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Abstract

Can a principal still offer optimal dynamic contracts that are linear in end-of-period
outcomes when the agent controls a process that exhibits memory? We provide a pos-
itive answer by considering a general Gaussian setting where the output dynamics are
not necessarily semi-martingales or Markov processes. We introduce a rich class of
principal-agent models that encompasses dynamic agency models with memory. From
the mathematical point of view, we develop a methodology to deal with the possi-
ble non-Markovianity and non-semimartingality of the control problem, which can no
longer be directly solved by means of the usual Hamilton-Jacobi-Bellman equation.
Our main contribution is to show that, for one-dimensional models, this setting always
allows for optimal linear contracts in end-of-period observable outcomes with a deter-
ministic optimal level of effort. In higher dimension, we show that linear contracts are
still optimal when the effort cost function is radial and we quantify the gap between
linear contracts and optimal contracts for more general quadratic costs of efforts.

Keywords Principal-Agent models, Continuous-time control problems.

1 Introduction

The extensive literature analyzing the dynamic principal-agent problem has shown that it is
important but difficult to design the optimal shape of contracts in a tractable way. Indeed,
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optimal contracts in dynamic agency problems are generally defined as complex function-
als of a stream of contractible variables, such as revenues. Moreover, as first identified
by Rogerson (1985) (see also Laffont and Martimort (2009)) theoretical contracts exhibit
memory, even in the most commonly used models that assume uncorrelated shocks, which
unfortunately prevents them from matching real-world practices (see Bolton and Dewa-
tripont (2005)). In addition, firms’ revenues empirically show long memory1 and we lack
a theoretical framework that justifies the signing of simple tractable contracts in an envi-
ronment with inter-temporal links across time periods.
In a Brownian setting, the breakthrough paper by Holmstrom and Milgrom (1987) (HM)
shows that the optimal contract is linear in profits under some specific assumptions: the
agent exerts effort continuously, principal and agent have CARA utilities, the agent bears a
pecuniary cost of effort and finally the outcomes generated in the absence of effort are mod-
eled by a fully observable Brownian motion. Since then, several attempts have been made
to obtain closed-form contracts in environments that relax at least one of the assumptions
of the HM model. Sung (1995) showed that the optimal contract is still linear when the
agent also controls the variance of the output. Hellwig and Schmidt (2002) showed that lin-
ear contracts are nearly optimal in a discrete-time version of the HM model. Edmans and
Gabaix (2011) and Edmans et al. (2012) obtain striking general results in a discrete-time
model where none of the four hypotheses is retained but where the agent makes its deci-
sion in each period after having observed the noise. However, they focus primarily on the
cheapest implementation of a particular action, rather than on the objective of maximizing
the principal’s preference. Another important recent contribution beyond the Holmstrom
and Milgrom setting has been made by Carroll (2015) who showed that optimal contracts
are linear in a general one-period model with uncertainty.

In this article, we enrich the Holmstrom and Milgrom modeling framework by going
beyond the assumption that the revenues are driven by a Brownian motion.

We will instead consider Volterra Gaussian processes that are a generalization of the
standard Brownian motion to study time-dependent effects. More precisely, a Volterra
Gaussian process is a Wiener integral process with respect to a standard Brownian mo-
tion involving a deterministic integrand called -kernel. Thus, at every point in time, it
is an infinite linear combination of i.i.d. Gaussian random variables with time-dependent
coefficients. Although we are aware of the shortcomings of the three remaining HM assump-
tions2, our targeted choice is primarily motivated by the fact that, by allowing arbitrary
integrand kernel functions in the Wiener integral, our Volterra Gaussian agency model
encompasses agency models with short and long run autocorrelations. In particular, one
of the main examples of Volterra Gaussian processes is the mean-reverting process which

1In this paper, we use indifferently the terms long (short) memory and long (short)-range dependence
see definition 2.1. page 42 in Beran (1994).

2For instance, Edmans and Gabaix (2011) clearly argue there is ample evidence of decreasing absolute
risk aversion, and many effort decisions do not involve a monetary expenditure
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allows us to get closer of recent models of dynamic contracts with persistence such as those
developed in Williams (2011) or career concerns as in Cisternas (2018).

For a long time, Volterra Gaussian processes have been considered as a natural tool for
modeling continuous phenomena with memory. In particular, the fractional Brownian mo-
tion (FBM), a Volterra Gaussian process with short and long range dependence, initially
introduced by Kolmogorov (1940), was popularized by Mandelbrot and Van Ness (1968)
in finance to model the empirically-validated long-term dependence of stock returns. More
recently, a stream of literature suggested the use of variants of the fractional Brownian
motion in stochastic volatility modeling to capture the roughness of the time series of the
volatility of an asset which has been observed empirically in the market, see Gatheral
et al. (2018); Abi Jaber et al. (2019) and the references therein. In general, such processes
are non-Markovian and non-semimartingales, which make their study more intricate, both
theoretically and practically, and prevents the use of standard stochastic calculus tools.
Within the framework of optimal dynamic contracting theory, the continuous-time semi-
martingale models have received a lot of attention the past thirty years, when a significant
progress has been made by relying on the recursive approach pioneered by Green (1987),
Spear and Srivastava (1987), Thomas and Worrall (1990). Discrete-time models were first
developed (see Clementi and Hopenhayn (2006); DeMarzo and Fishman (2007), followed by
Biais et al. (2007)), while the breakthrough paper by Sannikov (2008) resulted in the recent
study of dynamic contracting in continuous-time models (see also DeMarzo and Sannikov
(2006); Biais et al. (2010); DeMarzo et al. (2012)). The main advantage of continuous-time
semi-martingale models lies in the fact the procedure to find the optimal contract can be
embedded in the standard theory of Markovian stochastic control using the theory of mar-
tingales and stochastic calculus, see Schättler and Sung (1993) for a general presentation
and Cvitanić et al. (2018) for a rigorous mathematical justification. Hence, under a fairly
general set of assumptions, the contract can be characterized unambiguously by solving an
Hamilton-Jacobi-Bellman equation where the so-called agent promised value plays the role
of a state variable.

In allowing a non-semimartingale and non-Markovian setting, this paper makes an ad-
ditional methodological contribution to solve for the optimal contract. The main idea is
to use the so-called martingale optimality principle to study the agent and the principal
problem sequentially as a Stackelberg game. The first step is to offer a class of incentive-
compatible contracts by revisiting the martingale approach of Schättler and Sung (1993)
and Sannikov (2008). The second step and our main contribution is to explicitly solve the
principal problem which becomes a controlled stochastic Volterra problem. This requires
the introduction of an auxiliary state variable - the effort-corrected forward output - which
captures all the non-Markovianity and allows the application of the martingale optimality
principle for the principal problem. In a one-dimensional setting, our key result is that the
optimal contract is linear in the terminal value of the output, although the principal has in

3



general a coarser information than the agent. The optimal contract has interesting features.
The slope or marginal value of the contract is independent of the output dynamics, only
the intercept depends on the latter as a function of the optimal effort which is proportional
to the kernel. Therefore, random parts of contracts signed in different one-dimensional
Gaussian environments are identical although the required effort levels are environment
specific, deterministic and exhibit interesting features in relation with the properties of the
kernel.

We extend the paper with a discussion of the optimality of linear contracts in higher
dimension. We address the multitask principal-agent problem in which a principal with
CARA preferences hires a single agent with CARA preferences to perform different tasks.
The outcome of each task is assumed to follow a Volterra Gaussian process whose evolution
depends on the agent’s continuous effort in each task while the profit is the sum of these
different outcomes. Our main result is that there is no value in observing the agent’s
activities separately when the cost of effort is assumed to be a radial quadratic function.
Under this assumption, the optimal contract only uses aggregate information and is still
linear in the end-of-period outcome. When we consider a general effort cost function,
we characterize the contract that would be optimal if the principal were able to observe
the Brownian filtration and measure the utility gap when a less-informed principal forces
herself to sign the best linear contract and identify factors that reduce the loss of utility
associated with the use of linear contracts. This paper thus shows that linear contracts
can closely achieve maximum principal utility in Gaussian environments.

2 The one-dimensional model

In this section, we present the economic model which is essentially an extension of the
Holmstrom and Milgrom (1987) framework.

