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ABSTRACT

Networks in neuroscience determine how brain function unfolds, and their perturbations lead to
psychiatric disorders and brain disease. Brain networks are characterized by their connectomes,
which comprise the totality of all connections, and are commonly described by graph theory.
This approach is deeply rooted in a particle view of information processing, based on the
quantification of informational bits such as firing rates. Oscillations and brain rhythms demand,
however, a wave perspective of information processing based on synchronization. We extend
traditional graph theory to a dual, particle-wave, perspective, integrate time delays due to finite
transmission speeds, and derive a normalization of the connectome. When applied to the
database of the Human Connectome Project, it explains the emergence of frequency-specific
network cores including the visual and default mode networks. These findings are robust
across human subjects (N = 100) and are a fundamental network property within the wave
picture. The normalized connectome comprises the particle view in the limit of infinite
transmission speeds and opens the applicability of graph theory to awide range of novel network
phenomena, including physiological and pathological brain rhythms. These two perspectives
are orthogonal, but not incommensurable, when understood within the novel, here-proposed,
generalized framework of structural connectivity.

AUTHOR SUMMARY

All networks are composed of nodes and links, forming the structural frame, in which
communication occurs. We demonstrate that graph theoretical tools make the implicit
assumption of information transmission via exchange of bits, suggesting that the stronger
connected nodes have greater impact upon the remainder of the network. This corollary does
not extend to communication via oscillations, which is the prominent information carrier in
brain networks. We extend traditional network analysis to the oscillatory domain and derive
a novel network normalization complete with descriptive metrics. Along the prototypical
example of the brain as a network, we illustrate the consequences of this novel approach
and demonstrate that the normalization robustly explains the emergence of the prominent
frequency-specific network cores, which cannot be understood within the traditional
framework.
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INTRODUCTION

Network theory significantly advanced our understanding of complex processes in nature,
ranging from gene regulation of protein interactions (Maslov & Sneppen, 2002) and coordina-
tion of brain activity (Bassett & Sporns, 2017) to social networks (Mislove, Marcon, Gummadi,
Druschel, & Bhattacharjee, 2007). Connectivity is the dominant concept that shapes the
capacity of a network to transmit information (E. Bullmore & Sporns, 2012) and is described
by its topological and statistical properties (Albert & Barabasi, 2002). In neuroscience, network
theory has been applied on several scales, including microscopic neocortical microcircuitry
(Markram et al., 2015), macroscopic structural connectivity connectome (Sporns, Tononi, &
Kötter, 2005), and networks of coordinated brain activity, also called functional connectivity
(Friston, 2011). Models of brain networks based on connectomes (Sanz-Leon, Knock, Spiegler,
& Jirsa, 2015) have demonstrated individual predictive power in resting-state paradigms
(Melozzi et al., 2019), cognitive tasks (Brovelli et al., 2004), and brain disease such as epilepsy
(Proix, Bartolomei, Guye, & Jirsa, 2017). In all these applications, there remains a deeply
rooted understanding of signal transmission in which bits of information are transmitted
between nodes, independently of the underlying oscillations and brain rhythms. But just as
the particle picture is complemented by a wave picture in physics, similarly in neuroscience
there are oscillatory processes deeply implicated in healthy and pathological brain activation
(Buzsáki, 2009), such as cognitive functions (Haegens, Nácher, Luna, Romo, & Jensen, 2011)
or aberrant discharges in epilepsy (Proix et al., 2017). How such rhythms support the commu-
nication through phenomena such as phase and frequency dependance, does not have a
fundamental description within the particle view of information processing, which describes
network processes by activations, but does so in the wave picture that imposes a language in
terms of synchronization.

The importance of the particle-wave duality in network neuroscience becomes evident
when considering signal transmission delays, present in large-scale brain networks and rang-
ing on the order of 10 to 200 ms (Nunez & Srinivasan, 2006). As physiological rhythms in the
brain lie in the same range (Buzsáki & Draguhn, 2004), shifts in arrival times due to delays
have minimal to no effects in the particle view, but result in frequency-dependent effects in
the wave view, where a synchronized pair of oscillators may switch from full synchrony to
anti-synchrony. As such, frequency and time delays become inseparable properties of the net-
work and together with the connectome determine the synchronization and nodal activity
(Petkoski & Jirsa, 2019; Petkoski, Palva, & Jirsa, 2018). This also confirms previous compu-
tational studies about the effects of the space-time structure of the brain on its emergent
dynamics (Ghosh, Rho, McIntosh, Kötter, & Jirsa, 2008), and could also determine the spec-
trally dependent information processing capacities based on synchrony (Fries, 2015).

Current state-of-the-art network neuroscience is mainly focused on the topological aspects
in describing the connectivity of the brain (Bassett & Sporns, 2017; Bassett, Zurn, & Gold,
2018). By omitting space and physical distances between interacting units, it limits itself to
the particle view (Rubinov & Sporns, 2010). Possible exceptions from this are the cases in
which structural network motifs are shown to be related to the functional hubs due to the
time delays (Gollo, Zalesky, Matthew Hutchison, van den Heuvel, & Breakspear, 2015),
but without spectral specificity. In rare cases, when lengths of the links are studied (Roberts
et al., 2016), it is still done in static manner, without consideration for the impact of the
delays on the emerging dynamics, thus critically demanding the extension of network neu-
roscience to the wave picture. The only attempts to study negative links between brain
regions are limited to the clustering of functional data with negative correlations (Rubinov
& Sporns, 2010), without any application to the structural links, for which there has never

Synchronization:
Coordinated activity due to
interactions, resulting in network
nodes oscillating with identical
frequency.

Oscillator:
A system capable of generating
stable rhythmic activity. From a
dynamical viewpoint, it has to
contain at least two dimensions
(variables) and some nonlinear
interactions.

Space-time (or spatiotemporal)
structure of the brain:
Unified consideration of the topology
(weights) and space (time-delays) of a
given network.

Emergent dynamics:
Behaviors that emerge only when
the interacting subsystems are
considered as a whole (e.g.,
synchronization can emerge when
interacting oscillators are considered
to be an ensemble).
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been any mechanistic explanation that would effectively render them inhibitory for the
synchronization.

