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Capabilities and limits of autoencoders for extracting col-
lective variables in atomistic materials science

Jacopo Baima,∗a Alexandra M. Gorayeva,a, Thomas D. Swinburne,b J.-B. Maillet,c M.
Nastara and M.-C. Marinica∗a

Free energy calculations in materials science are routinely hindered by the need to provide reaction
coordinates that can meaningfully partition atomic configuration space, a prerequisite for most en-
hanced sampling approaches. Recent studies on molecular systems have highlighted the possibility
of constructing appropriate collective variables directly from atomic motions through deep learning
techniques. Here we extend this class of approaches to condensed matter problems, for which we
encode the finite temperature collective variable by an iterative procedure starting from 0 K features
of the energy landscape i.e. activation events or migration mechanisms given by a minimum - saddle
point - minimum sequence. We employ the autoencoder neural networks in order to build a scalar
collective variable for use with the adaptive biasing force method. Particular attention is given to
design choices required for application to crystalline systems with defects, including the filtering of
thermal motions which otherwise dominate the autoencoder input. The machine-learning workflow is
tested on body-centered cubic iron and its common defects, such as small vacancy or self-interstitial
clusters and screw dislocations. For localized defects, excellent collective variables as well as deriva-
tives, necessary for free energy sampling, are systematically obtained. However, the approach has
a limited accuracy when dealing with reaction coordinates that include atomic displacements of a
magnitude comparable to thermal motions, e.g. the ones produced by the long-range elastic field
of dislocations. We then combine the extraction of collective variables by autoencoders with an
adaptive biasing force free energy method based on Bayesian inference. Using a vacancy migration
as an example, we demonstrate the performance of coupling these two approaches for simultaneous
discovery of reaction coordinates and free energy sampling in systems with localized defects.

1 Introduction
Thermally activated processes are ubiquitous in material science.
They control a wide range of phenomena, such as defect migra-
tion or recombination1, plasticity2, and phase transitions3. Sim-
ulating these processes directly using molecular dynamics (MD)
is highly inefficient, owing to the orders of magnitudes of differ-
ence between the time-scale of the diffusion processes and the
one of atomic vibrations. As alternative, the transformation pro-
cesses can be modeled through other frameworks, like transition
state theory4–6, which require knowledge of the energy barriers
or profiles. Indeed, a wealth of information on such processes can
be obtained from the free energy profile sampled along some suit-
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able collective variable (CV) ξ (q), i.e. a smooth function defined
between the initial and final states of the system that projects the
3N dimensional phase space (N being the number of atoms in
the system) into a lower d-dimensional space. For this purpose,
the collective variable function must closely approximate the true
reaction coordinate. In practice, this requires separating the ini-
tial and final states of the process as well as the transition state
and any other intermediaries, and partitioning the configuration
space as evenly as possible in order to allow proper sampling of
any features of the free energy profile.5,7,8

If the reaction coordinate is known, a number of methods are
available to integrate the free energy profile, including Monte
Carlo approaches and enhanced MD5,6,9. The latter methods
add a bias to the system dynamics in order to flatten the free
energy landscape along the chosen collective variables and, thus,
to accelerate its exploration. The bias can take different forms,
depending on the framework: in the case of umbrella sam-
pling10,11, metadynamics12,13, and other adaptive biasing poten-
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tial approaches14,15, the bias is added to the potential energy,
while Adaptive Biasing Force (ABF) methods16–18 add a force to
the system dynamics, which counteracts the average force act-
ing along the CVs. Besides, while some methods only require the
knowledge of the ξ (q) function and its derivatives ∇qξ (q)12,17,19,
other approaches such as the original formulation of ABF also re-
quire a subset of second derivatives of the CV16.

