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ENTROPY-REGULARIZED WASSERSTEIN DISTRIBUTIONALLY ROBUST SHAPE

AND TOPOLOGY OPTIMIZATION

C. DAPOGNY1, F. IUTZELER1, A. MEDA1 AND B. THIBERT 1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP1, LJK, 38000 Grenoble, France.

Abstract. This brief note aims to introduce the recent paradigm of distributional robustness in the field

of shape and topology optimization. Acknowledging that the probability law of uncertain physical data is
rarely known beyond a rough approximation constructed from observed samples, we optimize the worst-case

value of the expected cost of a design when the probability law of the uncertainty is “close” to the estimated

one up to a prescribed threshold. The “proximity” between probability laws is quantified by the Wasserstein
distance, attached to optimal transport theory. The classical entropic regularization technique in this field

combined with recent results from convex duality theory allow to reformulate the distributionally robust

optimization problem in a way which is tractable for computations. Two numerical examples are presented,
in the different settings of density-based topology optimization and geometric shape optimization. They

exemplify the relevance and applicability of the proposed formulation regardless of the retained optimal

design framework.
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1. Introduction

In realistic situations, the physical behavior of a design h depends on one or several parameters, collectively
denoted by ξ ∈ Ξ; for instance, when h is a mechanical structure, ξ may account for the loads applied on
h, or the coefficients of the constituent elastic material. These parameters ξ affect, often dramatically, the
physical response uh,ξ and the cost C(h, ξ) of h, which raises the need to incorporate a degree of awareness
to uncertainties over their values in optimal design procedures [6, 13].

The treatment of uncertainties in optimal design usually fits in one of the following two frameworks. When
no information is available about the uncertain parameters ξ, except for a maximum bound m on their ampli-
tude ||ξ||, worst-case design approaches consist in minimizing the worst-case scenario h 7→ sup||ξ||≤m C(h, ξ).
When the law Ptrue of ξ is known, probabilistic approaches are usually preferred: the expectation h 7→∫

Ξ
C(h, ξ) dPtrue(ξ) (or another risk measure) of the cost can be minimized, see e.g. [19]. Both approaches

suffer from major drawbacks: while worst-case approaches are often deemed too “pessimistic”, insofar as
the robust design may show poor nominal performance for the sake of providing for an unlikely worst-case

1Institute of Engineering Univ. Grenoble Alpes

1



scenario, the law Ptrue of ξ featured in probabilistic approaches is often unknown, and in practice chosen in
a heuristic manner.

Recently, the paradigm of distributionally robust optimization has emerged as an elegant means to over-
come this conceptual shortcoming of probabilistic formulations, see [12, 17, 21]. Building on a nominal
probability law P for ξ, which is for instance constructed from observed data, it minimizes the worst value
supQ

∫
Ξ
C(h, ξ) dQ(ξ) of the expected cost when the law Q of ξ is “close” to P within a given tolerance m.

Hitherto, this idea has been considered mainly in academic settings; the purpose of this note is to show
how it can be applied in the field of optimal design. More precisely, we adopt the viewpoint in [10, 15]
where the notion of “closeness” between measures is quantified by the Wasserstein distance from optimal
transport theory [14, 18]. We then take advantage of the key results from convex duality proved in [4, 20]
to reformulate the entropy-regularized version of the distributionally robust optimal design problem in a
manner which is amenable to computations.

In principle, this methodology can be implemented in any optimal design framework. For simplicity,
the main ideas are presented in a formal and non technical way, in the context of a model density-based
topology optimization problem, but we also propose a numerical example in the setting of (geometric) shape
optimization. A longer article, containing full mathematical details and extensive numerical experiments, is
currently in preparation.