RESULTS

Particle Versus Wave Representation for Network Dynamics

The particle-wave dichotomy for network communication appears in network dynamics
because of the finite transmission velocities for the signals between spatially distributed nodes.
The governing equation reads

_xi ¼ F xið Þ þ
X

j
wijh xj t − τ ij

� �� �
; (1)

where xi is a vector of states, F is a nonlinear function, and h is the coupling function. Within
the particle view, x is a one-dimensional scalar variable such as firing rate, rendering the inter-
actions to be frequency-independent; see Figure 1A. Consequently, the strongest flow of infor-
mation and the activity is generally along the links with the largest weight (E. T. Bullmore &
Sporns, 2009), although there are cases in which hubs are significantly more influential
(Novelli, Atay, Jost, & Lizier, 2020; Timme et al., 2016). In addition, time delays are less impor-
tant during single events that occur independent of the possible underlying oscillatory activity
(middle plot of Figure 1A), such as the action potentials that make up subsequent metrics such
as firing rate. Similar examples of particle-like interactions happen during strong perturbations
and stimulations (Spiegler, Hansen, Bernard, McIntosh, & Jirsa, 2016), or when the coupling is
no longer weak and bifurcations occur, such as during seizure propagation in epilepsy (Olmi,
Petkoski, Guye, Bartolomei, & Jirsa, 2019).

Networks of oscillators, on the other hand, are often used to study dynamical systems
for which the local activity is multidimensional and nonlinear (Pikovsky, Rosenblum, &
Kurths, 2001). They have been conceptualized to be responsible for the communication
in the brain through coherence (Fries, 2015) and synchronization (Palva & Palva, 2012;
Figure 1A). However, this aspect is still unlinked on the network level to weights and
time-delays of the structural that shape the synchronization of the brain network (Petkoski
& Jirsa, 2019). For weak couplings, dynamics of the nonlinear oscillatory system in Equa-
tion 1 are captured by phase models, of which the simplest and the most elaborate is the
Kuramoto model (Kuramoto, 1984). For synchronization at frequency Ω, the model reads
(Izhikevich, 1998)

_θi ¼ ωi −
X

j
wij sin θi − θj þ Ωτ ij

� �
; (2)

where θi denotes the phase of the i th node oscillating with a natural frequency ωi. Note
that if time delays were short so that they would not appear explicitly in the phase model
(Izhikevich, 1998), then Equation 2 would have still represented the phase model for the
case of synchronization.

From Equation 2, when delays are negligible compared with the timescale of the system,
the interactions are governed only by the weights, as in the particle case. Because of better
tractability and the readily applicable tools from graph theory, this has been the default net-
work representation in neuroscience. However, when the time delays are comparable to the
timescale of the intrinsic oscillations, they need to be included in the analysis of network
dynamics. This system can only be solved numerically, in order to unveil the activation pat-
terns at different frequencies, as there is no alternative graph theoretical approach that inte-
grates the topology and the impact of the time delays on the oscillations. Hence the systematic
effect of the time delays on the emergent dynamics in Equation 1 is concealed, beyond the

Mechanistic explanation:
Description that offers testable causal
links for generating certain
phenomena.
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synchronizability and the order parameter that can be calculated using the Ott and Antonsen
ansatz (Ott & Antonsen, 2008), but only for all-to-all couplings and spatially decomposed
delays (Petkoski et al., 2016).

To go beyond the static representation of networks, we use the insight that the impact of the
direct link in the phase difference between oscillators can be separated from the rest of the
network (see the Model and Methods section), leading to solutions given as

Δθij ¼ sin−1
Δωij − Iij

wij cosΩτ ij
: (3)

Figure 1. Spatiotemporal network organization and wave coupling weights for synchronized networks. (A) Particle (static or frequency-
independent) and wave (synchronization-dependent) interactions with delay τ, due to distance l, and propagation velocity v. Top: Transmission
of packets over non-oscillatory local dynamics. Middle: A particle type of transmission that does not depend on the coherence (e.g., during
strong perturbation) and is thus independent of the underlying oscillatory dynamics. Bottom: The communication is dependent on the syn-
chronization. (B–D) In- and anti-phase synchronization for fixed frequency and different time delays for two oscillators (B), and for networks
with a resonant (C) and non-resonant (D) spatiotemporal alignment of the oscillators. Nodes with same color are in-phase with each other, and
anti-phase with others, as also illustrated with the waveform. Time delays are shown relative to the period of oscillations T, and the normal-
ization factor is shown for some of the links. (D) Midpoints of links with in-phase oscillations are highlighted in yellow, and in green if anti-
phase, and the sum of all positively and negatively contributing links (yellow minus green links) to each node is also shown. (E–G) Wave
coupling weights for a particle (or static) case (E) and for optimal (F) and suboptimal (G) phase arrangements of nodes. Links contributing
positively to the synchronization are yellow, and negative contributions are green. Lines have width proportional to jw fð Þ

ij j (shown next to
the links), and the size of the circles corresponds to the nodes’ spectral capacity (dark) and strength (colored), both shown for each node.

Synchronizability:
Easiness/propensity for a population
to get synchronized.

Static network:
A network representation that is
invariant on identical shift of the
frequencies, thus being ignorant of
the absolute frequencies.
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Here Δωij = (ωi − ωj) /2, and normalized wave coupling w fð Þ
ij = wij cosΩτij describes the

impact of the direct link between the oscillators. The influence of all the other links of these
two nodes is contained in Iij. The cosine term vanishes for particle-like communication Ωτij →
0, simplifying Equation 3 to the case of no. For interactions of synchronized oscillations, wave

coupling w fð Þ
ij unifies spatiotemporal aspects of each link by modulating weights with the

frequency-specific impact of the time delays. This reflects duality in the interactions, which
in the wave case is dependent on the timings of the waveforms arriving from the distant nodes;
see Figure 1B–D.

As illustrated in Figure 1B, two delay-coupled oscillators can synchronize either in-phase or
anti-phase (Petkoski et al., 2018; Pikovsky et al., 2001), depending on the sign of cosΩτ. The
former is stable for positive wave couplings, the latter for negative. The same is true for net-
works (Petkoski et al., 2018) and not limited to phase oscillators (Petkoski & Jirsa, 2019). Time
delays can be perfectly spatially distributed to cause maximum synchronization at a given fre-
quency (Figure 1C), but a more realistic scenario is when their distribution causes some links

to decrease the synchronization, that is, if w fð Þ
ij < 0 for in-phase nodes, or if w fð Þ

ij > 0 for anti-

phase. One possibility here is the oscillators rearranging their phases to minimize this
disturbance (Figure 1D). From here, to identify the skeleton of the wave synergy we define
a spectral strength and capacity for each node

Si f ;Qið Þ ¼
X

j2Qi
w fð Þ

ij −
X

j∉Qi
w fð Þ

ij ; (4)

C fð Þ
i ¼

X
j
jw fð Þ

ij j: (5)

In the static case, both metrics yield the topological node strength, Figure 1E. Si (f, Qi) is
adapted from the particle case node strength (Rubinov & Sporns, 2010) by accounting for pos-
sible inhibitory contribution of some links to the overall synchronization, that is, negative
wave coupling from an in-phase node, or a positive one from an anti-phase node; see
Figure 1D, F, and G. The cluster Qi thus contains all the nodes that are in-phase with the node

i. Related to this, C fð Þ
i gives the upper bound of node’s synchronizability and hence of its Si (f,

Qi); see Figure 1F and G. Therefore, it shows the strength of the node when all its links con-
tribute positively to its dynamics. As shown in the same plots, different phase arrangements of
the nodes change their spectral strength. A hub node can become more peripheral, or vice
versa, while still being constrained by its spectral capacity, which does not change as different
arrangements are realized for a fixed frequency.