The most of well-known ABF approaches that require the first
CV derivatives only, are the extended (eABF) version and its nu-
merous variants17,18,20,21. These methods sidestep the need to
compute the derivative of the CV Jacobian by applying the bias-
ing force to a fictitious variable coupled to the CV function by a
spring potential. This approach has been very successful despite
its requirement of an integration of the additional dynamics for
the extended variable, which is often sensitive to the choice of
parameters20,22. More recently, a probabilistic reformulation of
eABF has been proposed, the so-called Bayesian ABF (bABF)23,24.
This approach substitutes the dynamics for the extended variable
with a statistical distribution of its values given the atomic posi-
tions. As a consequence, most of the specific difficulties of eABF
are avoided, and the resulting approach can be shown to mini-
mize the variance of the estimated thermodynamic quantities in
the limit of long simulations25.

Despite the ever-growing progress in the development of CV
methods for free energy integration, the preliminary knowledge
of an appropriate reaction coordinate remains their main short-
coming. Although suitable CVs are relatively easy to obtain for
some simple systems26,27, the same does not hold for complex
material science problems, such as dislocation glide19,28, or com-
plex transformations of defect clusters29,30, or phase transitions
including crystallization and amorphization31.

In this context, machine learning techniques for dimensional-
ity reduction offer a promising way to extract CVs directly from
atomistic simulations, ideally even in absence of any previous
knowledge of the kinetic path of the system.31–33. In this study,
we rely on AutoEncoders (AEs)34,35. These are neural networks
(NNs) trained to generate a low-dimensional representation of
the input data and vice versa, i.e., to reconstruct the original
input from its low dimensional representation. In order to en-
code the input data into the latent space while minimizing the
reconstruction error, the NN has to learn a representation con-
taining the most relevant information describing the training set.
Additional terms can be included to the loss function in order
to impose the desired properties on the latent space, e.g. con-
tinuity36,37 or orthogonality38. In the case of Variational au-
toencoders (VAEs)36,39, a continuous statistical distribution is im-
posed on the latent space, which makes them very successful as
generative models39. The utility of AEs was originally demon-
strated for image processing, including feature extraction40, de-
noising41, and anomaly detection42.

More recently, a new application of AEs was found in learning
the CVs of molecular systems. An iterative approach alternating
between umbrella sampling and CV extraction with AEs43,44 was
applied to the modeling of dihedral rotations in small peptides,
without using prior knowledge of the system’s minima and sad-
dle points. Further extensions based on VAEs 45–47 or time-lagged

AEs47,48 have also been explored. However, the application of the
AEs to materials science, is still not straightforward, due to multi-
ple reasons. First, condensed matter problems can involve a very
large number of degrees of freedom. The number of weights in an
AE network grows at least linearly with the input size, which may
lead to overfitting and large computational costs. Second, even in
simple cases, free energy surfaces commonly have multiple min-
ima due to translation and permutation symmetries. Finally, some
processes, such as the elastic field of dislocation or soft phonons
excitations are characterized by delocalized collective variables,
which can be difficult to discriminate from thermal noise.

In this paper, we first explore the performance and applicability
range of AE neural networks in condensed matter problems, us-
ing localised and extended defects in α-Fe as a test case. Second,
we discuss the coupling between AE and bABF free energy explo-
ration, as well as the computational choices that allow a practical
coupling between the two algorithms. In Sec. 2, we describe the
methods employed to learn the CVs, the utility of Principal Com-
ponent Analysis to reduce the dimension of the AE input, and the
coupling with a most recent bABF enhanced sampling approach.
The employed computational settings are summarized in Sec. 3.
Further, in Sec. 4.1, we analyze the accuracy of AEs for extrac-
tion of reaction coordinates in different systems at 0 K from noisy
synthetic data. Then, Sec. 4.2 presents the free energy profiles ob-
tained using our bABF coupled with AE for a vacancy migration
at different temperatures. Finally, Sec. 5 contains the conclusions
of the present study.