2. Presentation of the distributionally robust optimal design problem

2.1. The deterministic compliance minimization problem

The considered designs are elastic structures contained in a fixed hold-all domain D ⊂ Rd, that are clamped
on a region ΓD ⊂ ∂D and subjected to traction loads on a disjoint subset ΓN ⊂ ∂D. They are represented
as density functions h on D, i.e.

h ∈ Uad, Uad := L∞(D, [0, 1]),

where h(x) equals 0 (resp. 1) at points x ∈ D surrounded by void (resp. by material) and h(x) ∈ (0, 1)
accounts for a “grayscale” region made of a fictitious mixture of material and void. The material properties
within D are encoded in the Hooke’s tensor A(h), which is related to the density function h via the so-called
SIMP law:

(2.1) A(h)(x) =
(
η + (1− η)h(x)p

)
A, x ∈ D,

where A is the Hooke’s law of the reference elastic material, and η � 1 is a small parameter mimicking the
presence of void, see e.g. [5] about this classical setting.

In our model situation, the uncertain parameters are the loads ξ applied on ΓN . These are assumed to
be constant and they belong to a “large enough” closed ball Ξ = B(0, R) ⊂ Rd, for some R > 0. The
displacement of a design h ∈ Uad in response to the loads ξ ∈ Ξ is then the solution uh,ξ : D → Rd to the
linear elasticity system:

(2.2)


−div(A(h)e(uh,ξ)) = 0 in D,

uh,ξ = 0 on ΓD,
A(h)e(uh,ξ)n = ξ on ΓN ,
A(h)e(uh,ξ)n = 0 on ∂D \ (ΓD ∪ ΓN ),

where e(u) := 1
2 (∇u+∇uT ) denotes the strain tensor associated to a displacement field u : D → Rd.

In this context, when the load ξ ∈ Ξ is known exactly, the optimization problem of interest reads

(2.3) min
h∈Uad

C(h, ξ) s.t. Vol(h) = VT .

Here, the cost C(h, ξ) of a design h ∈ Uad submitted to the loads ξ ∈ Ξ is the compliance, i.e.

C(h, ξ) =

∫
D

A(h)e(uh,ξ) : e(uh,ξ) dx,

the volume functional is denoted by Vol(h) =
∫
D
h dx, and VT is a volume target.
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2.2. The distributionally robust compliance minimization problem

We now turn to the more realistic situation where the loads ξ applied on ΓN are governed by a probability
law Q on Ξ which is unknown. Fortunately, in most practical situations, Q can be estimated by a nominal
law P, which is typically the empirical sum of a series of observations ξi ∈ Ξ, i = 1, . . . , N :

P =
1

N

N∑
i=1

δξi .

Let P(Ξ) be the space of probability measures on the compact set Ξ ⊂ Rd, which we equip with the
Wasserstein distance stemming from optimal transport theory, and defined by:

(2.4) W (P,Q) = inf

∫
Ξ×Ξ

c(ξ, ζ) dπ(ξ, ζ),

where the infimum is taken over transport plans π ∈ P(Ξ × Ξ) between P and Q. These are probability
measures on the product space Ξ × Ξ whose first and second marginals π1 and π2 coincide with P and Q,
respectively. Intuitively, the (quadratic) ground cost c(ξ, ζ) := |ξ − ζ|2 on the set Ξ of loads measures the
cost of “moving a unit of mass” from ξ to ζ, and π(ξ, ζ) encodes the “quantity of mass” transported from
ξ to ζ. We refer e.g. to [18] about the properties of this distance, and to [16] for an overview of its use in
applications.

With these definitions at hand, the distributionally robust counterpart of (2.3) is

(2.5) min
h∈Uad

Jdr(h) s.t. Vol(h) = VT ,

where Jdr(h) is the worst (maximum) value of the expected cost when the law Q ∈ P(Ξ) of the uncertain
parameter ξ is at distance less than a given threshold m from the nominal law P:

(2.6) Jdr(h) = sup
Q∈P(Ξ)

W (P,Q)≤m

∫
Ξ

C(h, ξ) dQ(ξ).