For simplicity, in the rest of the manuscript we will omit the explicit dependence of the
spectral strength on the node-specific cluster Qi, but instead we will refer to specific in-/anti-
phase arrangements on the network level that imply specific clustering for the nodes. For

example, in most of the results we will show results for S fð Þ
i from a clustering that maximizes

its sum over the whole network.

Normalized Connectome and Spectral-Dependent Activity of Brain Regions

The wave coupling weights are frequency-dependent, and in the case of the connectome this
causes activations of different cores. We assume homogeneous propagation velocity, which is
often used as a first approximation, resulting in time delays being defined by the lengths of the
links (Ghosh et al., 2008; Petkoski & Jirsa, 2019; Petkoski et al., 2018; Sanz-Leon et al., 2015),
that is, τij = lij /v. The cosine term modulates the strength of the links, which can even change

Normalization:
Adjusting a quantity (structural
weight in our case) to compensate for
an additional effect on it by another
quantity (time delays during
synchronization in our case).

Phase oscillator:
An oscillator whose amplitude of
oscillations is constant, leading to
one-dimensional representation in
polar coordinates.
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the sign, reverting once positive interactions depending on the frequency. This is demonstrated
in Figure 2A for human (Van Essen et al., 2013) and mice (Oh et al., 2014) connectomes.

The spectral strength and capacity are illustrated in more detail in Figure 2B and C for three
different frequencies, and they are shown for all the brain regions ordered by lobes in Figure 3.
The phase arrangement of the nodes is obtained by maximizing the overall spectral strength of
the network (see the Model and Methods section for more details). For example, the two met-
rics in Figure 2B and C illustrate that the highest spectral capacity for regions of cingulate are at
20 Hz and their strength is lowest at 10 Hz, while the occipital lobe has highest spectral
strength and capacity at 10 Hz. Large spectral capacity implies possibility for a given node
to get greater strength during different phase arrangements. As illustrated in Figure 1B, even
for a network of several nodes it can already become impossible not to have negatively con-

tributing links that inhibit the synchronization. The ratio S fð Þ
i /C fð Þ

i shows the proportion of the

weighted links that contribute positively to the spectral strength of the node in the optimal
phase arrangement. Hence, the superior parietal (SupPa) region is by far the strongest at

Figure 2. Normalized connectomes at different frequencies. (A) Wave couplings for a human (top) and averaged mice (bottom) connectomes.
(B) Spectral strength and capacity, and their ratio for regions of the left hemisphere ordered by lobes for three different frequencies. Full names of
the regions are shown in Table S14 in the Supporting Information. (C) Spectral strength (blue or red, indicating anti-phase arrangements) and
capacity (gray) for cortical regions of a human brain. The links with positive contribution to the optimal phase arrangement are yellow, and others
are green (cf. Figure 1B). At each frequency only the links with spectral strengths above 0.33 of the mean strength are shown for simplicity.
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40 Hz because of the more positively contributing links, as compared with the precuneus,
which is much weaker at this arrangement, besides having a similar capacity.

In Figure 3, relative activation patterns of all the brain regions are shown for the frequencies
up to 80 Hz. They are more heterogeneous for the frequencies between alpha and lower
gamma, and homotopic brain regions generally show similar activation patterns, because of
the high symmetry of the weights and delays in the connectome. Frequency-normalized values
of the spectral strength and capacity unveil the regions with strongest relative activity at each
frequency, whereas the relative change of the activation compared with the particle case is
also shown (right plots in Figure 3C and D). The strength of each region’s activity relative to
the particle case as well as the mean relative activity for the whole brain are shown in the left
plots in Figure 3C and D. For every region the strength generally decreases with frequencies,
as it is clearly seen in their mean, while the capacity has much steeper decline up to alpha
frequencies, when it slightly recovers and stays largely constant.

Spectral-Dependent Activity of RSNs and Brain Lobes

Studies of functional connectivity have demonstrated that signals in brain regions that are related
in different tasks can also correlate even in the absence of an apparent task, hence the notion of
resting-state networks (RSNs). The most consistent RSNs are default mode network (DMN),
visual, sensory/motor (SensMot), auditory, executive control (ExecCont), and frontoparietal
(FronPar; Damoiseaux et al., 2006). In Figure 4, we show the average spectral strength and
capacity of brain regions of 100 subjects, further projected on RSNs and anatomical lobes.
Regions with the strongest activity averaged over the subjects are shown in Figure 4A, through

the mean S fð Þ
i , which is normalized at different frequency bands. The same panel contains the

boxplots of the strengths of the RSNs of different subjects. Panel B of Figure 4 contains the same

Figure 3. Spectral strength and capacity for brain regions. Mean values are shown over 100 subjects and for frequencies in a step of 1 Hz.
Brain regions are ordered by lobe, with exact ordering within lobes given in Table S14 in the Supporting Information, and each right hemi-
sphere region is placed right after its left hemisphere counterpart. (A, B) S (f ) and C (f ) normalized across each frequency, and (C, D) their ratio
and difference compared with the case with no delays, where the former is for the non-normalized metrics, to reveal the frequency-dependent
mean activity.
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metric, but the in-/anti-phase arrangements of the nodes are taken into account through the sign

of S fð Þ
i , which is now plotted in red-white-blue color code, with red regions being anti-phasewith

the blue. In Figure 4C, the strength at each RSN is projected across the bands, complementing
the information about the spectral affinity of the RSN. For example, the visual network is by
far the most active during alpha frequencies (Figure 4C), even though the alpha frequency also
contains a strong activity of the frontoparietal network (Figure 4A). Figure 4D shows the mean
and the standard deviation over the 100 subjects of the spectral strength and capacity of each
lobe normalized at each frequency. It shows that the robustness over the subjects is much
stronger for lower frequency bands (up to around 30 Hz), similar to the most robust empirically
observed spectral activation patterns (de Pasquale, Corbetta, Betti, & Della Penna, 2018; de
Pasquale et al., 2010; Hillebrand et al., 2016; Vidaurre et al., 2018).

