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A Digital Predistortion for Concurrent Dual-Band
Power Amplifiers Linearization Based on
Periodically Nonuniform Sampling Theory

Sigi Wang, Wenhui Cao, Rui Hou, Thomas Eriksson

Abstract—In this paper, we propose a novel technique of
digital predistortion (DPD) for dual-band power amplifiers (PA)
based on periodically nonuniform sampling (PNS) theory. In
contrast to conventional 2D-DPD models, the proposed PNS-
DPD has only a single input which can largely reduce the model
complexity. We fold the two stimuli with aliasing and feed it to a
simple single-band DPD model. The desired predistorted signals
are reconstructed from aliased DPD output through the PNS
theory. Compared with conventional multi-input models which
include numerous intermodulation products of the input signals,
the complexity of the proposed single-input PNS-DPD model is
hugely decreased. The model coefficients of the proposed PNS-
DPD can be easily extracted with conventional direct or indirect
learning architecture. We experimentally evaluate the proposed
DPD on a test bench and compare it with other DPD techniques
in the literature. The implementation complexity can be reduced
by over 30% and the identification complexity is also largely
reduced.

Index Terms—Digital predistortion, dual-band, nonlinearity,
periodic nonuniform sampling, power amplifiers

I. INTRODUCTION

UGE number of users need to be connected simultane-
ously to the modern wireless communication systems,

e.g. 5G and beyond [1]. Massive multiple-input multiple-
output (MIMO) technology is emerging for the compatibility
of different standards which occupy different frequency bands
[2]. Carrier aggregation helps to fully utilize the spectrum
resources, which however increases the bandwidth of the
signal especially when the carriers are not contiguous. Con-
current multi-band power amplifiers (PA) enable transmission
of signals for users at different frequency component carriers.
The radio-frequency (RF) PA consumes a large part of
the total power in the system. Further, it brings nonlinearity
and memory effects, which distorts the transmitted signals.
Digital predistortion (DPD) is one of the most commonly
used methods to linearize the PA and to enhance its power
efficiency [3]. Different DPD models have been developed
based on Volterra series, such as memory polynomial (MP)
[4], generalized memory polynomial (GMP) [5], dynamic-
deviation-reduction (DDR) model [6], and decomposed vector
rotation (DVR) model [7]. Block-oriented non linear (BONL)
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systems [8] have also been studied. Though these single-band
DPD models exhibit good linearization performance with a
considerable complexity, they need high sampling rate for im-
plementation if we consider the transmitted multi-band signal
as a wide band signal. For digital signal processors (DSP) and
analog-to-digital converters (ADC), the sampling frequency
is a crucial limitation [9]. Since the power consumption of
the DPD is related to its sampling rate [10], it is fastidious
to process a non-contiguous carrier aggregated signal as a
wideband signal.

Concurrent linearization techniques have been developed to
reduce the impact of frequency separation between the non-
contiguous carriers [11]. A dual-band DPD (2D-DPD) based
on MP model has been proposed in [12] to focus only on
distortions in the transmission bands. The signals of each
carrier are processed individually and they are sampled at a
rate which is related to their bandwidths. The input signals
of the DPD are the signals of each band filtered out within
a small bandwidth. Thus the DPD can be implemented with
a low sampling rate. The intermodulation (IMD) effects have
been considered in this 2D-DPD by introducing products of the
two signals. In [13], a generalized 2D-DPD structure has been
analyzed. The GMP and DVR models can be also extended
to 2D version for better linearization performance of dual-
band transmission as in [14] and [15] respectively. Though
these models tremendously reduce the sampling rate compared
with the conventional single wideband DPD, their multiple
inputs lead to a non-negligible increase of model complexity
by including the IMDs. The number of model coefficients
concerns not only the DPD power consumption but also the
identification accuracy when the length of dataset for model
identification has a constraint.