3. Entropic regularization of the distributionally robust problem

The distributionally robust optimal design problem (2.5) is hard to tackle as is. To alleviate this issue, we
consider the entropy-regularized version of the Wasserstein distance proposed in [7]:

Wε(P,Q) = inf
π∈P(Ξ×Ξ)
π1=P, π2=Q

{∫
Ξ×Ξ

c(ξ, ζ) dπ(ξ, ζ) + εH(π)

}
,

where ε > 0 is a “small” smoothing parameter, the entropy H(π) of an element π ∈ P(Ξ× Ξ) is defined by

H(π) =

{ ∫
Ξ×Ξ

log dπ
dπ0

dπ if π is absolutely continuous w.r.t. π0,

∞ otherwise,

and π0 ∈ P(Ξ × Ξ) is a reference coupling. According to [4], a judicious choice about π0, offering nice
theoretical guarantees, is provided by the following formula:

(3.1) π0(ξ, ζ) = P(ξ)dνξ(ζ), with dνξ(ζ) := αξe
− c(ξ,ζ)2σ 1Ξ(ζ)dζ

for some σ > 0 and a normalization factor αξ ensuring that dνξ is a probability distribution on Ξ. Precisely,
the above definition means that

For all continuous functions ϕ : Ξ× Ξ→ R,
∫

Ξ×Ξ

ϕ(ξ, ζ) dπ0(ξ, ζ) =

∫
Ξ

(∫
Ξ

ϕ(ξ, ζ) dνξ(ζ)

)
dP(ξ).

We are now in position to introduce the entropy-regularized version of the problem (2.5):

(3.2) min
h∈Uad

Jdr,ε(h) s.t. Vol(h) = VT , where Jdr,ε(h) := sup
Q∈P(Ξ)

Wε(P,Q)≤m

∫
Ξ

C(h, ξ) dQ(ξ).

This program is intricate at first glance, as it features nested maximization and minimization problems.
Fortunately, the functional Jdr,ε(h) admits a convenient dual reformulation as a minimum, as expressed by
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the following result from convex analysis, whose mild assumptions are omitted, and which is proved in a
more general context in [4] (see also [20]).

Proposition 3.1. Let Ξ be a convex and compact subset of Rd, f : Ξ→ R be a continuous function and let
P ∈ P(Ξ) be a probability measure. For a sufficiently small value of σ, the following equality holds:

sup
Wε(P,Q)≤m

∫
Ξ

f(ξ) dQ(ξ) = inf
λ≥0

{
λm+ λε

∫
Ξ

log

(∫
Ξ

e
f(ζ)−λc(ξ,ζ)

λε dνξ(ζ)

)
dP(ξ)

}
.

Taking advantage of this result, the distributionally robust optimization problem (3.2) rewrites:

(3.3) min
h∈Uad
λ≥0

D(h, λ) s.t. Vol(h) = VT ,

(3.4) where D(h, λ) := λm+ λε

∫
Ξ

log

(∫
Ξ

e
C(h,ζ)−λc(ξ,ζ)

λε dνξ(ζ)

)
dP(ξ).

This new version (3.3) boils down to a single minimization problem for the pair (h, λ). It can be solved
by a standard constrained optimization algorithm, once the derivatives of the objective functional D(h, λ)
with respect to both variables h and λ are obtained, which follows from a standard (albeit a little tedious)
adjoint-based calculation.

Remark 3.1. A similar duality result to that of Proposition 3.1 actually holds when the regularized quantity
Wε(P,Q) is replaced by the true Wasserstein distance W (P,Q), leading to a reformulation of the distribution-
ally robust problem (2.5) of the form (3.3). The latter is however more difficult to handle from the numerical

viewpoint since it involves the supremum supζ∈Ξ

(
C(h, ζ) − λc(ξ, ζ)

)
in place of the “smooth” log-sum-exp

approximation ε log
(∫

Ξ
e
C(h,ζ)−λc(ξ,ζ)

λε dνξ(ζ)
)

featured in (3.4), see [10].