Some of the most remarkable and statistically significant (see Tables S1–S12 in the Supporting
Information) activation patterns predicted by the metrics in Figure 4 are in agreement with the
strongest empirically observed phenomena. It is due to the frequency-dependent, normalized
links, that visual areas, mainly located in the occipital lobe, become the most active at alpha
frequencies, as it is experimentally observed during rest with closed eyes (Mantini, Perrucci, Del
Gratta, Romani, & Corbetta, 2007; Samogin et al., 2020). Similarly, while activity is dominant
in the delta/theta frequencies for the anterior-cognitive state, the posterior-cognitive state is
dominated by alpha frequencies (Vidaurre et al., 2018). By contrast, the sensory motor and

Figure 4. Cortical activation patterns of 100 subjects for different frequencies. (A) Mean spectral strength is shown for different cortical regions
(higher for warmer colors) and frequency bands (see Table S13 in the Supporting Information), and activation of resting-state networks (RSNs) is
projected in the frequencies. (B) In-/anti-phase arrangements of mean S fð Þ

i are indicated with red and blue. (C) Relative contribution of the
frequency bands per RSN. Boxplots contain the scatterplots of all 100 subjects. (D) Mean spectral strength and capacity (lines) and regions of
two standard deviations (shaded) calculated in step of 1 Hz for each lobe. The values per given RSN and lobe are normalized by the number of
regions in that subnetwork. Brain regions of different RSNs are given in Table S15, and EEG frequency bands are given in Table S13 in the
Supporting Information.
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auditory networks are more active at gamma (Cheyne & Ferrari, 2013), while DMN, which is
mainly in the frontal lobe, is more prominent at the beta band (Laufs et al., 2003), associated
with the idleness of the cognitive and motor setup.

Numerical Confirmation for Forward Modeling and Linear Stability Analysis with

Stuart-Landau Oscillators

The activation patterns predicted by the metrics of the normalized connectome are numeri-
cally validated with a linear stability analysis (LSA) and a forward simulation of brain network
model of Stuart-Landau oscillators (Petkoski & Jirsa, 2019; Pikovsky et al., 2001) over the same
100 human connectomes (Figure 5). The model is explored at critical, subcritical, and

Figure 5. Comparison with forward models based on the normalized and the full connectome. The power across regions from the forward
model is compared with the spectral capacity and strength, where the latter is calculated either using the signs of the eigenvectors or using
arrangements that maximize its value, and with the null metrics assuming particle-like interactions. The power is calculated (A) using linear
stability analysis (LSA) of the brain network model at criticality, constructed over the normalized connectome or (B) with numerical simulations
performed for the full connectome, with the brain network model being subcritical (G = 17, D = 0) and supercritical (G = 9, D = 1e−5), and at
the criticality with noise (G = 9, D = 1e−5) and without (G = 9, D = 0). (B) For the full simulations, the most prominent phase arrangement of
the simulated data is also used to set the in-/anti-phase arrangements. Correlations of the powers across frequencies (A) for all 100 subjects are
shown, as well as the p values, and the difference with the correlations assuming particle-like interactions, and (B) for one subject. Correlations
with p < 0.01 are transparent in the first two columns of (A), and thinner lines for (B).
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supercritical regimes, along with noise (see the Model and Methods section). For consistency,
in the simulated results, powers get signs that are based on the in-/anti-phase arrangements of
the simulated data, which are obtained from calculating the average phase difference between
the regions and checking whether it is larger than π. Similarly, for consistent comparison
between the metrics, the signs from the phase arrangements either from the data, from the
connectome, or from the eigenvalues are explicitly assigned to the spectral strengths and

capacities. Thus, for instance, the spectral strengths respectively become S fð Þ
data, S

fð Þ
conn, or S

fð Þ
eig.

With the generative model we confirm that these spectral patterns of activity are predicted
by the two graph theoretical metrics on the normalized connectome, that is, the spectral
strength and capacity. The former depends on the actual phase arrangement of the oscillators.
For this, besides the arrangement that maximizes the overall S (f ) (that is based only on the
normalized connectome), we also use the signs of the eigenvectors to inform the spectral
strength metric about the in-/anti-phase organization for the specific model. In this dynamical
setting the amplitude and the sign of the observed activation pattern for the network coupled
through the normalized connectome are guaranteed to be fully captured by the values of the
first eigenvector of the LSA (Ghosh et al., 2008; Olmi et al., 2019). The signs of the different
directions of the eigenvector capture the in-/anti-phase arrangements of the nodes, with the
opposite-sign regions corresponding to anti-phase synchronized regions.

In Figure 5A, we show the correlation of the leading eigenvectors with spectral strength,
calculated using both arrangements, for all 100 subjects. The arrangement implied by the signs
of the eigenvectors takes into account the specificity of the model, and hence this case better
predicts the activation of a given node. This means that the network is not always arranged in
such a manner to yield maximal possible synchronization. The patterns are similar across sub-
jects, and for frequencies larger than 40 Hz, there seem to be specific frequencies for different
subjects, for which the arrangement of the signs of the eigenvectors is quite different from
those maximizing S (f ). Spectral capacity on the other hand, has generally lower predictability

than S fð Þ
conn, but it is never insignificant or lower than the case without normalization. As shown

in the third column of panel A, all three spectral metrics exhibit much better correlation than
the null metric, which is constructed assuming particle-like interactions at 0 Hz. Thus, only the

weights of the links are considered, giving the in-strength of the nodes C 0ð Þ
i =

P
j wij. Since the

null model cannot yield anti-phase nodes, for more conservative comparison we assign it signs
predicted by the arrangements of the nodes with which it is being compared.

In Figure 5B, the predictivity of the metrics is tested by comparing them with the power
obtained by simulating the model built with the same oscillators (Equation 17), but over the
full connectome containing both weights and delays (Equation 18). Moreover, this is
extended for the subcritical and supercritical regimes of the system, along with noise. The
comparison shows that each of the wave interactions metrics has consistently higher predict-
ability than its particle-like counterpart across all the frequencies. This holds even for noisy
systems far from the criticality, where the correlation is generally larger than 0.5 if the phase
arrangements are taken from the data. It is worth noting that for the full system the spectral
capacity seems to be more informative than the spectral strength, because the dynamics
often become nonstationary and multi-stable because of the explicit time delays (Petkoski
et al., 2016). Nodes might switch from in-phase to anti-phase and back, and different phase
arrangements lead to different spectral strengths over time. As a result, each node’s average
relative strength within the network might be better captured by its capacity than by any
given realization of the phase arrangements that has occurred at some point, even if that
is the most dominant one. This is especially pronounced when noise is added to the system,
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making the spectral capacity more informative for the relative activity of the nodes for
almost all the frequencies.