As discussed above, a single-input wide-band DPD (WB-
DPD) for multi-band linearization has advantages on model
complexity and identification complexity, while the advantage
of a multi-band DPD is the lower sampling rate. Periodically
nonuniform sampling (PNS) theory [16] provides possibilities
to render the DPD with both low complexity and low sampling
rate. This PNS procedure can be regarded as decimating a
high-rate signal in multiple channels with delays between
them. According to the PNS theory, a high-rate signal can
be reconstructed from its periodically nonuniform sampled
decimated signals. In [17], authors have given the Volterra
series with polyphase representations at lower sampling rate.
This technique has been used in [18] for DPD identification
to reduce the sampling rate of the feedback path. In [19],
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Fig. 1. Spectral expansion by PA and DPD for dual-band signal.

the PNS technique was used to reconstruct a wide-band
signal and a band-limited DPD based on polyphase technique
has been proposed. In [20], the PNS technique was proved
compatible for multi-band signal reconstruction. The multi-
band signal can thus be sampled with low rate thanks to its
sparsity in frequency domain. Thus M band-limited signals
can be sampled at a low sampling rate which is equal to their
bandwidth and then be reconstructed by a group of M delayed
low rate signals.

In this paper, we propose a periodically nonuniform sampled
DPD (PNS-DPD) for dual-band transmission, which uses a
simple single-input model as WB-DPD but runs at low sam-
pling rate as multi-band DPD. With conventional reconstruc-
tion theorem in [20], 4 channels are needed for the PNS in the
DPD structure. Thanks to the symmetry of frequency locations
of IMDs for a dual-band signal, our proposed PNS-DPD needs
only 3 channels, which further reduces 25% complexity. The
identification of the proposed PNS-DPD is as simple as for the
conventional narrow-band DPD with only one feedback path at
low sampling rate, and it can be implemented using either the
direct or indirect learning architecture (DLA/ILA). According
to experimental evaluation on the WebLab testbench [21], the
proposed method reaches the same linearization performance
but with lower sampling rate and model complexity compared
with other conventional methods in the literature.

This paper is organized as follows. Section II presents the
conventional high-rate wideband DPD and 2-D DPD. The PNS
reconstruction technique is explained in Section III. The details
of the proposed PNS-DPD is then described in Section IV. In
Section V, the test bench and the corresponding experimental
results are presented and discussed. Finally, the conclusion is
given in Section VI.

II. CONVENTIONAL DPD METHODS FOR DUAL-BAND
SIGNAL TRANSMISSION

The conventional ideas of concurrent dual-band lineariza-
tion can be categorized into two types: one is to consider the
transmitted dual-band signal as a single wideband signal and to
process with a normal single-band transmission DPD, which is
denoted by wideband DPD (WB-DPD); the other is to focus
on the distortion compensation in the bands of transmitted
signals, which is denoted by dual-band DPD (2D-DPD).

u(n x(n n
(n) DPD n) oA y(m)
: Estimation

DLA: DPD
— . .
Estimation

Fig. 2. Conventional single-band DPD and its identification using direct and
indirect learning architecture (DLA/ILA).

We denote the stimulus as U, the input and output of the
PA by X and Y respectively. As illustrated in Fig. 1, the
PA generates intermodulation of the two signals and also
distortion in each band. As a consequence of that the WB-DPD
exhibits the inverse characteristics of the PA, the predistorted
signal has also intermodulation at the same frequencies [11].
The PA output Y is very close to the stimulus U after
linearization with WB-DPD. The 2D-DPD predistorts only the
signals in the transmission bands and the intermodulation is
not compensated for as shown in Fig. 1.

A. High rate wideband DPD (WB-DPD)

The dual-band signal can be considered as a single wide-
band signal which spreads in a large frequency interval but
has a very low occupancy ratio of the useful signal. Since the
bandwidth of the signal is large, the required sampling rate of
the DPD is correspondingly high.

We use the GMP model for WB-DPD in this paper since
it can reach good trade-off between linearization performance
and complexity according to [22] [23]. Other models can also
be used for the proposed PNS-DPD. If we denote the input
and output of the DPD by u(n) and x(n) respectively, their
relation can be represented by GMP as [5]:

a—1Lg
Z Z apru(n — Du(n —1)|*
Kb L',b 1Mb
+ZZZbklmun—l\u(n—l— m)F (1)
k=1 =0 m=1

L.—1 M,

Ke
+ Z Z Z Ckhnu

k=1 =0 m=1

= Dlu(n = 1+m)[*

where k is the index for nonlinearity, and [, m are the indices
for memory. ag;, biim, Ckim are the complex coefficients of
the signal and envelope, the signal and lagging envelope, and
the signal and leading envelope, respectively. Ko, KCp, K. are
the highest orders of nonlinearity. £,, Ly, L. are the highest
memory depths. M, M, denote the longest lagging and
leading delay tap length, respectively.