General Description: We consider a risk-averse investor, who owns a project and signs
a fixed-term contract with a risk-averse manager, the latter being necessary to operate a
project. Time is continuous and the time horizon is T > 0. In the absence of effort, the
stochastic output process (Xt)t≤T of the project evolves up to time T as

Xt = g0(t) +

∫ t

0
K(t, s)dBs, (2.1)

where B is a standard one-dimensional Brownian motion, g0 : [0, T ] → R is a measurable
deterministic input function, K : [0, T ]2 → R is a measurable Volterra Kernel, i.e. K(t, s) =
0 for s ≥ t such that

sup
t≤T

∫ T

0
K2(t, s)ds <∞.
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We first observe that our model encompasses a large class of output dynamics that offers
great modeling flexibility to model agency relationships in different sectors of the economy.
Obviously, this setting contains the Holmstrom and Milgrom Brownian model by choosing
g0(t) = x0 and K(t, s) = σ for any pair s < t for some constant σ. Even more generally,
the case of a time-dependent volatility can be recovered by setting K(t, s) = σ(s)11s<t
for some square-integrable function σ. More interestingly, this framework also contains
mean-reverting processes which are widely used to model output in the energy and mining
sectors, if for instance, we choose g0(t) = e−λtx0 + µ0

λ (1−e−λt) and K(t, s) = e−λ(t−s)11s<t,
the output then follows the Ornstein-Ulhenbeck dynamics

dXt = (µ0 − λXt) dt+ dBt.

Another example is the Brownian bridge pinned for instance in 0 at some time T0 > T
which falls into this category with a kernel given by

K(t, s) =
T0 − t
T0 − s

11s<t.

The Brownian bridge has the semi-martingale decomposition

dXt = − Xt

T0 − t
dt+ dBt,

and may be used in any situation where the agent has access to information about the
future output. For example, it can be used to model the output of a seasonal crop which
will end up being zero after the harvest season. A more striking example is given by the
family of fractional Gaussian processes such as:

• the Riemann-Liouville fractional Brownian motion where for s < t,

K(t, s) = cH(t− s)H−1/2, H ∈ (0, 1), for some constant cH .

• the fractional Brownian motion whose covariance function is Σ0(s, u) = 1
2(s2H +

u2H − |s − u|2H), for H ∈ (0, 1), admits the Volterra representation (2.1) with the
kernel

K(t, s) = 11s<t
(t− s)H−1/2

Γ(H + 1
2)

2F1

(
H − 1

2
;
1

2
−H;H +

1

2
; 1− t

s

)
,

where 2F1 is the Gauss hypergeometric function, see Decreusefond and Ustunel
(1999).

Both types of fractional Brownian motion do not fall into the semi-martingale and Marko-
vian frameworks when the so-called Hurst parameter H is different than 1/2 (which corre-
sponds to the case of the standard Brownian motion): they exhibit long range dependence
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when H > 1/2 and short run dependence when H < 1/2 and prove to be statistically very
good models for industries related to power generation.
Even more remarkably, equations with delay in the drift in the form of linear integro-
differential convolution equations:

dXt =

(
h(t) +

∫
[0,t]

µ(ds)Xt−s

)
dt+ σdBt, (2.2)

with initial condition X0 ∈ R, where h : [0, T ] → R, µ : B([0, T ]) → R of bounded vari-
ation, X0 ∈ R and σ ∈ R admit a unique solution in the form of a Gaussian Volterra
process (2.1) for some specific choice of input curve g0 : [0, T ]→ R and convolution kernel
K : [0, T ]2 → R, see Appendix 7.2 for a detailed presentation of this observation. For
instance, setting µ(dt) =

∑m
k=1 akδtk , we recover equations with delay. Such equations fall

into the semi-martingale framework, but are clearly not Markovian.
While very different in nature and in modeling objective, all these dynamics have in com-
mon to be Gaussian processes.

Another important observation about this framework relates to assumptions about the
asymmetry in information, which has been interpreted by Holmstrom and Milgrom (1987)
as a distinction between linear optimal contracts in outcomes X and those in accounts B.
We denote by FB the augmented filtration generated by (Bt)t≤T and FX the one generated
by the output process (Xt)t≤T . It readily follows from (2.1) that FX ⊂ FB. Hereafter,
we assume that the agent has better information than the principal about the project in
the sense that he has access to the full information FB while the principal observes only
some aggregated information generated by the output FX . In general, these two filtra-
tions do not coincide even in one-dimensional models as shown in the following example
corresponding to a situation where the principal observes the output in a discretionary way.

Discrete observations of a Brownian motion: Assume Xt = f(t)Bt where f is a bounded
function on [0, T ]. Observe that X is a Volterra process with K(t, s) = f(t)11s≤t. Consider
a subdivision 0 < t1 < . . . < tn = T of the interval [0, T ] and let f be the function defined
as a linear combination of unit impulses

f(t) =

N∑
i=1

11ti(t). (2.3)

The output process is purely discontinuous with Xti = Bti and Xt = 0 for t 6= ti and
may correspond to a situation where the principal performs audits at regular intervals.
Therefore, FX is strictly included in FB. We deduce that, even in a situation where the
principal knows the agent is not exerting effort, the principal has a coarser information
than the agent. In Volterra Gaussian models, we must therefore be careful that there may
be asymmetric information between the principal and the agent regardless of the agency
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problem we introduce below.

Agency problem: We assume that the agent can exert a continuous effort (at)t≤T that
modifies the probability distribution of X as follows

Xt = g0(t) +

∫ t

0
K(t, s)(as ds+ dBa

s ), (2.4)

where Ba is also a Brownian motion. As is customary in the agency theory literature,
while the output process X is observable by both players, the effort is the agent’s private
information. The agent’s cost for exercising some effort level a is modeled through a strictly
convex C2 function k(a) satisfying k(0) = 0. To alleviate the exposition, we will assume
hereafter that the effort cost function is quadratic,

k(a) = κ
a2

2
, for some κ > 0. (2.5)

Hereafter and in accordance with the paper of Holmstrom and Milgrom (1987), we model
the preferences of the principal and the agent with CARA utility functions that are given
respectively by

UP (x) := −exp(−γPx) and UA(x) := −exp(−γAx), ∀x ∈ R.

In the beginning of the relationship, principal and agent agree on a contract of maturity
T . To foster incentives, the contrat specifies a payment at time T which is modeled by
a random variable ξ that is supposed to be FXT measurable. We assume that both play-
ers can fully commit to the contract and that the agent has a reservation utility level
R0 = UA(y0) < 0 below which he will refuse the contract. The latter inequality is referred
to the participation constraint of the agent who has the option to reject a contract and
enjoy a utility of autarky R0.

Description of the probabilistic background: For completeness, we recall the rigorous
formulation of the agency problem in order to make understandable the first-order con-
ditions that we will give in the next section. Let (Ω,F ,F := (Ft)t≤T ,P0) be a filtered
probability space on which a F–Brownian motion B := (Bt)t≤T is defined with natural
(completed) filtration FB := (FBt )t≤T .

The firm’s output or cash-flows observed by the principal are given by a stochastic
process X with dynamics under P0,

Xt = g0(t) +

∫ t

0
K(t, s)dBs,
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The impact of the agent’s effort is modeled as a change of probability measure which
changes the drift of the driving Brownian process. More precisely, agent’s admissible
actions are given by the following set

A =

{
(at)t≤T F-progressively measurable: there exists A > 0 s.t.

∫ T

0
a2
sds ≤ A, P0 − a.s.

}
.

Observe that the set of admissible actions A is not empty because it contains bounded
actions. Clearly, any admissible process a ∈ A satisfies the Novikov’s criterion

E
[
exp

(
1

2

∫ T

0
a2
sds

)]
< +∞,

which ensures that the process
(

exp
(∫ T

0 as dBs − 1
2

∫ T
0 a2

s ds
))

0≤t≤T
is a martingale, see

Karatzas and Shreve (1991, Proposition 5.12 p. 198). We can therefore define a family of
equivalent probability measures Pa by

dPa
dP0

= exp

(∫ T

0
as dBs −

1

2

∫ T

0
a2
s ds

)
,

where a ranges trough A. Under Pa, the process Ba = B−
∫ ·

0 as ds is a F−Brownian motion
by Girsanov theorem and X evolves as

Xt = g0(t) +

∫ t

0
K(t, s)(as ds+ dBa

s ). (2.6)

Because, the effort is unobservable, the principal only observes the trajectory of the output
process X, the deterministic curve g0 but not the last two terms of the decomposition (2.6)
separately.
Interestingly, in the case of general Volterra processes, this model leads to a novel simple
setting where we have persistence of past efforts on the output variation. To understand
this, let us imagine that the agent makes a constant effort a on the interval [0, t] and then
stops exerting effort after t. Then, we have for h > 0, that

E[(Xt+h −Xt)|Ft] = g0(t+ h)− g0(t) +

∫ t

0
(K(t+ h, s)−K(t, s))(dBa

s + a ds),

which induces persistence of past efforts on the future output increments whenever the
functions K(t+h, .) and K(t, .) are not identical. Notice that in the HM model, the kernel
is constant, so we recover that past efforts have no influence on future variations of the
output.