Robustness of the Spectral Strength

The consistency of the spectral strength of the normalized connectome is tested against different
types of uncertainties, which are modeled as rewiring and noise in the connectome, all scaled
to have a comparable impact. Boxplots that show the statistics of the leading eigenvector v and
its absolute value are shown in Figure 6A for one frequency and for two different levels of noise.
At lower noise, the averages of the regional activity shown by the eigenvectors of the null model
are still following the original values. The variance of the null models’ activity in this case would
sufficiently describe the impact of the noise, and the error that it causes. As the noise increases,
the variance of the null model also increases, but in addition for some regions the mean starts
significantly differing from the original values. This suggests that, to better account for the
impact of the noise and the network’s resilience, we need to take into account both the standard

deviation σi of all realizations of vnull
i and the error of their mean �vnull

i , defined as

ferri ¼ vi − �vnull
i

�� ��: (6)

Moreover, the impact of the above error seems to be inversely proportional to the spread of
the results for the null model; that is, the smaller the spread, the larger the chance for the null

Figure 6. Robustness of the spectral strength. (A) Boxplots showing the statistics of the leading eigenvector and its absolute value for 1,000
realizations of two different levels of noise added to the lengths at f = 20 Hz on the connectome of the first subject. Black circles are the values
for the original connectome; they are filled red for the cases when the error terms (Equation 7) exceed the error threshold. (B) Mean of the errors
(Equation 7) over all the regions shown for different noise and frequencies (left column), as well as the ratio of the nodes whose error exceeds
the threshold (right column).

Network Neuroscience 732

Normalization of the brain connectome

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/6/3/722/2036010/netn_a_00231.pdf by guest on 22 Septem
ber 2022



model to give an error around its mean. Hence, we arrive at the following definition of the
error for each node:

erri ¼
ferri
σi

þ σi

2
: (7)

The mean of those errors over the whole network is shown in the first column of Figure 6B.
Finally, not all nodes are equally affected by the noise; to describe this, in the second column
of Figure 6B we depict the proportion of the nodes that have an error larger than the threshold
set at (vi + �v)/2. In this way the deviation at each node is evaluated against both the local (i.e.,
its own) and the global activity.

Results in Figure 6B show that robustness against the noise and rewiring decreases with
the frequency, and this is especially evident for the uncertainties of the delays. For frequen-
cies below ∼35 Hz, fewer than half of the nodes have deviations that are considered large
for all three types of uncertainties, with rewiring being more sensitive than the noise of the
same impact.

DISCUSSION

Wave metrics offer a new perspective for characterizing dynamic networks. They integrate
the wave component of information processing, which was missing in network metrics that
were based solely on the connection topology (Bassett & Sporns, 2017). The incorporation
of signal transmission delays in the connectome’s metrics completes the characterization of
the spatiotemporal skeleton, within which oscillatory brain activity can be amplified by the
properties of the medium supporting it, i.e., it provides a corpus resonantiae. We propose
that the activation of certain parts of the brain, that are related to different tasks, can be
explained as being anatomically prewired. We have demonstrated that the connectome
has such properties and allows for selective, frequency-dependent information processing
that could support the differentiation of brain activity for various processes and frequency
bands (Liu et al., 2015; Mejias, Murray, Kennedy, & Wang, 2016). Notably, the wave per-
spective leads naturally to the formation of overlapping, albeit functionally independent sub-
networks, that cannot be derived within the particle picture. Besides revealing the
frequency-specific hubness, as another consequence the wave coupling also supports the
general reduction of activity with increasing frequencies, which is among the more consis-
tent and well-established features of brain dynamics (Buzsáki & Draguhn, 2004).

The proposed of the connectome is derived from the expressions for the phase lags between
synchronized phase oscillators. These are the only dynamical features by which functional
heterogeneity can arise in this setup (Moon, Lee, Blain-Moraes, & Mashour, 2015; Petkoski
et al., 2018), hidden by structural symmetry breaking of the network interactions (weights
and time delays), or from the different natural frequencies. Both of these aspects are present
in Equation 3, but in this study, we focus on the former. In that respect we show that in the
presence of time delays the weights are effectively scaled (or normalized) by cosΩτij, even
though the rest of the network is also needed to fully describe the phase lags and hence the
full dynamics. For the case of two oscillators, however, the normalized weights are the sole
determinant for the synchronized interactions.

Importantly, however, the network models that we introduced are not intended to serve as
toy brain models, but to illustrate the meaning of the metrics derived here. We use estab-
lished models to expose and justify open and hidden assumptions underlying the traditional
and extended metrics (the latter being normalized for time delays in the wave perspective).
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Every metric relies on an underlying theory or model, even if it is not made explicit. For
instance, functional connectivity relies via covariance on second-order metrics (Friston,
2011) adapted to linear models (fitting an ellipsoid to the corresponding data cloud), but this
does not preclude its application to nonlinear network models; in fact, in practice, this is
often the rule. In the same spirit, we motivate the particle and wave metrics by using rate
and Kuramoto oscillator equations, without the claim that these actually represent brain net-
work models.

It is worth noting that studying the synchronizability of the brain networks with time delays
could complement our framework for the study of spectrally dependent emergent functional
heterogeneity, beyond the forward modeling. A possible approach here would be to use recent
extensions of the Ott and Antonsen ansatz (Ott & Antonsen, 2008), that allow the study of
noisy networks, either through circular cumulants (Tyulkina, Goldobin, Klimenko, & Pikovsky,
2018) or by using Daido order parameters (Hannay, Forger, & Booth, 2018). These could be
applied on the spatially decomposed time delays as a first approximation of the spatiotemporal
structure of the connectome (Petkoski et al., 2016). Another direction would be to study the
stability of the synchronized states over the network of wave couplings that are both positive
and negative (Iatsenko, Petkoski, McClintock, & Stefanovska, 2013).