The model coefficients can be estimated using both direct
or indirect learning architecture (DLA/ILA) [24] as depicted
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in Fig 2. A post-inverse of the PA is identified and used as a
DPD upstream of the PA. Its input signal is z(n) which is the
PA output y(n) divided by g, the gain of PA [25].

Using the ILA, the model coefficients [ax;, brim, Ckim)
can be estimated by minimizing the difference between the
output z, of the postdistorter and the input x of the PA:
le(n)|> = |z,(n) — x(n)|>. We use the least square (LS) [26]
to estimate the model coefficients

é=2"7)'72"x. )

B. Conventional dual-band DPD (2D-DPD)

In order to reduce the sampling rate of the dual-band
signal which has a large frequency separation, dual-band DPD
has been proposed to focus on processing the two band
signals regardless of their separation. The conventional dual-
band DPD processes the signals in two bands individually as
depicted in Fig. 3. Each sub DPD has two separate inputs:
the lower and upper band signals are denoted by w;(n) and
uz(n) respectively. The predistorted signal of the i-th DPD is
denoted by x;(n) and can be expressed in function of wuq(n)
and uy(n) by 2-D GMP model [14]:

a1 k Lq
Z > Z ajui(n
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k=1j=0 1=0 m=1
X |ui(n—1+ m)|k*j\u?,_i(n —1+m)J
= fi(u1(n), uz(n))
which is similar to the GMP representation (1).

The model coefficients of each sub-DPD can be estimated
using ILA as well as illustrated in Fig. 3. The feedback signals
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Fig. 4. Spectrum of 4-band signal in baseband.
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Fig. 5. Periodic nonuniform sampling [PNS(3)].

y1(n) and yo(n) are filtered from the PA output within the
corresponding frequency band.

We first construct a basis matrix W; for the ¢-th band con-
taining the basis functions as described in (3). The coefficients
of the ¢-th band model can then be estimated by solving a
linear problem similar to (2) by replacing Z and x with ¥,
and x;.

The advantage of 2D-DPD compared with WB-DPD is the
lower sampling rate. However the number of coefficients in
the 2D-DPD model can be highly increased. As we can see
in (3), the number of 2D-DPD coefficients increases in order
of O(K?) while the number of 1D-DPD coefficients in (1) is
in order of O(K).

III. PNS RECONSTRUCTION THEOREM

With a single input, the model structure of a WB-DPD
(1) can be less complicated than that of a 2D-DPD (3).
The advantage of 2D-DPD is its significantly lower sampling
frequency compared with the WB-DPD. The PNS technique
provides a solution to implement a low-complexity model at
the low sampling rate.

The PNS reconstruction theorem for multi-band signal is
presented in [20]. A high-rate signal is decimated using PNS
of the third order [PNS(3)] as illustrated in Fig. 5 where we
can split the samples into 3 channels: s1(n), s2(n) and s3(n)
(sampled by pulses in blue, green and red, respectively) at
a lower sampling rate fs. These decimated samples have the
same period T=1/f,. According to the generalized sampling
theory in [27], a bandlimited signal can be determined by L
signals at sampling rate of 1/L of the Nyquist rate. A possible
realization of this generalized sampling theory is the PNS
reconstruction diagram as illustrated in Fig. 6. The block of
e7“dt represents a delay of d; (I=0,..,.L-1). The signals in the
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dashed box are sampled at low rate. A multi-band-pass filter F]
is applied at the output of the {-th channel to enable that x(n)
can be reconstructed by summing up the decimated signals.

The details of solving [PNS(L)] reconstruction problem for
multi-band signals have been given in [20]. To recall the
part of this reconstruction technique which is used in our
proposed DPD method, we first elaborate it using an example
of [PNS(4)] reconstruction for a 4-band signal x(n) with the
bands evenly spaced. The spectrum of z(n) is depicted as
X(f) in Fig. 4. The signal X;(f) (i=1,...4) of the i-th band
is centered at the carrier frequency f;. With [PNS(4)], we
decimate x(n) to 4 channels of signals s1(n), s2(n), s3(n)
and s4(n). The data samples s;(n) (I=1,..,4) has a delay d;_1
from s;(n), where do=0. The spectra S;(f) (f €[-fs/2,fs/2])
of the decimated signal s;(n) has all z(n) folded into a single
frequency interval, which can be expressed as

Sl(f) :Xl(f + f1)ej27rf1dl*1 + XQ(f + f2)61277f2d171
—|—X3(f+f3)ej2ﬂf3dl—1 +X4(f+f4)€j2ﬂ-f4dlfl.

where f; are selected to have f; as a multiple of fs. If f;
is not a multiple of f;, we can still find a solution, but the
equations in following derivations will be more complex.