The Principal-agent problem: It is well known that principal-agent relationships can be
viewed as a Stackelberg game. The principal moves first by offering a contract that consists
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in a compensation ξ, which belongs to the set of FXT measurable random variables, to the
agent. The latter then reacts by choosing an effort policy based on the information available
at each date inducing a probability measure Pa. For any given contract ξ, let V A

0 (ξ) denote
the agent’s utility at time 0 which is defined as

V A
0 (ξ) := sup

a
Ea
(
UA

(
ξ −

∫ T

0
k(as) ds

))
(2.7)

recall the definition of k in (2.5). As common in agency problems, we define the concept
of incentive-compatible contracts.

Definition 2.1. A contract ξ is said to be incentive compatible if V A
0 is finite and if there

exists an effort policy a∗(ξ) ∈ A that maximizes (2.7), i.e.

V A
0 (ξ) = Ea

∗(ξ)

(
UA

(
ξ −

∫ T

0
k(a∗s(ξ)) ds

))
.

It is critical to understand what incentive-compatible contracts are, as these are the
ones for which the principal can enforce desirable efforts. As common in the literature, we
will focus on a class Ξ of contracts ξ that are incentive-compatible (IC). Before defining
rigorously the class of IC contracts Ξ we will focus on, we clarify the principal’s problem.
By offering an incentive-compatible contract ξ ∈ Ξ, the principal will be able to anticipate
the optimal effort level a∗(ξ). Hence, she will propose an incentive-compatible contract
that maximizes the expected value of her CARA preference. Then, her aim is to solve

V P
0 := sup

ξ∈Ξ
Ea
∗(ξ) [UP (XT − ξ)] , (2.8)

under the participation constraint Ea∗(ξ)
(
UA

(
ξ −

∫ T
0 k(a∗s(ξ)) ds

))
≥ R0.

The first result of this paper is given by the following theorem which shows that the
problem (2.8) admits an optimal contract which is linear in end-of-period outcomes. The
result of the Holmstrom-Milgrom model thus extends to all Gaussian Volterra processes,
even though these may exhibit very different statistical properties. Following Schättler and
Sung (1993), we introduce the class of contracts we will focus on. Let us define

f∗(z) :=
γA
2
|z|2 + inf

a∈R
{k(a)− az} =

κγA − 1

2κ
z2, (2.9)

and consider the following class Ξ of Incentive Compatible contracts, see Proposition 3.2
below,

Ξ = {ξ = Y
(y,β)
T ∈ FXT , where y ≥ y0, β = (βt)t≤T ∈ A and Y

(y,β)
T = y+

∫ T

0
f∗(βs)ds+

∫ T

0
βsdBs}.

We have:
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Theorem 2.1. The optimal contract ξ∗ that maximizes the principal problem (2.8) is linear
in end-of-period profits XT and is given by

ξ∗ = y0 −
γP + 1/κ

γA + γP + 1/κ
g0(T ) +

κγA − 1

2κ

∫ T

0
(β∗s )2 ds+

γP + 1/κ

γA + γP + 1/κ
XT , (2.10)

and the optimal level of recommended effort a∗ that maximizes the agent’s problem (2.7) is
deterministic and given by a∗ = β∗

κ with

β∗t =
γP + 1/κ

γA + γP + 1/κ
K(T, t), t ≤ T. (2.11)

Proof. See Section 4.

Similarly to HM, the optimal compensation is made up of a deterministic base salary
y0 − γP+1/κ

γA+γP+1/κg0(T ) + κγA+1
2κ

∫ T
0 (β∗s )2 ds and a random compensation to foster incentives

γP+1/κ
γA+γP+1/κXT . One of the striking results is, when agents have CARA preferences, the
incentive part of the optimal contract, through the performance-based bonus coefficient
γP+1/κ

γA+γP+1/κ , is common to all one-dimensional Volterra Gaussian models and thus indepen-
dent of the output dynamics, even though they have very different statistical properties.
Only the base salary is industry-specific depending on the output dynamic through the
Volterra kernel K. The optimal effort level is deterministic and firm-specific and can, de-
pending on the choice of the Volterra kernel, exhibit interesting behaviors. For instance, for
the mean-reverting dynamics, i.e. K(t, s) = e−λ(t−s)11s<t, the optimal effort is increasing
if the mean-reverting intensity λ is positive. The closer one gets to contract maturity, the
more work the agent has to do. The intuition is that the optimal effort should compensate
for the natural tendency of the process to revert to its long-term average. The closer the
contract is to maturity, the greater the effort should be to allow X to deviate from its
long-term average and thus allow the principal to benefit from a greater profit. When
the mean-reverting intensity is negative, the effort must be greater at the beginning of the
contract in order to give the necessary impetus to the process to diverge towards large posi-
tive values. Once this momentum is established, it is less effective to ask the agent to work.

The following two sections are dedicated to proving Theorem 2.1. Section 3 solves the
agent problem, while section 4 solves the principal problem. An extension of Theorem 2.1
to the multi-dimensional set-up is considered in Section 5.

3 The one-dimensional agent problem

This section aims at completely solving the problem of the Agent in (2.7). The ideas devel-
oped here are not new, they rely on the martingale approach to stochastic control already
used in Schättler and Sung (1993) which we adapt to develop the first-order approach to
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principal-agent problems in a continuous-time Gaussian setting with exponential utilities.
We will show that the class Ξ of contracts are incentive compatible contracts and design
the optimal response of the agent for a given contract in Ξ. Our construction relies on
the following martingale optimality principle that brings a clear intuition of the stochastic
maximum principle used in the context of dynamic contracting by Williams (2011).

3.1 The Martingale optimality principle

The Martingale optimality principle must be seen as a sufficient condition for a contract
to be incentive-compatible. The following lemma, which is due to Hu et al. (2005) and
proved in Appendix 7.1 for completeness, states this principle.

Lemma 3.1. Given a contract ξ, suppose the existence of a family of stochastic processes
Ra(ξ) := (Rat )t≤T indexed by a ∈ A such that the following four assertions hold

i) RaT = UA

(
ξ −

∫ T
0 k(as)ds

)
, ∀a ∈ A,

ii) Ra· is a ((Ft)t∈[0,T ],Pa)-supermartingale for every a in A,

iii) Ra0 is independent of a,

iv) there exists a∗ in A, such that Ra
∗

is a (Ft)t∈[0,T ]-martingale.

Then, ξ is incentive compatible for the Agent problem (2.7) and a∗ is the agent best reply.

In the dynamic agency literature, the process (Ra
∗
t )t≤T describes the Agent’s expected

utility given the contract ξ. A contract ξ is thus incentive compatible if we are able to
build such a family Ra(ξ). This will be done in the next section.

3.2 Enlarging the class of Incentive Compatible Contracts

In accordance with the result of Schättler and Sung (1993), we expect that the contracts
belonging to Ξ are incentive compatible. It is at this point that a difficulty arises in our
setting compared to the Brownian model of Holmstrom and Milgrom (1987) and more
generally to the standard literature where the information sets of the two players coincide
in the absence of moral hazard. Because the principal has a coarser information (recall
that the paths of B are not always observable by the principal), she cannot in general

implement the process (Y y,β
t )t≤T given by

Y y,β
t = y +

∫ t

0
f∗(βs)ds+

∫ t

0
βsdBs, (3.1)

for y ≥ y0 and β ∈ A, because Y y,β
t fails to be FXt -measurable. In other words, the

contracts in Ξ, that are the most natural to be incentive compatible are a priori inaccessible,
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unless we are able to characterize the controls β ∈ A that induce Y
(y,β)
T ∈ FXT . Putting

aside for a while this problem of information asymmetry between the two players, we
consider a larger game where the principal is supposed to have the same information as
the agent. We will forget for a while the constraint ξ ∈ FXT and introduce the enlarged set
of contracts

Ξ̂ = {ξ = Y
(y,β)
T where y ≥ y0, β ∈ A, Y

(y,β)
T = y +

∫ T

0
f∗(βs)ds+

∫ T

0
βsdBs}

and naturally extend Definition 2.1 of incentive-compatibility for FBT -measurable contracts.
We have the following result that we prove for sake of completeness using the Martingale
optimality principle.

