therefore, not all input events are processed. On the other hand, when r = 10, all input events
are processed but resources are underused. Finally, our SPS is able to fully process all input
events. Thanks to our adaptive algorithm, even if events are queued in some time intervals,
especially when spikes take place, the performance of the system does not degrade. Our SPS
presents, thus, stability when processing events, which is confirmed in Table 1 by its throughput
degradation metric value.

However, in Table 1 we observe that the latency of our SPS is higher when compared to the
other scenarios. Such an increase is due to our replica adaptation algorithm that, by including
queued events in the input data of an operator within a time interval, increases the time to
process them.

Such preliminary results are quite encouraging since, even if latency increases, our SPS is ca-
pable of processing events, independent of input rate variation, not wasting resources.

5. Related Work

Similarly to our approach, there exist some SPS in the literature that also use time intervals to
trigger resources allocation adaptations. The latter are usually based one some metrics such as
CPU usage [7, 8], processing rate [12, 4], latency [6, 1], etc.

The authors in [9] present a predictive SPS called AUTOSCALE which analyzes the data stream
to predict traffic congestion on tasks. Queue theory principle is applied for gathering informa-
tion about utilization, arrival rate, and departure rate of the tasks. A centralized system then
analyzes the statistics, predicting data congestion in tasks according to a sliding window. Whe-
never the system detects a possible congested operator, the number of replicas is increased.
However, contrarily to our work, the article does not present evaluation results in scenarios
with high variations in the data flow rate.

ELYSIUM [11] is a Storm-based SPS that scales in and out the number of replicas of the ope-
rators and, if necessary, modifies the number of workers associated with the application (ho-
rizontal and vertical scalability). It provides both a reactive and predictive approach based on
time window and an ANN model. Contrarily to our work, ELYSIUM was not been evaluated
with a real prototype integrated in Storm

In [1], the authors propose a hierarchical decentralized adaptive SPS in Apache Storm, using
the MAPE model to design the solution. Regarding the scaling policy, the used metric is CPU
utilization of the operator replicas, which defines whether a system adaptation is necessary or
not. The proposed solution also analyzes the costs associated with each reconfiguration. One
of their parameters is the downtime, i.e., the time necessary to restart the system which can
induce much overhead. Our SPS does not present such an overhead since inactive replicas are
pré-allocated at the beginning of the SPS execution.

6. Conclusion

We have presented in this article a Storm-based SPS that tolerates data flow variation by dyna-
mically adapting the current number of operators replica. To this end, the number of events to
be processed within each time interval by an operator comprise the output of its predecessors
in the DAG as well as events queued in previous time intervals. Even if the application was
simple, preliminary evaluation results on GCP show that our SPS was capable of processing
most of the input events, without keeping extra resources if they are not necessary.

As future work, we intend to evaluate our SPS with more complex applications and also to
compare it with other existing SPSs such as AUTOSCALE [9] or ELYSIUM [11].
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Saved Throughput Diff. Processed Latency
Resources Degradation Events
Our SPS | 0.7175 0.3216 0.9989 6111.94
T=1 0.9 0.5991 0.3814 47752.24
r=>5 0.5 0.3746 0.9965 190.73
r=10 |0 0 1 107.71

TABLE 1 — Metric values for Our SPS and Storm (r =1,r =5, = 10)

50000 ‘ ‘ ‘ ‘ Input réte —— 50
# Replica actives(r=1) =—tt=
#'Fophcs ahves (10 —e—
40000 _# Replica actives (Adaptive) 40
© 30000 130 8
1= s
: 2
w 20000 ® 20 "
10000 | /’\ / \\\ / 1 10
L N\g ,\
0 ‘ . i
0 200 400 600 800 1000 1200

Time (s)

FIGURE 5 - Total number of replicas of our SPS and Storm] (r =1,r =5, =10)

25000 Input rate —e—
Output ra’?e (r=1) —u—
Output rate (r=5)
Output rate (r= 10)
20000 L Output rate (Adaptive)
© 15000 |
2
%
2 10000 [ f"k'\{\ /"\‘W\\ M\\
5000 r
0

0 200 400 600 800 1 000 1200
Time (s)

FIGURE 6 — Throughput of our SPS and Storm] (r =1,r =5,1 = 10)
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Metrics [14]

— Saved resources : this metric described in [11] expresses the difference in the number of
used active replicas over the number of overestimated replicas. It is defined by 1 — ——,
with r the number of active replicas, and royer the overestimated number of replicas. If
the value of the metric is negative (resp., close to 1), the number of resources is overesti-
mated (resp., underestimated). If it is close to 0, the number of resources is well sized.

— Throughput degradation : this metric, also described in [11], aims at analyzing the behavior

of the system in terms of throughput stability. It is defined by lmputrf;;;fﬁzutmtd. If the

metric value is close to 0, the system has good stability. On the other hand, if it is close
to 1, the system is not capable to process the input rate, i.e., the system is unstable.

— Latency : is the average time taken by an event between the moment it entered and left
the SPS (end-to-end latency). This metric is relevant since SPSs are supposed to deliver
real-time processed events.

— Difference in the number of processed events : is the difference between the total number of
processed events and the total number of received events. It is an important metric since
SPSs are used to process high volumes of data, i.e., it should process as much data as
possible.
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