According to [20], the original X (f) can be reconstructed
at any frequency f by upsampling and summing up the
decimated signals if Fj(f ) have solutions:

ZFl

where k is an integer that f +kfs €[-fs/2,fs/2], and the filters
Fy(f) for reconstruction of a 4-band signal is a 4-band-pass
filter whose frequency response has an identical shape as the
spectrum of X (f) in Fig. 4: in each band, F;(f) is flat, but
the complex gains of Fj(f) in these bands can be different:

(&)

DS(f +Efs). (6)

where rect(.) represents a rectangular function. The spectra
of high rate signals upsampled from s;(n) are periodical
duplicates of S;(f). According to (5)-(7), we can reconstruct
the signal in the ¢-th band when [ €[-fs/2+f;, fs/2+f:] 1f 4)
has a solution for A, where ¢( is a vector such that cl =1
and =0 (j=1,..4, j 7é #). According to [20], the matrix E®)
is non-singular if (f;-f;)d; is not an integer when j=1,...4,
j # 1, I=1,...4. We can then solve for A,

Note that since the spectra of the decimated signal is dupli-
cated in the entire band by upsampling, the PNS reconstruction
is possible in any band whose center frequency is a multiple
of fs. The bands of reconstructed signal are selected by
Fi(f). We can obviously retrieve the baseband signals of X;
(i=1,...,4) separately without upsampling.

IV. PERIODICALLY NONUNIFORM SAMPLED DPD
(PNS-DPD)

In this section, we propose a PNS-DPD which combines
the advantages of the WB-DPD and the 2D-DPD: it can be
implemented at the low sampling rate of the 2D-DPD while
using the low-complexity model of the WB-DPD. We aim to
process the dual-band signal as a single wide-band signal at
low rate with aliasing effect, and then reconstruct the interested
bands with PNS samples by solving (4) for AD),

A. Analysis of predistorted signal frequency components

The PNS reconstruction technique enables processing a
high-rate signal with low-rate filters if they are placed in the
dashed box in Fig. 6. In this paper, we aim to place DPD
models in the dashed box. The reconstruction technique intro-
duced in the previous section can be used to reconstruct the
predistorted signals which enable PA linearization. Since DPD
models are nonlinear, the predistorted signal always occupies
wider band than the DPD input signal. For a dual-band input
signal, its IMD products fall into some bands other than the
transmission bands. Thus the predistorted wideband signal has
more bands. In this section, we analyze the frequencies of
these IMD products and explore an optimized PNS technique
with knowledge of their frequencies.

First we make a simple analysis on frequency components
of the WB-DPD output signal with help of (1). If we denote
the signals of the lower band and the higher band by ur(n)
and ug (n) in baseband respectively, the baseband DPD input
is

\ u(n) = ug(n)e 92" oy (n)ed? Fom, (8)
(f)= ZAl(i)rect(%), (7)  where f, = It f”l , fp1 and fpo are RF carrier frequencies
i=1 8 of the lower band and the higher band respectively. According

(1:) 1 ei2n(fi=fi)dy  pi2n(fi—fi)d2  pi2n(fi—fi)ds Ag%)

Cél) 1 ei2n(fa—fiddi  gi2n(fa—fi)d2  gi2m(f2—fi)ds Aéz)
G| T 1 e tod gitn(s—f)de  gi2n(fa—fi)ds 40 S

C?Z-) 1 ei2n(fa—fddy  gi2n(fa—f)de  pi2n(fa—fi)ds 40
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to (8) and (1), the DPD output is a function of the products
between uL(n) and ug(n):

=222 el -
= ZZZW
p q r
x(ur,(n — q)efj%rfg(nfq) +ug(n—

x|ug(n —r)e 92 e (=) Ly (n —

q)lu(n —r)f?