Proposition 3.2. Let ξ̂ ∈ Ξ̂ be of the form

ξ̂ = y +

∫ T

0
f∗(βs)ds+

∫ T

0
βsdBs,

with y ≥ y0 and β ∈ A. Then, ξ̂ is incentive compatible for the Agent problem in (2.7)
and satisfies the participation constraint. Furthermore, the agent best reply is given by
the effort a∗(ξ̂) = β

κ and the utility of the agent at 0 is given by V A
0 (ξ̂) = −exp(−γAy).

Proof. Fix ξ̂ ∈ Ξ̂. Let y ≥ y0 and β ∈ A such that ξ̂ = y +
∫ T

0 f∗(βs)ds +
∫ T

0 βsdBs and

define the process Y (y,β) by (3.1). For an admissible effort policy a = (at)t≤T ∈ A, we
define Ra as

Rat := −exp

(
−γA

(
Y

(y,β)
t −

∫ t

0
k(as)ds

))
, t ∈ [0, T ].

We will show that the family (Rat )t≤T satisfies condition i)–iv) of the Martingale optimality

principle of Lemma 3.1. Observe that Y
(y,β)
T = ξ̂ so that Lemma 3.1-i) is satisfied. Also,

Ra0 = −exp(−γAy) is independent of a as needed in Lemma 3.1-iii). Furthermore, recalling
that Ba = B −

∫ ·
0 as ds, we note that

Y
(y,β)
t −

∫ t

0
k(as)ds = y +

∫ t

0
(f∗(βs)− k(as)) ds+

∫ t

0
βsdBs

= y +

∫ t

0
(f∗(βs)− k(as) + asβs) ds+

∫ t

0
βsdB

a
s .

Using the definition of f∗ in (2.9), a completion of the squares in as yields the expression

f∗(βs)− k(as) + asβs = −κ
2

(as − a∗s)
2 +

γA
2
β2
s

with a∗s := βs
κ so that combining the above leads to

Rat = −exp (−γAy) exp
(γAκ

2
(as − a∗s)

2
)

exp

(
−
γ2
A

2

∫ t

0
β2
sds− γA

∫ t

0
βsdB

a
s

)

12



It remains to argue that the process Ma := exp
(
−γA

∫ ·
0 βsdB

a
s −

γ2A
2

∫ ·
0 β

2
s ds

)
is a martin-

gale under Pa. Indeed, if this is the case, then, since −exp(γAκ2 (as − a∗s)2 ≤ −1,

Ea[RaT ] ≤ −exp(−γAy)Ea[Ma
T ] = −exp(−γAy) = Ra0,

which shows thatRa is a Pa-supermartingale for each a ∈ A, which corresponds to condition
Lemma 3.1-ii). Furthermore, for a = a∗, we have that Ra

∗
is a Pa∗-martingale which gives

Lemma 3.1-iv). Obtaining that Ma is a martingale under Pa is equivalent to proving that

Mt = exp

(∫ t

0
as dBs −

1

2

∫ t

0
a2
s ds

)
exp

(
−γA

∫ t

0
βs dB

a
s −

γ2
A

2
β2
s ds

)
is a martingale under P0. But, observe that

Mt = exp

(∫ t

0
(as − γAβs) dBs −

1

2

∫ t

0
(as − γAβs)2 ds

)
which is a martingale for (at)t and (βt)t in A. An application of Lemma 3.1 shows that
ξ̂ is incentive compatible such that the agent best reply is given by the effort a∗s(ξ̂) = βs

κ .
Finally, since y ≥ y0, the identity

V A
0 (ξ) = Ea

∗
[Ra

∗
] = −exp(−γAy) ≥ −exp(−γAy0) = R0,

shows that ξ̂ satisfies the participation constraint by giving the required utility of the agent
at 0, which concludes the proof.

Notably, when the principal offers a contract parametrized by the pair (y, β), the agent
best reply is β

κ and thus independent of y. This is due to the no wealth effect of CARA
preferences. The agent utility is −exp(−γAy) and thus independent of β. This is due to
the agent’s full commitment allowing the principal to choose the best incentive contract
that binds the participation constraint. To sum up, restricting our attention to contracts
in Ξ̂ transforms the puzzling principal’s problem to a stochastic Volterra control problem,
namely3

VSB = sup
y≥y0,β∈A

Eβ
[
UP

(
XT − Y y,β

T

)]
= sup

Ξ̂

E
[
UP

(
XT − ξ̂

)]
. (3.2)

where (Y y,β
t )t≤T is given by (3.1).

The principal problem (3.2) corresponds to the enlarged stochastic control problem
where the principal would have access to the information generated by the Brownian mo-
tion. Clearly, the principal value (2.8) satisfies V P

0 ≤ VSB because of the inclusion Ξ ⊂ Ξ̂.
In the one-dimensional Brownian model, Holmstrom and Milgrom (1987) show that the

3 To alleviate notations, we will denote hereafter Pβ , the probability corresponding to the agent’s effort
choice a = β

κ
.

13



two values coincide because the sets of information FB and FX are identical (Ξ = Ξ̂) and
thus there is no need to introduce the enlarged control problem. Our contribution will be
to show that the two values always coincide for one-dimensional Gaussian Volterra models,
even if FX is strictly included in FB. This is the object of the next section.

4 The one-dimensional principal Gaussian problem

This section is devoted to the explicit resolution of the principal problem (3.2) and to the
proof of Theorem 2.1. Contrary to the standard literature, the problem (3.2) is not a
Markovian stochastic control problem because the process Xt is not necessarily Markov.
More precisely, it corresponds to a stochastic Volterra control problem with the following
controlled processes

Xt = g0(t) +
1

κ

∫ t

0
K(t, s)βsds+

∫ t

0
K(t, s)dBβ

s ,

Y y,β
t = y +

κγA + 1

2κ

∫ t

0
β2
sds+

∫ t

0
βsdB

β
s .

We will show that the optimal second-best contract exists and is furthermore FXT -measurable.
As a consequence, the second-best principal value VSB will coincide with the principal value
V P

0 . In other words, our main message is that there is no gain to the principal in acquiring
more information than that generated by the observed output process X in one-dimensional
Gaussian Volterra models, regardless of the definition of the kernel K. For instance, in
the example of discrete observations of Brownian motion, i.e. K(t, s) = f(t)11s≤t with f
as in (2.3), there is no gain to the principal in increasing the frequency of the discrete
observations of the Brownian output.

For y ≥ y0 and a control policy β ∈ A, we define J(y, β) = Eβ
[
exp

(
−γP

(
XT − Y y,β

T

))]
,

in order to write the second-best principal problem

VSB = inf
y≥y0

VSB(y), with VSB(y) = inf
β∈A

J(y, β).

The rest of the section is dedicated to the proof of Theorem 2.1 that characterizes the
optimal control for the principal problem (3.2). The idea of the proof of Theorem 2.1 is to
apply again the martingale optimality principle. To do this, we need to introduce a good
family of processes indexed by β. Inspired by the agent problem, one possibility would be
to consider the following family

exp
(
−γP

(
Xt − Y y,β

t

))
.

Unfortunately, it may be impossible to apply Itô’s formula since the process X may not be a
semi-martingale, as in the fractional Gaussian processes case. To get around this problem,

14



we introduce a new state variable that can be interpreted as a forward price which is a
semi-martingale that coincides with X at date T . Let us define the effort-corrected forward
output process by

gβt (T ) = Eβ
[
XT −

1

κ

∫ T

t
K(T, u)βudu | Ft

]
.

Using the output dynamics (2.4) with effort β ∈ A, we have

gβt (T ) = g0(T ) +
1

κ

∫ t

0
K(T, u)βudu+

∫ t

0
K(T, u)dBβ

u .

Then, we observe that the process (gβt (T ))t≤T is a semi-martingale on [0, T ) with dynamics

dgβt (T ) =
1

κ
K(T, t)βtdt+K(T, t)dBβ

t (4.1)

and terminal value gβT (T ) = XT . To apply the martingale optimality principle, we will
consider the family of processes

Mβ
t = exp

(
−γP

(
gβt (T )− Y y,β

t

)
+ φt

)
,

where φ is the deterministic function given by

φt =
γP
2

(
γ2
P −

(γP + 1/κ)2

(γA + γP + 1/κ)

)∫ T

t
K(T, s)2ds.

Lemma 4.1, which is proved in Appendix 7.1, provides the dynamics of Mβ that plays a
key role in the determination of the optimal contract.

Lemma 4.1. For each β ∈ A, we have

dMβ
t

Mβ
t

=
γP
2

(γA + γP + 1/κ)(βt − β∗t )2dt+ (γPβt − γPK(T, t)) dBβ
t , Pβ − a.s. (4.2)

with β∗ given by (2.11).