During tasks, the spectrally dependent activation patterns are also constrained by stimuli.
For example, in many visual tasks, they cause gamma synchronization in frontal regions
(Roux, Wibral, Mohr, Singer, & Uhlhaas, 2012). This is missing from our predictions at rest
and in absence of stimuli. The offered framework also does not account for communication
across different frequencies, even though it could be further generalized to other types of n:m
synchronization (Pikovsky et al., 2001). Having data-informed, intrinsic dynamics is also a
feature that could increase the predictive value of any generative model for brain dynamics,
but this would need to be biased by the specific brain activity (Courtiol, Guye, Bartolomei,
Petkoski, & Jirsa, 2020; Schirner, McIntosh, Jirsa, Deco, & Ritter, 2018; Wang et al., 2019).
This is, however, still to be generalized in a graph theoretical framework. Similarly, our frame-
work considers the activity at each frequency as fixed—even though they are often
time-dependent (Clemson, Lancaster, & Stefanovska, 2016; Petkoski & Stefanovska, 2012;
Stankovski, Duggento, McClintock, & Stefanovska, 2012; Stankovski et al., 2016) and inter-
mittent (Sheppard, Hale, Petkoski, McClintock, & Stefanovska, 2013)—and to be a separate
process. The latter might lead to omitting certain emergent properties in cases where the same
process has clear multimodal frequency content, as is often seen in frequency- and
scale-dependent metrics from information theory (Courtiol et al., 2016; Kaminski & Blinowska,
1991; Marinazzo, Pellicoro, & Stramaglia, 2008) and time-frequency representation (Iatsenko,
McClintock, & Stefanovska, 2015).

Beyond synchronization, frequency-dependent approaches to information processing offer
data-driven insight into causality of network interactions (Reid et al., 2019). Applying transfer
entropy (Schreiber, 2000) reveals that high-degree neurons feed cortical computations by
receiving more information from high out-degree neurons (Timme et al., 2016), indicating
an asymmetry of information transfer between hubs and low-degree nodes (Novelli et al.,
2020). Spectral and multiscale Granger causality (Faes, Nollo, Stramaglia, & Marinazzo,
2017; Kaminski & Blinowska, 1991) are similarly used to describe the information flow in
networks, and they demonstrate the nonlinear effects of the structural weights, which can
be seen through signatures of the law of diminishing marginal returns (Marinazzo et al.,
2014; Marinazzo, Wu, Pellicoro, Angelini, & Stramaglia, 2012). It would be interesting to
compare the flow that these metrics reveal for the case of synchronization, with the spectrally
dependent network core as defined by the normalized connectome.
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The predictive value of the normalized connectome for the functional in-strength is further
validated through comparisons with numerical simulations of the Stuart-Landau model. This
model is often used to describe mesoscopic neuronal activity (Courtiol et al., 2020; Deco
et al., 2017; Deco & Kringelbach, 2020; Petkoski & Jirsa, 2019) because it encompasses the
working points of population rate models (Deco, Jirsa, McIntosh, Sporns, & Kötter, 2009).
Correlating the spatial activation patterns with the predictions from the spectral in-strength
and capacity shows that the normalized metrics capture the dynamics of the model better than
using only the weights. This is besides the derivations being made on the Kuramoto model that
does not contain amplitude dynamics, and that assumes difference instead of additive cou-
pling. Better performance of the wave coupling is consistent across the frequencies, and holds
for different working points, such as sub- and supercritical, with or without added noise.

The normalization of the connectome unifies its structural weights and time delays, and
consequently it still inherits the known problems of these two modalities. What the number
of streamlines means for the actual effective coupling between brain regions regardless of the
task still lacks a clear response (Friston, 2011; Gilson et al., 2019). In addition, diffusion trac-
tography is known to undersample the interhemispheric links (Schirner, Rothmeier, Jirsa,
McIntosh, & Ritter, 2015) and the topology of the derived connectomes is still dependent
on the parcellation (Domhof, Jung, Eickhoff, & Popovych, 2021). The lack of personalized
estimations for the time delays of the connectome is still an unavoidable problem. A possible
way forward could be using averaged delays derived from stimulation (Trebaul et al., 2018),
combined with the personalized lengths of the tracts, even if these datasets are still incom-
plete. The lack of directionality in the human connectomes that rely on diffusion tractogra-
phy is also a confounding factor of those connectomes (Melozzi et al., 2019). This has led to
introduction of concepts such as effective connectivity (Friston, 2011; Gilson et al., 2019),
even though for our framework the derivations are simplified by the symmetry in the cou-
pling strengths.

Finally, we have introduced only two metrics for node activity based on the normalized
weights, whereas other graph theoretical metrics for wave interactions could be more informa-
tive. However, even for spectral capacity and strength, it is still not clear which one would
have higher predictive value in describing the activation patterns of the brain at rest. A sys-
tematic and rigorous comparison against empirical data could provide answers about which
brain regions operate closer to the limits of their capacity. Similarly, the phase arrangements of
the brain do not necessarily need to be such that they maximize the overall information trans-
fer across the whole brain, but maybe instead they give priority to certain areas at the expense
of others.

Transient synchronization between brain areas coupled through delayed interactions has
been proposed as a mechanism that could support flexible information routing (Palmigiano,
Geisel, Wolf, & Battaglia, 2017), which plays a fundamental role in cognition. Similarly, the
implementation of selective communication, dependent on coherence, has been generalized
to communication through coherence (Fries, 2015) as one of the possible mechanisms of com-
munication between neuronal networks (Hahn, Ponce-Alvarez, Deco, Aertsen, & Kumar,
2019). This offers no explanations of the origin of the selection of frequency bands and the
spatial organization of the involved neuronal populations. The normalization of the connec-
tome completes this view mechanistically, hypothesizing that the spatiotemporal brain struc-
ture itself could be at least partly responsible for the observed patterns. Through the notion of
wave-type communication, the offered normalization lends legitimacy to concepts of synchro-
nization and coherence in network science and opens up a many new applications way
beyond brain sciences.
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MODEL AND METHODS

Particle Versus Wave Representation for Network Dynamics

The particle-wave dichotomy appears in network dynamics because of finite transmission
velocities between spatially distributed nodes. Within the particle view, the general network
dynamics is governed by the following:

_r i ¼ g1 rið Þ þ
X

j
wijg2 rj t − τij

� �� �
: (8)

Here ri is any scalar variable such as the firing rate, wij are the weights and τij are the
time delays of the links, and g1 and g2 are linear functions for the intrinsic dynamics and
coupling, respectively. This type of particle-like interaction is frequency-independent, and
here the information and the activity always flow along the links with the strongest coupling
weight.

On the other hand, networks of oscillators are often used to conceptualize and to study
dynamical systems for which the local activity is multidimensional and nonlinear (Pikovsky
et al., 2001). They have been conceptualized to be responsible for the communication in
the brain through coherence (Fries, 2015) and synchronization (Kirst, Timme, & Battaglia,
2016; Palmigiano et al., 2017; Palva & Palva, 2012). In this case the dynamics of the oscil-
latory network nodes are governed by Equation 1. When delays are negligible compared
with the timescale of the system, the interactions are still governed only by the weights,
as in the particle case. However, when the time delays are comparable to the timescale
of the intrinsic oscillations, they need to be included in the analysis of network dynamics.
As a consequence, this system can only be solved numerically, as there is no alternative
graph theoretical approach that integrates the topology and the impact of the time delays
on the oscillations at a given frequency. Hence the systematic effect of the time delays on
the emergent dynamics is concealed, and even the full representation of interactions in Equa-
tion 1, with separated wij and τij, cannot adequately identify the skeleton of the wave
synergy.