q)ejzﬂ'fg (n*Q))
7a)ej%fg (n—r) |z>7
9

where g=r corresponds to the first branch of (1), ¢ < r and
q > r correspond to the second and the third branch of (1)
respectively, 7,4, are equivalent coefficients. Some frequency
components other than —f, and f, will be generated. For
instance when p is even, we have

()P = (s (m)e 2 1 g (m)e2 S
= (uL(n)e*ﬂﬂfgn + uH(n)ejQTrfgn)g

x (uj (n)e??™ o™ g (n)e 2 ) E ()

e]27r(2p272p1)fgn

I
|| M“‘”ﬁ
|| M“‘“

where v(n) = uL(n)pluE(n)f_pluH(n)mu“;{(n)%_p?. Ac-
cording to (9) and (10), we can easily find out the distribution
of z(n) over frequency, which is located not only at — f,; and
fq but also at (2py — 2p1) fg £ fy, where (p1,p2) € [0,5] as
illustrated in Fig. 7. The 3-rd order intermodulation (IMD?3)
is the most significant IMD [28]. In this paper, we consider

only the IMD3 which is located at £3f, in baseband. In
RF domain the two IMD3 are located at 2f,; — fy2 and
2fp2 — fp1 respectively as shown in Fig. 7. The predistorted
signal is then an evenly spaced 4-band signal with similar
spectral locations as in Fig. 4, where the signals in the bands
are denoted z1(n), xz2(n), x3(n) and x4(n). Their Fourier
transforms are respectively X (f), Xa2(f), X3(f), and X4(f),
where X5 (f) and X5(f) are desired signals to compensate for
the PA distortion in transmission bands.

According to Nyquist sampling theorem, decimating a wide-
band signal to a sampling rate smaller than its bandwidth will
result in aliasing effects. Implementing the WB-DPD at a low
sampling rate after proper adaptions on the model structure,
e.g. the memory depth, will introduce a similar aliasing effect
at the DPD output as depicted in Fig. 8. The decimation
results in that the signals in occupied bands are shifted into
an observation window with a bandwidth of fs. Similar to
(5), we have the baseband output signal of a WB-DPD model
implemented at low rate as all its components folded up inside
the small observation window f €[-f./2,fs/2]):

Xs(f) =X0(f = 3fy) + Xao(f = f4)
+X5(f + fg) + Xa(f +3fy)-

With the PNS technique, the aliased signals X (f) and X3(f)
can be reconstructed with help of X;(f), so that the PA can be
linearized in transmitting bands centered at f,; and f,o with
a bandwidth f,.

The PNS reconstruction technique presented in Section III is
a general case for any values of d;. In the case of predistorted
signal for dual-band transmission, we noticed the symmetry
of the frequencies of X7 and X,. Thus, if d; and dy allow
=23 fodi=2m3 fod; + 2km (I=1,2) where k is an integer, and
ds3=0, we can solve (4) with A(Z)zO, which removes the sample
channel Sy and reduces 1/4 of the complexity. Thus we have
d; = k/(6f,). Note that if k is a multiple of 3, E is singular.
We should keep (k mod 3)# 0. In this paper, we choose dy =
1/(6f4) and do = 1/(3f,).

(1)

B. PNS-DPD structure

Our purpose is to reconstruct the desired predistorted signals
(signals X and X3 in Fig. 7 and in (11)) at the PA input as
illustrated in Fig. 9. We propose a PNS-DPD as the dual-input
and dual-output block depicted in Fig. 10.

The diagram of the proposed PNS-DPD is depicted in
Fig. 11. An identical single-input single-output (SISO) DPD
model is implemented in three channels separately. The signals
ur(n) and ug(n) are folded with aliasing for inputs of SISO
DPDs:

us(n) =ur(n) +up(n),

g, (n) = up, g, (n)e 2 oM 4y 4 (n)ed? ot

where | € [1,2], di=1/(6f,) and d2=1/(3f,), ur q,(n) and
um,q,(n) are ur(n) and ug (n) delayed for d; by delay adjust
filters (DAF) as designed in [19] respectively. This generates
the aliased predistorted signal zs in (11), and 2 auxiliary
predistorted signals x,; and z,,, which play the roles of si,
s and sg in Section III respectively. The DAF (—d;) behind

(12)
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the DPD model are used to compensate for the delay of d; in
the [-th auxiliary channel. The three SISO DPD outputs are
multiplied by A® and A® to reconstruct the predistorted
signals Xy and Xg, respectively. These predistorted signals
are then modulated to their frequency carriers and are fed to
the PA as illustrated in Fig. 10.