Proof. See Appendix 7.1.

We can now complete the proof of Theorem 2.1.

Proof of Theorem 2.1. • The Principal’s problem is solved by an application of the mar-
tingale optimality principle on the process Mβ. Fix β ∈ A and y ≥ y0. We show that the
family Mβ satisfies the four assertions of the martingale optimality principle in Lemma 3.1.
We have,

15



i) For all β ∈ A, it follows from (4.2) that Mβ is a Pβ-sub-martingale and thus

Mβ
0 ≤ Eβ

[
Mβ
T

]
= Eβ

[
exp

(
−γP

(
XT − Y y,β

T

))]
= J(y, β),

where we used that gβT (T ) = XT .

ii) Observe that Mβ
0 = exp (−γP (g0(T )− y) + φ0) = M0 is independent of β.

iii) Finally, for β∗ given by (2.11), Mβ∗ is a Pβ∗-martingale by (4.2) and thus, we have

J(y, β∗) = Eβ
[
Mβ∗

T

]
= Mβ∗

0 = M0 ≤ J(y, β), β ∈ A,

which shows that β∗ is the optimal control for the second-best principal problem and
the principal value is given by VSB(y) = M0.

Optimizing on y ≥ y0, yields VSB = exp (−γP (g0(T )− y0) + φ0). Furthermore, since β∗t is
proportional to the Volterra Kernel K(T, t), it is straightforward to obtain the linear form

of the contract ξ∗ = Y y0,β∗

T as in (2.10). In particular, ξ∗ is FXT -measurable as an affine
function of XT . Therefore, the optimal control for the enlarged principal problem (3.2)
induces an optimal contract in Ξ, so that VSB = V P

0 .
•The Agent’s problem. An application of Proposition 3.2 yields that the optimal level of
recommended effort a∗ that maximizes the agent’s problem (2.7) is given by a∗ = β∗

κ .

To sum up, this study shows that the transition from Brownian to Volterra models
preserves the optimality of linear in end-of-period profit contracts. Moreover, in one-
dimensional models, the principal does not suffer from having a coarser information than
the agent about the dynamics of the production process. Aggregating production over time
is sufficient for optimal compensation in Volterra Gaussian environments and there is no
need to use all the available information - the brownian path in our setting- to design an
optimal contract. The next section deals with the robustness of this result in the multi-
dimensional set-up.

5 The multi-dimensional model

So far, we have assumed that the shocks are modeled by a one-dimensional Brownian
motion. In this section, we present a tractable class of multitask principal-agent problems,
such as the one faced by a firm with a manager that supervises several projects. This model
amounts to study the principal-agent problem in the case where the shocks are modeled
by a standard Brownian motion of dimension d, that we also denote by (Bt)t≤T . As in
Holmstrom and Milgrom, the i-th component Bi

t of Bt is interpreted as the outcome of the
i-th account of the firm. We model the aggregate output or profit of the firm as follows

Xt = g0(t) +

∫ t

0
< K(t, s), dBs >,
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where < ·, · > denotes the canonical inner product in Rd, g0 is a deterministic function and
K : [0, T ]2 → Rd is a measurable Volterra Kernel, i.e. K(t, s) = 0 for s ≥ t such that

sup
t≤T

∫ T

0
||K(t, s)||2ds <∞.

For instance, the caseK(t, s) = σ11s≤t, σ ∈ Rd corresponds to the Brownian model in Holm-
strom and Milgrom (1987, Section 4). We can also consider a mining company that exploits
two different types of minerals in two different mines. Each component of X represents the
revenue of a mine. This may correspond to the choice K(t, s) = (e−λ1(t−s), e−λ2(t−s)) where
each separate outcomes follows a mean-reverting process with two different mean-reverting
intensity λi, i = 1, 2.
Even more importantly than in the one-dimensional case, the filtration generated by the
output FX is strictly included in the filtration generated by the multi-dimensional Brow-
nian motion FB and thus, the principal has always a coarsest information than the agent
even when the latter does not exert any hidden effort. This observation is central to Holm-
strom and Milgrom’s distinction between the optimal contracts that are linear in profits or
in accounts and more generally to understand when it is useless to use all the information
generated by the Brownian motion. It is useful to recall here that we focus in this paper
on contracts that are FXT measurable.
In a similar way to the one-dimensional case, we assume that the agent can exert a con-
tinuous vector of effort (at)t≤T ∈ Rd, ait being the effort made by the manager to improve
the account i, that modifies the probability distribution of X as follows:

Xt = g0(t) +

∫ t

0
< K(t, s), dBs + as ds >,

Similarly to the one-dimensional case, we say that an agent’s action a = (at)t is admissible
if a = (at)t is F-progressively measurable and such that there exists A > 0 such that∫ T

0
||as||2 ds < A, P0 − a.s.

Still denoting by A the set of admissible actions, we define for any a ∈ A a family of
equivalent probability measures Pa by

dPa
dP0

= exp

(∫ T

0
< as, dBs > −

1

2

∫ T

0
||as||2 ds

)
.

Under Pa, the process Ba = B−
∫ ·

0 as ds is a F−Brownian motion and the output dynamics
is

Xt = g0(t) +

∫ t

0
< K(t, s), dBa

s + as ds > .
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We also assume that the agent incurs an instantaneous cost k(a) where k is a convex
function on Rd with k(0Rd) = 0. When the kernel is a constant vector, Holmstrom and
Milgrom have considered the case where the effort cost function is k(a) = g(

∑d
i=1 ai) with

g strictly convex and have showed that the optimal compensation is linear in profit in that
case. Nevertheless, this specification does not allow us to determine the optimal effort
that the agent must make in each of his tasks. In this section, we will rather consider a
quadratic effort cost function

k(a) =
1

2
< a,Γa >,

where Γ is a symmetric positive-definite matrix.
When Γ is proportional to the identity matrix, i.e. Γ = κId for some κ > 0, we say

that the effort cost function is radial, because, in this case, the effort cost function is
proportional to the norm of the vector a. A radial cost is to assume that the effort costs
are not specific to the different tasks that define the accounts.

In the sequel, we will highlight the interplay between the choice of the matrix Γ and
the optimality of linear contracts. In a nutshell, our main results of this section in the
multi-dimensional framework can be summarized as follows:

• If Γ is proportional to the identity matrix, then the optimal contract ξ∗ is linear in
the end-of-period profit XT . As in the one-dimensional model, the principal does not
have to worry about her lack of information to sign an optimal contract.

• For more general matrices Γ, the optimal contract ξ∗ is no longer linear in the end-of-
period profit XT . More importantly, ξ∗ is not necessarily FXT measurable, meaning
that the less-informed principal cannot implement/sign the contract ξ∗. In this sit-
uation, we quantify the gap between such contract ξ∗ and the best linear contract
that can be implemented by the principal. The gap can be interpreted as the value
of information.

5.1 The agent’s problem

From a methodological viewpoint, there is no hurdle to adapt the techniques developed in
Section 3. As a consequence, we will roughly repeat the approach detailed in Section 3
to apply the martingale optimality principle and consider a class of incentive-compatible
contracts. To do this, we assume for a while that the principal has access to the Brownian
filtration generated by (Bt)t and can implement the controlled process

Y y,β
t = y +

∫ t

0
f∗(βs)dt+

∫ t

0
< βs, dBs >, (5.1)

with y ≥ y0 and β ∈ A, and for z ∈ Rd,

f∗(z) =
γA
2
||z||2 + inf

a

(
1

2
< a,Γa > − < a, z >

)
=

1

2
< z,

(
γAId − Γ−1

)
z >
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to offer the wage ξ = Y y,β
T which is FBT measurable. For a given contract ξ defined by

(y, β) ∈ [y0,∞) × A, the agent has to determine his best response a∗(ξ). To apply the
martingale optimality principle, we introduce the family of processes indexed by a given
by

Rat = −exp

(
−γA

(
Y y,β
t −

∫ t

0

1

2
< as,Γas > ds

))
The first-order condition gives the agent’s best effort, a∗(ξ)t = Γ−1βt. Furthermore, the
agent utility at time 0 is given by V A

0 (ξ) = Ra0 = −exp(−γAy). We collect the result in the
following proposition, which is the analogue of Proposition 3.2 in the multi-dimensional
framework.

Proposition 5.1. Let ξ̂ be a contract of the form

ξ̂ = y +

∫ T

0
f∗(βs)ds+

∫ T

0
< βs, dBs >,

with y ≥ y0 and β ∈ A. Then, ξ̂ is incentive compatible for the Agent problem (2.7) and
satisfies the participation constraint. In particular, the agent best reply is given by the
effort a∗(ξ̂) = Γ−1β and the agent utility at time 0 is given by V A

0 (ξ̂) = −exp(−γAy).