4. Numerical results

4.1. Topology optimization of a 2d bridge

Our first numerical example unfolds in the density-based context of Section 2.1, and deals with the topology
optimization of a 2d bridge. The considered designs h are contained in a box D with size 1 × 1; they are
clamped on the bottom side ΓD of ∂D and subjected to a constant load ξ applied on the whole upper side
ΓN , see Fig. 1 (top, left) for details. The nominal probability law P for ξ is constructed from one single
observation ξ1, corresponding to a unit vertical load:

P = δξ1 , ξ1 = (0,−1).

The entropic regularization coefficient ε is 1e−2 and the parameter σ appearing in the reference coupling π0

in (3.1) equals 1e−3.
The distributionally robust topology optimization problem (3.3) is solved for several values of the tolerance

parameter m and the target volume VT = 0.2. The optimized designs are represented on Fig. 1, and the
histories of the computation are displayed on Fig. 2. Understandably enough, the optimized designs develop
thin branches to cope with larger loads, with horizontal components, and their nominal performance C(h, ξ1)
gets increasingly bad as m grows, see Table 1.

Value of m 0 0.25 0.52 0.6 0.9 1
Nominal compliance 13.9902 17.3063 19.2063 19.6829 24.3765 30.2474

Table 1. Values of the nominal cost for the optimized bridges of Section 4.1.
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Figure 1. (From left to right, top to bottom) Optimized density in the bridge topology
optimization example of Section 4.1 for m = 0 (with details of the test-case) and m = 0.25,
0.52, 0.6, 0.9, 1.

Figure 2. Convergence histories for the experiments conducted with the bridge topology
optimization example of Section 4.1; the large jumps in the values of the objective function
at particular iterations are due to an increase in the parameter p of the material law (2.1).

4.2. Geometric optimization of a 2d cantilever

Our second example is about the optimization of a 2d cantilever beam, and it is treated from the geometric
shape optimization viewpoint [3, 2]: the considered designs are domains Ω, contained in the fixed computa-
tional domain D = [0, 2] × [0, 1]. They are clamped on their left-hand side ΓD ⊂ ∂D and a constant load
ξ ∈ Ξ is applied on a small region ΓN at the middle of their right-hand side, see Fig. 3 for the details. We
rely on the mesh evolution method from our previous work [1] to track the evolution of the mesh of the
optimized shape.

Again, the nominal law P for the load is constructed from only one sample ξ1:

P = δξ1 , ξ1 = (−1, 0).
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The parameters ε and σ equal respectively 1e−2 and 1e−3.
We solve several instances of the distributionally robust problem (3.3) for various values of m and the

volume target VT = 0.6 with the help of the constrained optimization algorithm introduced in [9]; the results
are reported on Fig. 3, see Fig. 4 for the histories of the computations. Again, the nominal performance of
the designs tends to deteriorate when the size of the parameter m increases, see Table 2.
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Figure 3. (From left to right, top to bottom) Optimized shape the cantilever shape opti-
mization example of Section 4.2 for m = 0 (with details of the test-case), optimized shapes
for m = 1, 1.5, 2.

Figure 4. Convergence histories for the experiments conducted with the cantilever shape
optimization example of Section 4.2.

Value of m 0 1 1.5 2
Nominal compliance 0.0646956 0.0746958 0.08138 0.0963393

Table 2. Values of the nominal cost for the optimized cantilever beams of Section 4.2.

Conflict of interest. On behalf of all authors, the corresponding author states that there is no conflict of
interest.
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Replication of results. The numerical example of Section 4.1 is tackled with the open-source finite element
environment FreeFem [11], and the precise source code used for the resolution is available on demand. The
treatment of the numerical example of Section 4.2 relies on minor adaptations to the open-source, educational
implementation supplied with the article [8].
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financed by the French Agence Nationale de la Recherche (ANR).
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