2 Learning collective variables

2.1 Autoencoders

Autoencoders are neural networks trained to compress and then
reconstruct input data34,35. A typical architecture is schemati-
cally represented in the Fig. 1. One of the hidden layers has a
(much) lower dimension with respect to the input data. This in-
ner space is called latent representation. The first part of the AE,
generating the low-dimensional representation, is the encoder,
and the second part, reconstructing the output data, is the de-
coder. The input, x ∈ RD, is passed to the output trough the en-
coder and decoder function: x̂(x) = fd ◦ fe(x) = fd( fe(x)). with
fe : RD→ Rd with d < D, and fd : Rd → RD. In this work, we use
fe and fd functions with symmetric architecture with respect to
the bottleneck, and each of them contains L layers of dimension
d1, . . .dL. However, it should be noted that this architecture is not
a compulsory requirement. The similarity between the output (or
reconstruction) x̂ and the input x is enforced by minimizing the
objective function measuring the difference between the two ar-
rays of data. Hereafter, we take the mean square error (MSE) as
objective function. As a consequence of this minimization and of
the small size of the latent space, the neural network will map the
input into a few variables which account for most of the variance
of the input data. When the training data are structural config-
urations extracted from a MD simulation, the latent space will
contain the CVs which explain the largest variance of atomic po-
sitions. When the path includes at least one transition event for
an activated process, these CVs are often perfectly suited for de-
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Fig. 1 Schematic illustration of the procedure for learning CV using
AE neural network with the number of input channels reduced by PCA
preprocessing. The inner part between x and x̂ is the traditional AE
architecture. Linear dimensionality reduction of the AE input q ∈R3N →
x ∈RD and reconstruction x̂→ q̂ is ensured using linear PCA encoding /
decoding, respectively, as it is detailed in Sec. 2.2.

scribing the process and sampling the relative free energies.43–45

In this study we use two AE architectures: (i) the AE with direct
encoding of the atomic coordinates q, i.e. x = q and D = 3N; and
(ii) the AE that uses a filtered input x ∈ RD resulting from a lin-
ear encoding of the full set of atomic positions, q ∈ R3N , in order
to reduce the dimensionality of the AE input (i.e. D < 3N, as dis-
played in Fig. 1). The first architecture was used in previous stud-
ies for isolated molecules43,44, whilst the second, more adapted
for condensed matter systems, is used in the present study (see
next Section 2.2).

2.2 Preparing the input of AE
Using NNs implies a risk of overfitting when the number of
weights is comparable with the size of the training dataset. In-
deed, an AE network including too many parameters may rapidly
learn to trivially reproduce the identity function. Then, the CVs
would not reflect the dynamics of the system. In the context of
materials science, this issue hinders the studies of large systems.
In order to capture nonlinearities in the encoding, the number
of neurons in the first hidden layer d1 is typically chosen to have
the same order of magnitude as the number of input channels D,
i.e. the number of atomic coordinates. The number of weights
to be fitted therefore grows at least as D×d1, that is approxima-
tively quadratically in D. Therefore, for applications in material
science and in general for applications involving a large number
of atoms, decreasing the number of input channels is a crucial
step in preparing the input data of AE.

To apply AEs to large atomic arrays, we apply linear dimen-
sionality reduction operations to the original coordinate space
of the atoms.46 Linear dimensionality reduction is significantly
faster and less prone to overfitting than nonlinear methods such
as AEs, but cannot be used to identify a CV which is a nonlinear
function of the coordinates. We can, however, use it to project
the original coordinate space into a linear subspace which con-
tains the desired CVs. Specifically, we use Principal Component
Analysis (PCA), as this algorithm projects the input in the same

5 10 15 20 25
Principal component

10 3

10 2

10 1

FV
E

di-interstitial formation
C15 cluster transition
dislocation glide

Fig. 2 Fraction of variance explained by the first 30 principal compo-
nents for three systems discussed in Sec. 4.1. Minimum number of
principal components is 5, 4, and 12 for di-interstitials, C15 cluster and
dislocations, respectively (filled symbols in the figure).

space as a linear AE35, i.e. one that minimizes the MSE of the
projected input (Fig. 1). This allows the two methods to be com-
bined effectively. In the most common formulation, the principal
components are obtained by diagonalizing the sample covariance
matrix of the atomic cartesian coordinates, K ∈ R3N×3N :