We can again re-write the Principal’s problem as Volterra stochastic optimal control
problem on the process

Y y,β
T = y +

1

2

∫ T

0
< βt,

(
γAId+ Γ−1

)
βt > dt+

∫ T

0
< βt, dB

β
t >,

where the stochastic process Bβ = (Bβ
t )t is a d-dimensional Brownian motion under the

probability measure indexed by a∗t = Γ−1βt that we will denote hereafter P∗.
Then, without asymmetry of information, the enlarged principal problem is given by

VSB = sup
y≥y0

VSB(y),

with

VSB(y) = sup
β∈A

E∗
[
UP

(
XT − Y y,β

T

)]
(5.2)

and is an upper bound for the principal problem (2.8) with the constraint ξ ∈ FXT .

5.2 The Enlarged Principal problem

The idea is to mimic the methodology developed in details in the one-dimensional case.
For this purpose, we reintroduce the effort-corrected forward output

gβt (T ) = E
[
XT −

∫ T

t
< K(T, s),Γ−1βs > ds|Ft

]
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and apply the martingale optimality principle to the process

Mβ
t = exp

(
−γP

(
gβt (T )− Y y,β

t

)
+ φt

)
,

where φ is the deterministic function to determine.

The following theorem gives the optimal contract in a multi-dimensional setting for the
enlarged principal problem.

Theorem 5.1. Let Γ be symmetric positive-definite. The optimal level of effort Γ−1β∗ that
maximizes the enlarged principal’s problem (5.2) is deterministic and β∗ is given by

β∗t =
(
(γA + γP ) Id + Γ−1

)−1 (
γP Id + Γ−1

)
K(T, t), t ≤ T. (5.3)

The utility of the principal at time 0 is given by

VSB = VSB(y0)

with

VSB(y) = −exp (−γP (g0(T )− y) + φ0) (5.4)

and

φ0 =
γP
2
〈KT ,

(
γP Id −

(
γP Id + Γ−1

) (
(γA + γP ) Id + Γ−1

)−1 (
γP Id + Γ−1

))
KT 〉L2 ,

where KT (s) := K(T, s) and 〈f, g〉L2 :=
∫ T

0 < f(s), g(s) > ds. The optimal contract ξ∗

that maximizes the principal problem is given by

ξ∗ = y0 +

∫ T

0
f∗(β∗s )ds+

∫ T

0
< β∗s , dBs > . (5.5)

Proof. See Appendix 7.1.

We now make two important observations.

Remark 5.2. • We note that in general, the optimal contract (5.5) is not linear in

XT , indeed the term
∫ T

0 < β∗s , dBs〉 with β∗ given by (5.3) cannot be expressed in

terms of the integral
∫ T

0 < K(T, s), dBs >.

• More importantly, ξ∗ is measurable with respect to FBT but not necessarily with
respect to the smaller filtration FXT , which means that such contract cannot be
implemented by the less-informed principal.
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The following corollary shows that if the cost is radial then the optimal contract is
linear in XT and it can therefore be implemented by the principal. In Section 5.3 below,
we study a class of optimal linear implementable contracts for the principal in case the
cost is not radial.

Corollary 5.2. Assume that the effort cost function is radial, i.e. Γ = κId for some κ > 0.
Then, the optimal level of effort that maximizes the enlarged principal’s problem (5.2) is
deterministic and given by

β∗t =
γP + 1/κ

γA + γP + 1/κ
K(T, t).

In particular, the optimal contract ξ∗ is linear in profits and given by

ξ∗ = y0 −
γP + 1/κ

γA + γP + 1/κ
g0(T ) +

γA + 1/κ

2

∫ T

0
< β∗s , β

∗
s > ds+

γP + 1/κ

γA + γP + 1/κ
XT .

Furthermore, VSB = V P
0 .

Proof. The expression for β∗ and ξ∗ follow directly from Theorem 5.1. In particular, ξ∗ is
FXT -measurable as an affine function of XT . Therefore, the optimal control for the enlarged
principal problem (5.2) induces a contract which is implementable by the principal, so that
VSB = V P

0

The message of Corollary 5.2 is very simple. When an agent has to allocate his time on
several tasks and when his effort cost function is not specific to tasks and thus measured
by the norm of the vector a, it is not necessary for the principal to scrutinize the revenues
of each activity. It is sufficient to sign a linear contract in the final value of the aggregate
profits to give the optimal incentives without regard to the optimal level of information.
When the effort cost function is radial, the principal need not observe the paths of individual
accounts to offer an optimal compensation that is linear in profits. With this specification,
we can disentangle the optimal efforts to allocate to the different tasks because the ith
component to the optimal effort is proportional to the ith component of the kernel. In
order to illustrate how an agent should optimally allocate his time to the different tasks
he has to perform, let us consider the following toy example. A salesperson must visit
two clients in two different geographical areas. We assume that the first geographical area
generates Brownian outcomes and the second area generates mean-reverting outcomes.
The firm’s aggregate output is given by

Xt = B1
t +

∫ t

0
e−λ(t−s) dB2

s , with λ > 0.

While the share of the output that goes to the agent is independent of the parameter λ,
the saleperson must differentiate his customers visit. The first customer’s visit must be on
a constant basis and the second customer’s visit must be accelerated as the maturity of
the contract approaches.
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5.3 The subclass of linear contracts and the value of information

In this section, we no longer assume that the cost is radial, we study the subclass of linear
contracts, and we quantify the incurred loss on the utility of the principal. Beyond their
simplicity, the main advantage of linear contracts is that they are FXT measurable and can
therefore be implemented by the less-informed principal. We will define the value of infor-
mation as the premium the principal would have to pay to access the agent’s information
and implement the optimal contract. We will consider contracts as in (5.1) with y ≥ y0

but only for controls β in the form

βt = bK(T, t), for some b ∈ R.

Note that in this case, Proposition 5.1 still apply to ensure that such contracts are Incentive
Compatible and the agent best reply is still Γ−1β. Furthermore, for any b ∈ R the contract
Y y,b
T is by construction linear in XT and given by

Y y,b
T = y +

∫ T

0
f∗(bK(T, s))ds+ b(XT − g0(T )),

so that b is the share of the output that goes to the agent. In this case, the principal will
optimize on (y, b) to find the optimal linear contract

Vlin = sup
y≥y0

Vlin(y),

with

Vlin(y) = sup
b∈R

E∗
[
UP

(
XT − Y y,b

T

)]
(5.6)

A direct computation and optimization of the expectation leads to the following result
for the optimal linear contract.

Theorem 5.3. Let Γ be symmetric positive-definite. The optimal level of effort that max-
imizes the linear principal’s problem (5.6) is given by Γ−1β∗ with

β∗t = b∗K(T, t), t ≤ T, (5.7)

b∗ =
〈KT ,

(
γP Id + Γ−1

)
KT 〉L2

〈KT , ((γA + γP ) Id + Γ−1)KT 〉L2

.

The utility of the principal at time 0 is given by

Vlin = Vlin(y0)

with

Vlin(y) = −exp (−γP (g0(T )− y) + χ0) (5.8)
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and

χ0 =
γP
2
〈KT ,

(
γP Id − b∗

(
γP Id + Γ−1

))
KT 〉L2 .

The optimal linear contract ξ∗ that maximizes the linear principal’s problem is given by

ξ∗ = y0 − b∗g0(T ) +

∫ T

0
f∗(β∗s )ds+ b∗XT .

Proof. Fix y ≥ y0, b ∈ R and βt = bK(T, t). Then the random variable XT − Y y,b
T reads

XT − Y y,b
T = g0(T )− y+ < KT ,

(
bΓ−1 − b2

2

(
γAId + Γ−1

))
KT >L2

+ (1− b)
∫ T

0
< K(T, s), dBβ

s >

and is therefore Gaussian under Pβ. So that a direct computation of the Laplace transform
of a Gaussian random variable yields

Eβ
[
UP

(
XT − Y y,b

T

)]
= −exp (−γP (g0(T )− y) + F (b))

with

F (b) =< KT ,

(
γ2
P

2
Id − b

(
γ2
P Id + γPΓ−1

)
+ γP

b2

2

(
(γA + γP )Id + Γ−1

))
KT >L2 .

A direct maximization of F on b yields that the optimum is achieved for b∗ given by (5.7)
and F (b∗) = χ0. Maximizing on y ≥ y0 then gives Vlin = Vlin(y0).