The values of A® and A® are pre-calculated as solutions
to (4) for the 2nd and 3rd bands respectively, which are
independent of the transmitted signals. Thus they do not bring
any computational burden.

There are three channels of signal to be processed but the
SISO DPD model is identical for each channel. Thus only one
single feedback path is needed for model identification. The
model coefficients can be estimated using DLA or ILA as in
Fig. 12. This is the same procedure as high-rate WB-DPD
in Fig. 2 with decimated PA output y(n). The decimated PA
input is equal to the sum of two outputs of PNS-DPD xz4(n)
and z3(n) in ILA so that we replace x in (2) by

T =T+ T3. (13)

Since the SISO DPD output should contain the information
of both transmitted signal and IMDs as illustrated in Fig. §,
the signals used for SISO model identification are sampled
at the same rate as the DPD sampling rate and should be
aliased without any filtering. One solution is to acquire the
PA output signal y(n) directly with a low-rate ADC as in

=B
fs A2
SISO
DPD @
ug(n) xs(n) 1®
u(n) DAF d; !
x e—J2mfyds x2(n)
uy(n)
x3(n)
Fig. 11. The structure of the proposed 2D-PNS-DPD.
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Fig. 12. Identification of PNS-DPD model using direct and indirect learning

architecture (DLA/ILA).

[29]. The aliased IMD information helps to correctly identify
the nonlinearities of the SISO model in the PNS-DPD.

The PNS-DPD is based on signal processing techniques
which is not limited by the behavioral models. The complexity
is reduced thanks to the reduction of the number of model
inputs and the number of reconstruction channels. Therefore,
any model pruning technique can be applied along with the
proposed PNS-DPD for further complexity reduction.

V. EXPERIMENTAL RESULTS
A. Test bench

We use test bench of WebLab [21] for measurements as
depicted in Fig. 13.

The baseband IQ signal is fed from the PC Workstation
to the driver through a Vector Signal Transceiver (PXIe-
5646R VST) using a 200 MHz sampling frequency. The
VST up-converts the baseband signal to the carrier frequency
2.14 GHz. The signal at the output of the PA is then down-
converted to baseband by the VST which provides to the
PC workstation the baseband signal digitized with a sampling
frequency of 200 MHz. The input and output baseband signals
are then synchronized in time to be used by the identification
algorithm (2).
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Fig. 14. PA AMAM & AMPM curves for dual band 5 MHz LTE signal.

A GaN PA CGH40006P transistor mounted in the man-
ufacturer demo-board fabricated by CREE has been used to
validate the proposed low rate DPD. Its nominal gain is 13 dB
at 2 GHz and the output power at 1dB gain compression is
40.2 dBm.

The nonlinearities and the memory effect of this PA can
be seen from the AM/AM & AM/PM (Amplitude Modula-
tion/Amplitude Modulation & Amplitude Modulation/Phase
Modulation) curves in Fig 14 in the case the stimulus is a dual-
band 5 MHz LTE signal with 40 MHz frequency separation.
The average power of the signal at the input of the driver is
around -26.32 dBm. The measured average output power of
the PA is 29.73 dBm.

In order to evaluate the proposed low rate DPD, we take
the original signal at rate of 200 MHz as high rate signal. A
decimation to low rate is applied before feeding the signals to
the DPD. Two tests have been implemented in this section to
validate the proposed PNS-DPD:

e Test I: stimulus is a dual-band 5 MHz LTE signal with
40 MHz frequency separation, PNS-DPD is implemented
at 20 MHz.

o Test II: stimulus is a dual-band 5 MHz LTE signal with
60 MHz frequency separation, PNS-DPD is implemented
at 15 MHz.

Wideband DPD and 2D-DPD are tested as references in
comparison. The wideband DPD is implemented at 200 MHz
which is fixed by WebLab configuration. The 2D-DPD is
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Fig. 15. PA output spectra with different DPD approaches for dual-band

5 MHz LTE: Test 1.
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Fig. 16.  PA output spectra with different DPD approaches for dual-band
5 MHz LTE: Test II.

implemented at the same rate as the PNS-DPD.