For weak couplings, dynamics of the system in Equation 1 are captured by phase models,
which are often used to study the interactions in the brain at different levels (Sheppard et al.,
2013; Stankovski et al., 2016). The simplest and hence most elaborate is the Kuramoto model
(Kuramoto, 1984). It is widely utilized for describing emergent phenomena in complex systems
(Strogatz, 2003), such as the brain (Allegra Mascaro et al., 2020; Breakspear, Heitmann, &
Daffertshofer, 2010; Cabral, Hugues, Sporns, & Deco, 2011), with a structure often repre-
sented via complex networks (Rodrigues, Peron, Ji, & Kurths, 2016). For synchronization at
frequency Ω, the model (Izhikevich, 1998) reads as follows:

_θi ¼ ωi −
X

j
wij sin θi − θj t − τij

� �� � ¼ ωi −
X

j
wij sin θi − θj þ Ωτ ij

� �
; (9)

where θi denotes the phase of the ith node oscillating with a natural frequency ωi, the depen-
dence on time is implicit, and because of the synchronization θj(t − τij) = θj (t ) + Ωτij. From
here, the phase difference between each pair of Kuramoto oscillators is given as

_θij ¼ _θi − _θj ¼ Ω −Ω ¼ ωi − ωj −
X
k

wik sin θi − θk þ Ωτ ikð Þ þ
X
k

wjk sin θj − θk þ Ωτ jk
� �

¼ 2Δωij −
X

k
wik sin θi − θk þ Ωτ ikð Þ þwjk sin θj − θk þ Ωτ jk

� �� �
; (10)

Network Neuroscience 736

Normalization of the brain connectome

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/6/3/722/2036010/netn_a_00231.pdf by guest on 22 Septem
ber 2022



where Δωij = (ωi − ωj)/2. Next, we introduce Δθij = θi − θj and we separate the sum, such that

0 ¼ 2Δωij −wij sin Δθij þ Ωτ ij
� �þwji sin Δθji þ Ωτ ji

� �

−
X
k≠i;j

wik sin Δθik þ Ωτ ikð Þ −wjk sin Δθjk þ Ωτ jk
� �� �

¼ 2Δωij −wij sin Δθij þ Ωτ ij
� �þwji sin Δθji þ Ωτ ji

� �
− 2Iij ; (11)

where

Iij ¼ 1
2

X
k≠i;j

wik sin Δθik þ Ωτ ikð Þ −wjk sin Δθjk þ Ωτ jk
� �� �

: (12)

Note that Iij contains all the other links towards the nodes i and j apart from their direct link.

For symmetric coupling, wij = wji and τij = τji, while Δθij = Δθij by definition, hence
Equation 11 becomes

0 ¼ 2Δωij −wij sin Δθij þ Ωτ ij
� �

− sin − Δθij þ Ωτ ij
� �� �

− 2Iij
¼ 2Δωij − 2wij sinΔθij cosΩτ ij − 2Iij : (13)

Finally, for the phase difference between the oscillators we get

Δθij ¼ sin−1
Δωij − Iij

wij cosΩτ ij
¼ sin−1

Δωij − Iij

w fð Þ
ij

;

where w fð Þ
ij = wij cosΩτij is the normalized weight containing the impact of the direct link

between the pair of oscillators. For particle-like communication in the limit Ωτij → 0, the
cosine term and Iij vanish, making the coupling weights the only factor shaping the network
dynamics, consistent with the case of zero delays. Numerical simulations validate the analyt-
ical results for Δθij by showing that the difference between the analytical and numerical values
is small and decreases for smaller integration steps, and increases with added noise (Figure S1
in the Supporting Information).

In the case of asymmetric weights, Equation 13 would also include a term that accounts for
the asymmetry in the interactions wij − wji, and the exact derivation of the expression in Equa-
tion 3 will not be possible anymore. However, if the asymmetry is relatively small, as is the case
for the mice tracer connectome (Oh et al., 2014) then the same expression would approxi-
mately hold up to a leading term. As for the human connectomes, they almost exclusively rely
on diffusion tractography imaging, which produces links with symmetric weights.

Limits of the Approximation

If we assume a normalized connectome, the governing equation of the phase dynamics
becomes

_θi ¼ ωi −
X

j
wij cosΩτ ij sin θi − θj

� �
: (14)

Following the same steps as above, the phase difference between a pair of oscillators reads

_θi − _θj ¼ Ω −Ω ¼ 2Δωij −
X
k

wik cosΩτ ik sinΔθik −wjk cosΩτ jk sinΔθjk
� �

¼ 2Δωij − 2wij cosΩτ ij sinΔθij −
X
k≠i;j

wik cosΩτ ik sinΔθik −wjk cosΩτ jk sinΔθjk
� �

¼ 2Δωij − 2wij cosΩτ ij sinΔθij − 2Jij : (15)
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As for the difference between the full model and the approximation using the normalized
weights, we get

Iij − Jij ¼ 1
2

X
k≠i;j

�
wik sin Δθik þ Ωτ ikð Þ −wjk sin Δθjk þ Ωτ jk

� �
−wik cosΩτ ik sinΔθik

þwjk cosΩτ jk sinΔθjk
�

¼ 1
2

X
k≠i;j

wik sinΩτ ik cosΔθik −wjk sinΩτ jk cosΔθjk
� �

:

(16)

For many symmetric networks, such as the delay-imposed clusters with identical weights
(Petkoski et al., 2016), this difference vanishes.

Forward Modeling and Linear Stability Analysis

The normalization of the connectome also allows straightforward application of LSA for the
dynamics close to a critical state for a given forward model of the oscillatory activity. To build
our brain network model (Courtiol et al., 2020; Olmi et al., 2019; Petkoski & Jirsa, 2019;
Petkoski et al., 2018) over the same 100 human connectomes, we choose Stuart-Landau oscil-
lators, as a canonical model for oscillations near Andronov-Hopf bifurcation (Kuramoto,
1984), which is also the working point of many neuronal mass models (Deco & Jirsa, 2012;
Kringelbach & Deco, 2020). The local dynamics from Equation 1 are then given as

F Xið Þ ¼ Xi r þ jω − Xij j2� �
; (17)

where Xi is a complex number, and the coupling is linear additive with

wijh Xj t − τ ij
� �� � ¼ w fð Þ

ij Xj : (18)

All the parameters, including the frequency ω and the distance from the local bifurcation r,
are identical for every oscillator. The stability of this system can be analyzed by following the
evolution of infinitesimal perturbations in the tangent space, whose dynamics are ruled by the
linearization of Equation 1 with Equations 17 and 18. If the eigenvalues of the Jacobian matrix
all have real parts less than 0, then the steady state is stable. For each frequency for which the
system is analyzed, we set the parameter r to keep the system at the edge of criticality. This is
done in an iterative procedure, where r is decreased until the system is just above the
criticality. In this case there are two identical positive eigenvalues, which contain the same
eigenvectors of opposite signs, because of the way that the two dimensions of the local
model are coupled.