Obviously, when the principal restricts to linear contracts, her utility at 0 satisfies
Vlin(y) ≤ VSB(y). It follows from (5.4) and (5.8) that χ0 ≥ φ0. More precisely, one has

Vlin(y0) = VSB

(
y0 +

χ0 − φ0

γP

)
= VSB(y0)exp (χ0 − φ0) . (5.9)

The term exp (φ0 − χ0) = VSB(y0)
Vlin(y0) lies in [0, 1] and can be interpreted as the value of

information in the following way: since in general, the principal cannot implement the
optimal contract in the enlarged filtration, recall Remark 5.2, she has to restrict to sub-
optimal, more simple but implementable contracts. The price to pay when she restricts
to linear contracts, is the decrease of her utility by the factor exp (φ0 − χ0), which would
correspond to the price to pay to access the optimal contract. Note that the agent utility
at time 0 is unchanged compared to the previous section, and is still equal to exp(γAy0)
by Proposition 5.1 when the principal proposes the contract (y0, b

∗).
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Remark 5.4. We note that contrary to the one dimensional setting, the coefficient b∗ in
(5.7) depends in general on the kernel K. For the case of radial costs, i.e. Γ = κId for some
κ > 0, one recovers from (5.7) that b∗ = (γP +1/κ)/(γA+γP +1/κ) which is independent of
K. Note also that in this context, χ0 = φ0, so that the value of information vanishes in this
case, that is linear contracts are optimal for the Principal’s problem, recall Corollary 5.2.

Having characterized both the fully optimal contract and the optimal linear end-of-
period contract, it remains to compare the performances of the two types of contracts.
We implement this comparison by studying the sensitivity of the nonnegative difference
χ0−φ0 with respect to the input kernel K and the cost matrix Γ. The smaller the quantity
(χ0−φ0), the more efficient the implementation of a linear contract, recall (5.9). The next
proposition provides an upper bound for the value of information in terms of two quantities:
the condition number4 of the matrix Γ, denoted Cond(Γ) and the L2-norm of the kernel
K. The condition number Cond(Γ) measures how sensitive is the effort cost function to
changes in efforts.

Proposition 5.3. There exists a positive constant C independent of the dimension d,
kernel K and terminal time T such that

0 ≤ χ0 − φ0 ≤ C(Cond(Γ)− 1)

∫ T

0
||K(T, t)||2 dt. (5.10)

Proof. See Appendix 7.1.

When the cost is radial, then Cond(Γ) = 1 so that one recovers χ0 = φ0, meaning that
linear contracts are optimal, recall Corollary 5.2. When Cond(Γ) is close to one, it means
that the agent’s best reply in terms of effort, solution to the linear equation Γa∗ = β, is
not very sensitive to errors in the principal control β. In that case, it is noticeable that
the optimal linear contract is nearly optimal regardless of the Volterra process that drives
the output.
For convolution kernels of the formK(T, t) = 11t<Tk(T−t),

∫ T
0 ‖K(T, t)‖2dt =

∫ T
0 ‖k(t)‖2dt,

so that the upper bound in (5.10) shrinks as the horizon of the contract T decreases, sug-
gesting that linear contract seem more performant for short-term relationships compared
to long-term relationships. Furthermore, for the exponential kernel k(t) = e−λt with λ ∈ R,

we have
∫ T

0 ‖K(T, t)‖2dt = (1−e−2λT )/2λ, thus the higher is the mean-reverting intensity,

the smaller the upper bound. For the fractional kernel k(t) =
√

2HtH−1/2 with H ∈ (0, 1),

we have
∫ T

0 ‖K(T, t)‖2dt = T 2H .
We now illustrate numerically the value of information exp(φ0 − χ0) using Equation

(7.3) for exponential and fractional kernels with d = 2 and with a diagonal matrix for
the cost efforts Γ = diag(λ1, λ2). First, we look at the case of two exponential kernels
ki(t) = e−ρit with different mean reversions5 ρi ∈ R, i = 1, 2.

4The condition number of symmetric positive definite matrix S is the ratio λmax
λmin

where λmax (resp.

λmin) is the largest (resp. smallest) eigenvalue of S.
5Note the change in notation to avoid confusion with the eigenvalues of Γ.
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Figure 1 describes a situation where providing one unit of effort for Task 1 is more costly
than for Task 2, λ1 > λ2, and when the mean-reverting parameters ρi vary. The figure
shows that linear contracts are more performant for negative and smaller mean reversions,
which is the case that is usually of interest in practice. When the intensity of the most
expensive task is fixed and positive, the variation of the intensity parameter of the least
expensive task has very little effect on the value of the information. More generally, the
value of information increases when ρ2 increases. The linear contracts are very efficient
(more than 90%) when the mean-reverting parameter of the most expensive task is one.

Figure 1: Impact of the mean reversion parameters ρ1 and ρ2 on the value of information
with respect to the terminal time T .

For our second example, we consider two fractional kernels ki(t) =
√

2Hit
Hi−1/2 with

Hi ∈ (0, 1), we see on Figure 2 that for short maturities linear contracts are more perfor-
mant for Hurst indices larger than 1/2 (long-memory processes), while for larger maturities
they are more performant for values of H < 1/2, (short memory processes). The inflexion
point at T = 1 is explained by the behavior of the variance of the fractional Brownian
motion that reads

∫ T
0 ‖K(T, t)‖2dt = T 2H , see Figure 3.
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Figure 2: Impact of the Hurst indices H1 and H2 on the value of information with respect
to the terminal time T .

Figure 3: Impact of the Hurst index H on L2-norm of the fractional kernel t 7→
√

2HtH−1/2.

6 Conclusion

The principal-agent framework generally leads to complex optimal contracts that do not
align with real-world practices. Also, the proposal of a theoretical framework justifying the
signing of simple (linear) optimal contracts deserves attention. In this paper, we have shown
that the remarkable results of the Holmstrom and Milgrom model extend surprisingly to a
large class of Gaussian models that exhibit memory: the Volterra processes. In particular,
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we prove that optimal contracts are linear in one-dimensional models and that the principal
has no incentives to expand its information set. In multi-dimensional models, this is no
longer generally the case except when the effort cost function is radial. Nevertheless, we
are able measure the utility gap when the principal proposes a linear contract in the case
of a general effort cost function. Thus, we can examine the key features that make the
performance of linear contracts very close to optimality.
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7 Appendix

7.1 Proofs

Proof of Lemma 3.1. Let us consider any admissible effort policy a in A. Conditions i)-iv)
immediately imply that

Ea
[
UA

(
ξ −

∫ T

0
k(as)ds

)]
i)
= Ea[RaT ]

ii)

≤ Ra0
iii)
= Ra

∗
0

iv)
= Ea

∗
[Ra

∗
T ]

i)
= Ea

∗
[
UA

(
ξ −

∫ T

0
k(a∗s)ds

)]
which concludes the proof.
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Proof of Lemma 4.1. Denoting by Uβt = −γP
(
gβt (T )− Y β

t

)
+ φt, an application of Itô’s

formula yields

dMβ
t = Mβ

t

(
dUβt +

1

2
d〈Uβ〉t

)
.

Using (4.1), we obtain that

dUβt =

(
φ̇t − γPK(T, t)κβt + γP

γA + 1/κ

2
β2
t

)
dt+ (γPβt − γPK(T, t)) dBβ

t , Pβ − a.s.

so that

dMβ
t

Mβ
t

=

(
φ̇t +

1

2
γ2
PK(T, t)2 +

γP
2

(γA + γP + 1/κ)β2
t − γP (γP + 1/κ)K(T, t)βt

)
dt

+ (γPβt − γPK(T, t)) dBβ
t , Pβ − a.s.

Completing the squares in β yields

γP
2

(γA + γP + 1/κ)β2
t − γP (γP + 1/κ)K(T, t)βt =

γP
2

(γ2
A + γP + 1/κ) (βt − β∗t )2

− γP
2

(γP + 1/κ)2

(γA + γP + 1/κ)
K(T, t)2,

with β∗ given by (2.11). Combining the above and using that

φ̇t =
γP
2

(
(γP + 1/κ)2

(γA + γP + 1/κ)
− γ2

P

)
K(T, t)2

yields (4.2).

Proof of Theorem 5.1. The incentive-compatible contract parametrized by (y, β) takes the
form

dY y,β
t =

1

2
< βt, Dβt > dt+ < βt, dB

β
t >, Y β

0 = y,

with D := γAId + Γ−1. Under the probability Pβ, the output process evolves as

Xβ
t = g0(t) +

∫ t

0
< K(t, s),Γ−1βs > ds+

∫ t

0
< K(t, s), dBβ

s > .