The tests are iterative: we take a segment of 500 000
samples of high rate signal and divide it equally into 5
segments for a S-iteration test. In each iteration, 100 000
samples of high rate signal are decimated to low rate signal
(e.g. 10 000 samples in Test I) and then are fed to the
DPD. The computed predistorted signal is then up-converted
to 200 MHz sampling rate and is fed to WebLab testbench.
The observed PA output is then decimated to low rate for
DPD model identification. The estimated DPD coefficients are
updated for the test of the following iteration with a low rate
signal which is decimated from another 100 000 samples high
rate signal. The DPD coefficients are updated using Gaussian-
Newton method which takes consideration of their values at
the former iteration.

B. Linearization performance of the proposed DPD

The output spectra of the PA linearized by different DPD
approaches in Test I and II are illustrated in Fig. 15 and Fig. 16
respectively. The PA output without linearization is shown by
dotted curve. The linearization performance of conventional
high-rate WB-DPD is shown by dashed curve. The spectra of
the proposed 2D-DPD linearization is shown by dash-dotted
curve. And the spectra of conventional PNS-DPD linearization
is shown by straight curve. The adjacent channel power ratio
(ACPR) and error vector magnitude (EVM) are given as well
as the sampling rate of DPD implementation procedure and
DPD identification procedure of Test I and II in Table II and
Table III respectively. The AMAM & AMPM curves of Band
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1 and Band 2 after linearization by PNS-DPD are depicted in
Fig. 17 and Fig. 18 respectively.

The optimal model structures for the DPD approaches are
determined using the algorithm proposed in [30]. The model
structure for the conventional WB-DPD (1) is

Ko =6,L,=3
Ky =1LLy=1,Mp=1
Ke=1,L, =7, M.=2.

(14)

There are 33 coefficients.
The model structure for the proposed PNS-DPD (1) is
Kqe=5L,=3
Ky =0
Ke=1,L. =2, M.=2.

15)

There are 19 coefficients. The number of coefficients is
reduced because the model is run at low rate, which needs
less memory taps.

The model structure for the conventional 2D-DPD (3) is

Ko =5Ly=3
Ky=2,L, =3, Mp=1
Ke=1,L,=4,M,=2.
There are 76 coefficients for each sub-DPD.
The proposed PNS-DPD reaches the same level with the

conventional WB-DPD and 2D-DPD as depicted in Fig. 15
and Fig. 16. It is shown in Table II that in Test I the proposed

(16)

TABLE I
NUMBER OF FLOPS FOR OPERATIONS

Operation FLOPs | Operation FLOPs
Real Addition 1 Real Multiplication 1
Real Division 4 Complex Addition 2
Complex Multiplication 6 Complex-Real 2
Square-root 6.8 Multiplication
TABLE II
LINEARIZATION PERFORMANCE OF DIFFERENT DPD APPROACHES: TEST I
No WB PNS 2D
DPD DPD DPD DPD
Impl. rate (MHz) - 200 20 20
Nb of Coefficients - 33 19 76
Nb of channels - 1 3 2
Climpl - 56800 | 15480 | 26160
ACPR.L (dBc) | -40.1 -47.7 -49.3 -49.6
Band 1 ACPR.H (dBc) | -39.5 | -47.6 -48.7 -47.0
EVM (%) 5 0.9 0.9 1.1
ACPR.L (dBc) | -37.4 | -46.9 -47.6 -47.2
Band 2 ACPR.H (dBc) | -36.7 | -47.1 -49.2 -46.6
EVM (%) 5 I.1 1.2 1.4
Iden. rate (MHz) - 200 20 20
Iden. channels - 1 1 2
Cliden 1089 361 11552

Impl. : Implementation
Iden. : Identification

PNS-DPD achieves better ACPR and EVM compared with
conventional approaches.