In addition to the LSA, we carried a numerical simulation over the full connectome of the
same model, with the coupling term reading

wijh Xj t − τ ij
� �� � ¼ GwijXj t − τ ij

� �
; (19)

where G is a global coupling parameter. Numerical integration is performed using stochastic
Heun integration scheme implemented in MATLAB, with an integration time step that is
inversely proportional to the natural frequencies and the global coupling, but it is never larger
than 0.005 s. In some of the analyzed scenarios the dynamics also contain white additive
Gaussian, with noise intensity D. The critical value of r is different for each connectome
and each frequency, and sub- and supercriticality are set such that r is at 0.2 below or
above criticality, respectively.
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Setting the Weights for the Coupling

Human connectomes were derived from the first release of diffusion tractography imaging of
100 healthy subjects, which is publicly available as part of the Human Connectome Project
(Van Essen et al., 2013). The subjects were scanned on a customized 3T scanner at Washington
University, and the structural connectivity was constructed using a publicly available pipeline
(Tournier et al., 2019) that applies a spherical deconvolution method to a probabilistic stream-
line tracking algorithm. The obtained connectome consist of few million tracts spatially aver-
aged to connect 68 cortical regions defined according to the Desikan-Killiany atlas (Desikan
et al., 2006). For each link, weights are numbers of individual tracts between the regions of
that link, and lengths are their averages.

The mouse connectome in Figure 2A was obtained from the Allen Institute Mouse Brain
Connectivity data (Oh et al., 2014), which is integrated in The Virtual Mouse Brain (Melozzi,
Woodman, Jirsa, & Bernard, 2017), and which was already used to model mice brain dynam-
ics (Allegra Mascaro et al., 2020; Melozzi et al., 2019).

The spectral graph theoretical results (Figures 2–4) and the LSA analysis (Figures 5A and 6)
use the natural logarithms of number of streamlines as weights of the couplings. This is done
for better illustration of the findings in order to decrease the heterogeneity between the differ-
ent nodes. For the full forward model (Figure 5B), we use the number of streamlines, as it has
been more common in the numerical simulations (Courtiol et al., 2020; Olmi et al., 2019;
Petkoski & Jirsa, 2019; Petkoski et al., 2018).

Phase Arrangement of the Nodes That Maximizes the Spectral Strength

When the in-/anti-phase arrangement of the nodes is such that S (f ) is maximized, this is

referred to as S fð Þ
conn, since the arrangement takes into account only the connectome, but not

the model. Unless specified otherwise in the text, spectral strength S ( f ) refers to S fð Þ
conn . The

clusters of in-/anti-phase nodes can be of any size, but the assigning of the clusters is not
important (e.g., i 2 Qi ≡ {1, 2, …, N}\i 2 Qi, and similarly swapping all the red and blue colors
in Figure 1 does not change the results). As a consequence, the total number of combinations

is
PN=2

k¼1
N
k

� �
≈ N!

2 and a brute force procedure cannot be used to identify the clustering that

yields the maximum S fð Þ
conn. Hence, we developed a heuristic procedure that seems to be able

to identify the clusters of maximum spectral strength. In short, it starts with random initial
arrangements and then uses three types of cost functions to identify the node that needs to
change the cluster. These are the following:

- The node with the smallest S (f ) changes the cluster.
- The node with a smaller S (f ) from the two nodes of the link that has the smallest (most
negative) internal (from the links within each cluster) w fð Þ

ij .
- The node with a smaller S (f ) from the two nodes of the link that has the smallest (most
negative) external (from the links between the clusters) w fð Þ

ij .

For better sampling of different arrangements, a randomness is also systematically added in
some of the loops, so that the cost function chooses a suboptimal node or link among some
proportion of them that were identified to have the largest cost.

The procedure is repeated until it recovers a cluster that has been already identified. At the

end of the runs, the largest spectral capacity that was obtained is set to be S fð Þ
conn. In particular,

we start from 10 random initializations for the phases, and for each of them the three
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procedures are repeated one after another until an already visited configuration is achieved,
after which the loop is repeated 10 more times with added randomness. Every loop is stopped
after arriving at an already visited configuration, and all the visited configurations are then
classified according to the highest spectral strength. We verified that the convergence to the
selected configuration occurs even after 10–100 times fewer samples than we generate with
our procedure.

Projecting the Spectral Strengths and Capacities Into RSNs and Brain Lobes

To better illustrate the patterns of spectral activity, we project the spectral strength and capacity
in each brain lobe and RSN (Figures 2–4). For each subject, after calculating them for a given
frequency (from 0 to 80 Hz with a step of 1 Hz), we calculate the average (per number of
regions in the given subnetwork) activity of a given subnetwork (RSN or lobe). In addition,
for the results in Figures 3 and 4, the values of each subnetwork are normalized at each fre-
quency, to focus on the relative activation patterns. The activity of different frequency bands
contains the averaged activity of the frequencies within that band (see Table S13 in the Sup-
porting Information). The mean and the standard deviation over the subjects are calculated for
each frequency for the activity of the brain lobes.

Note that averaging over subjects in Figure 4B is done over the spectral strengths, which
explicitly take into account the in-/anti-phase arrangements by assigning them opposite signs.
In particular, the regions that are in-phase with regions that have strongest spectral strength
over the subjects are set to be always of a positive sign (blue color), as compared with the
others that are negative (red). Since during the averaging some nodes can be of opposite phase
arrangements over the subjects, the absolute value of the observed activity here can still be
different from the one shown in Figure 4A.

Robustness of the Spectral Strength

To test the robustness of the results, we modified connectomes by either introducing noise or
rewiring. We use three types of modified connectomes:

- Noise is added to the lengths of the links, with the strength proportional to the mean
length of the links.

- Noise is added to the number of streamlines that are used for calculating the weights.
The level of the noise is proportional to the mean number of streamlines of the links.

- A proportion of the links equivalent to the level of noise is rewired while preserving the
distribution of in-strengths (Rubinov & Sporns, 2011).

For each of these and for each frequency, we perform 1,000 realizations of the null net-
works, and then we compute the LSA for each of them to obtain the patterns of activity.
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