For s ≥ t, define the effort-corrected forward output by

gβt (s) = Eβ
[
Xβ
s −

∫ s

t
< K(s, u),Γ−1βu > du | Ft

]
= g0(s) +

∫ t

0
< K(s, u),Γ−1βu > du+

∫ t

0
< K(s, u), dBβ

u > .
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Note that for fixed s ≤ T , t 7→ gβt (s) is a semimartingale on [0, s) with dynamics

dgβt (s) =< K(s, t),Γ−1βt > dt+ < K(s, t), dBβ
t > . (7.1)

To mimic the proof of the one-dimensional case, we will apply the martingale optimality
principle to the process

Mβ
t = exp

(
−γP

(
gβt (T )− Y β

t

)
+ φt

)
,

with

φt =
γP
2

∫ T

t
< K(T, s),

(
γP Id −

(
γP Id + Γ−1

)
(γP Id +D)−1 (γP Id + Γ−1

))
K(T, s) > ds.

(7.2)

Denoting by

Uβt = −γP
(
gβt (T )− Y β

t

)
+ φt,

an application of Itô’s formula yields

dMβ
t = Mβ

t

(
dUβt +

1

2
d〈Uβ〉t

)
.

Using (7.1), we obtain that

dUβt =
(
φ̇t − γP < K(T, t),Γ−1βt > +

γP
2
< βt, Dβt >

)
dt

+ γP < βt −K(T, t), dBβ
t >, Pβ − a.s.

so that

dMβ
t

Mβ
t

=

[
φ̇t +

1

2
γ2
P ‖K(T, t)‖2 +

γP
2
< βt, (γP Id +D)βt >

− γP < K(T, t), (γP Id + Γ−1)βt >

]
dt

+ γP < βt −K(T, t), dBβ
t >, Pβ − a.s.

Completing the squares in β yields that

γP
2
< βt, (γP Id +D)βt > −γP < K(T, t), (γP Id + Γ−1)βt >

is equal to

γP
2
< (βt − β∗t ) , (γP Id +D) (βt − β∗t ) >

− γP
2
< K(T, t),

(
γP Id + Γ−1

)
(γP Id +D)−1 (γP Id + Γ−1

)
K(T, t) >
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with β∗ given by (5.3). Combining the above computations and using (7.2) yield

dMβ
t

Mβ
t

=
γP
2
< (βt − β∗t ) , (γP Id +D) (βt − β∗t ) > dt

+ γP < (βt −K(T, t)) , dBβ
t >, Pβ − a.s.

We then conclude the proof by proceeding analogously to the proof of Theorem 2.1 in
Section 4 in the one-dimensional case by applying the Martingale optimality principle on
Mβ.

Proof of Proposition 5.3. Let us define the symmetric positive definite matrix

A = γP Id + Γ−1.

The matrix A is diagonalizable and thus, there exists an orthogonal matrix P such that

tPAP = D = diag(η1, . . . , ηd)

with ηi = γP + 1
λi

where λ1, . . . , λd are the eigenvalues of Γ. We have

χ0 − φ0 =< KT , A(γAId +A)−1AK > − < KT , AKT >
2

< KT , (γAId +A)KT >
.

Setting KT (t) = PK̂T (t) for every t ≤ T and denoting by k̂i(t) the components of the
vector K̂t(t), we obtain

χ0 − φ0 =< K̂T (t), D(γAId +D)−1DK̂T (t) > − < K̂T (t), DK̂T (t) >2

< K̂T (t), (γAId +D)K̂T (t) >
,

or equivalently

χ0 − φ0 =
d∑
i=1

η2
i

γA + ηi

∫ T

0
k̂i(t)

2dt−

(∑d
i=1 ηi

∫ T
0 k̂i(t)

2dt
)2

∑d
i=1(γA + ηi)

∫ T
0 k̂i(t)2dt

. (7.3)

Then, observing that

d∑
i=1

∫ T

0
k̂i(t)

2dt =

∫ T

0
‖tPK(T, t)‖2dt =

∫ T

0
‖K(T, t)‖2dt,

since P is orthogonal, we deduce that

χ0 − φ0 ≤
(

η2
max

γA + ηmin
− η2

min

γA + ηmax

)∫ T

0
‖K(T, t)‖2dt
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Rearranging terms and using a3 − b3 = (a− b)(a2 + ab+ b2), we finally obtain

χ0 − φ0 ≤ C(ηmax − ηmin)

∫ T

0
‖K(T, t)‖2dt,

from which we deduce the result by noting that

ηmax − ηmin =
1

λmax
(Cond(Γ)− 1).

7.2 Stochastic linear integro-differential convolution equations

In this section, we consider the stochastic linear integro-differential convolution equations
of the form

dXt =

(
h(t) +

∫
[0,t]

µ(ds)Xt−s

)
dt+ σdBt, (7.4)

with initial condition X0 ∈ Rd, where h : [0, T ] → Rd, µ : B([0, T ]) → Rd×d of bounded
variation, X0 ∈ Rd and σ ∈ Rd×d. We show that (7.4) admits a unique solution given by
the Volterra Gaussian process

Xt = g0(t) +

∫ t

0
K(t, s)dBs

for some specific choice of input curve g0 : [0, T ]→ Rd and convolution kernel K : [0, T ]2 →
Rd×d.

Example 7.1. Setting µ(dt) =
∑m

k=1 akδtk , we recover equations with delay.

For a Lebesgue measurable matrix-valued function f and a matrix-valued measure µ
of locally bounded variation we define the convolutions f ∗ µ and µ ∗ f by

(f ∗ µ)(t) =

∫
[0,t]

f(t− s)µ(ds), (µ ∗ f)(t) =

∫
[0,t]

µ(ds)f(t− s).

We note that f ∗ µ = µ ∗ f when d = 1.
We need the notion of the differential resolvent of µ. For any bounded measure with

locally finite variation µ, the differential resolvent R : [0, T ] → Rd×d is the unique locally
absolutely continuous function R such that

R′ = µ ∗R = R ∗ µ, R(0) = Id. (7.5)

We refer to (Gripenberg et al., 1990, Theorem 3.1) for the existence and uniqueness state-
ment regarding R. One observes that R is continuous and therefore bounded on [0, T ] so
that the stochastic convolution

∫ ·
0 R(· − s)σdBs is well-dedined on [0, T ].
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Theorem 7.2. Let h : [0, T ] → Rd, µ : B([0, T ]) → Rd×d of bounded variation and X0 ∈
Rd. The stochastic linear integrodifferential equation (7.4) admits a unique (continuous)
solution on [0, T ] given by

Xt = g0(t) +

∫ t

0
R(t− s)σdBs, (7.6)

with

g0(t) = R(t)X0 +

∫ t

0
R(t− s)h(s)ds,

and R the differential resolvent of µ.

Sketch of proof. • Uniqueness: we show that any solution X to (7.4) is given by (7.6). We
first write (7.4) in compact integral form

X = X0 + 1 ∗ h+ 1 ∗ (µ ∗X) + 1 ∗ σdB.

Then, convolving both sides with R, and applying stochastic Fubini’s theorem combined
with the resolvent equation (7.5), leads to

R ∗X = R ∗X0 +R ∗ (1 ∗ h) +R ∗ (1 ∗ µ ∗X) +R ∗ (1 ∗ σdB)

= 1 ∗ (RX0) + 1 ∗ (R ∗ h) + (1 ∗R ∗ µ) ∗X + 1 ∗ (R ∗ σdB)

= 1 ∗ (RX0) + 1 ∗ (R ∗ h) +R ∗X −R(0)(1 ∗X) + 1 ∗ (R ∗ σdB)

Simplifying R∗X on both sides, recalling that R(0) = Id, and inspecting the densities lead
to

Xt = R(t)X0 +

∫ t

0
R(t− s)h(s)ds+

∫ t

0
R(t− s)σdBs, dt× dP− a.e.

The conclusion follows from the continuity of the sample paths.
• Existence: we verify that X given by (7.6) solves (7.4). We use the resolvent equation

to write R = Id + 1 ∗ (µ ∗R) so that (7.6) reads

X = X0 + 1 ∗ ((µ ∗R)X0 + h+ (µ ∗R) ∗ h+ (µ ∗R) ∗ σdB) + 1 ∗ σdB,

which shows that X is a continuous semimartingale with the following dynamics

dXt = (h(t) + (µ ∗ (RX0 +R ∗ h+R ∗ σdB)) (t)) dt+ σdBt

= (h(t) + (µ ∗X) (t)) dt+ σdBt

where we made use of stochastic Fubini’s theorem. The proof is complete.
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