The conventional WB-DPD needs over 10 times higher
sampling rate in implementation and identification procedures
compared with the proposed PNS-DPD and the conventional
2D-DPD. In terms of model complexity, the proposed PNS-
DPD has the lowest number of coefficients. We estimate the
complexity of DPD implementation by

Cimpl = fs . ﬂOpS : Simpl )

where f, is the sampling rate, flops is the number of flops
(floating point operation per sample) in DPD computation,
Simpt is the number of channels in implementation. The
calculation of flops is based on Table I in [22]. For the single-
band GMP model in WB-DPD and PNS-DPD, the number of
flops is:

flops = 3+ 7+ 2K, + 2Ky My + 2K M.+ 8R — 2; (18)

where R is the number of coefficients of the GMP model. For
the DAFs in Fig. 11, an N-tap fractional delay filter needs the
number of flops is 8 N-2. In this paper we implement with 5
taps for all DAFs, which results in 228 additional flops. The
complexity of the proposed PNS-DPD also includes 6 complex
complications of A® and A® | which needs 36 flops. For the
dual-band GMP model in (3), the number of flops is:

flops =3+ 7+ KoKy + 1) + Kp(Kp + 1) M,
4 Ke(Ke + DM, + 8R — 2.

The complexity of DPD identification can be given in a
similar way according to [31]

2
C(iden =R"- Siden

19)

(20)

where Sigen 1S the number of channels in implementation.



TABLE III
LINEARIZATION PERFORMANCE OF DIFFERENT DPD APPROACHES: TEST
11
No WB PNS 2D
DPD DPD DPD DPD
Impl. rate (MHz) - 200 15 15
Nb of Coefficients - 33 19 76
Nb of channels - 1 3 2
Climpl - 56800 | 11610 | 19620
ACPR.L (dBc) | -39.2 -51.7 -52.2 -52.1
Band 1 ACPR.H (dBc) | -39.7 -52.2 -52.4 -52.1
EVM (%) 5 1.1 1.1 1.0
ACPR.L (dBc) | -39.2 -53.0 -52.9 -53.0
Band 2 ACPR.H (dBc) | -389 -52.6 -52.7 -52.6
EVM (%) 5 1.1 I.T 1.0

Impl. : Implementation
Iden. : Identification

According to Table II and Table III, the proposed PNS-DPD
has advantages on complexities of both DPD implementation
and DPD identification in both Test I and II. The implemen-
tation complexity of PNS-DPD is about 20% of the WB-
DPD and 60% of the conventional 2D-DPD. The identification
complexity of PNS-DPD is about 3 times lower than WB-
DPD and about 30 times lower than the conventional 2D-
DPD. The combined advantages of the proposed PNS-DPD on
sampling rate and model complexity have been confirmed with
the experimental results by reaching the same linearization
performance as conventional methods.

C. Discussion

The IMD3 is the strongest IMD. The other IMDs such as
IMDS5 and IMD7 are usually in low power with negligible
influence. In case of the DPD model with stronger nonlinearity
(e.g. K > 7), the power IMDS5 may grow up and the proposed
model needs to consider the 6-band case (2 transmitted bands,
2 IMD3, 2 IMD?5) in (4). With the same idea of utilizing the
symmetry of frequency locations of these bands, we need to
add a 4-th branch in Fig. 11. This will increase the complexity
by 1/3. But compared with the 2D-DPD whose complexity is
in order of O(K?), the proposed PNS-DPD will have larger
advantage on complexity when the nonlinearity gets stronger.

The proposed PNS-DPD technique can also be generalized
to multi-dimensional cases with more than 2 bands. In this
paper, we have demonstrated that the PNS-DPD outperforms
the 2D-DPD model on complexity because the 2D-DPD has
many basis functions to represent the IMDs between the
signals two bands. Obviously we can foresee that an MD-
DPD with M>2 have much more complicated IMDs. The
complexity of the PNS-DPD mainly depends on the number
of channels which is related to the number of bands of the
predistorted wideband signal. In the case that these IMDs
fall into the transmission bands, especially when transmission
bands are evenly spaced in frequency, the PNS-DPD will have
an enormous advantage on the model complexity.

VI. CONCLUSION

In this paper, we proposed a novel PNS-DPD for concurrent
dual-band transmitter linearization. This approach exhibits

good linearization performance while outperforming the con-
ventional methods on complexities of DPD implementation
for a factor of over 2 and DPD identification for a factor
of over 3. A low-complexity model can be used as the
DPD and can be implemented at the same sampling rate
as the conventional 2D-DPD thanks to the proposed PNS
technique, which has combined advantages on both sampling
rate and model complexity. The proposed DPD needs only
one feedback path for identification without any additional
processing.
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