K =
M

∑
m=1

1
M−1

(qm−q)(qm−q)> (1)

K = UΛΛΛU>, (2)

where qm ∈R3N is a column vector containing the Cartesian coor-
dinates of the m-th atomic configuration in the training dataset; q
is the barycenter of the dataset equal to 1

M ∑
M
m=1 qm; ΛΛΛ is a diag-

onal matrix, diag(λ1, . . . ,λ3N), with eigenvalue sorted in descend-
ing order; and the orthogonal matrix U = (u1, . . . ,u3N) contains
the associated eigenvectors.

Here, we represent the database in the space span by the most
pertinent M vectors, i.e. associated to the first D λ -eigenvalues.
UD = (u1, . . . ,uD) ∈ R3N×D is the truncated version of matrix U,
that contains only the eigenvectors associated with the largest D
eigenvalues. An input atomic configuration, q, is projected onto
the low D-representation space as the following: x = U>D(q−q) ∈
RD. The number of principal components, D, is chosen by means
of the elbow method49. We plot the logarithm of the fraction
of variance explained (FVE), log(λd/Tr(ΛΛΛ)), as a function of the
principal component. We look for the point where the curve
plateaus or changes slope. This point indicates the separation
between the components accounting for the dominant part of the
variance and those mostly containing noise (Fig. 2).

In order not to repeat the choice of D during the iterative search
for CVs at finite temperature, we fix D to twice the number of
principal components obtained by the above elbow method from
the zero temperature data. Even allowing for this margin, the
value of D in this work varies between 4 and 24, to be compared
to a number of Cartesian coordinates ranging from 3×127 to 3×
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Fig. 3 Variance varD,i on atoms in a 129-atoms simulation cell with 〈110〉
self-interstitial dumbbell in bcc Fe. Each point on the plot corresponds
to an atom. A large variance indicates high mobility of atoms during
defect migration. In the inset structure the atoms are colored according
to their variance. The atoms with varD,i < 0.07 are set transparent.

2754.

When considering defects embedded in a large simulation cell,
where the reaction coordinate is localized on few atoms around
the defect center, this procedure acts as a simple linear filter elim-
inating the degrees of freedom with low contributions to the co-
variance matrix from the AE input. At the same time, it is in
principle capable of capturing true collective motions of an arbi-
trarily large number of atoms. The latter case, however, is usually
more difficult to deal with numerically, as we will discuss in Sec.
4.1.

In order to separate these two rather different cases, we rep-
resent the mobility of atom a during the migration of defect by
projecting the diagonal covariance matrix ΛΛΛ onto the atomic cen-
ters:

varD,a =

√√√√ D

∑
d=1

3

∑
j=1

u2
d,a jλd , (3)

where ud,a j are the components of matrix UD referring to the prin-
cipal component d, atom a and Cartesian directions j. Represent-
ing atomic environments according to varD,a (Fig. 3) can be used
to assess the level of localization of the CV.

Beyond allowing the treatment of large systems without overfit-
ting, preprocessing the input data with PCA significantly reduces
the computational cost, when compared to direct AE training.
This is due both to the reduction of the number of input chan-
nels and to the extraction of linear correlations between the fea-
tures before the AE training, which reduces the number of train-
ing steps. In order to perform PCA with minimum numerical cost,
we use the iterative Singular Value Decomposition (SVD) algo-
rithm50,51, which computes UD with a O(M×N× log(D)) scaling
instead of the O(N3) scaling associated with a brute diagonaliza-
tion of the sample covariance matrix.

2.3 Adaptive biasing force

The free energy in Landau sense, for a particular value of the CV
ζζζ ∈ Rd , can be written as follows,

A(ζζζ ) =−β
−1 ln

(
Z−1

∫
Σ(ζζζ )

e−βU(q)
µζζζ (dq)

)
(4)

where the integration is made on the manifold Σ(ζζζ ) = {q |ξ (q) =
ζζζ} ⊂ R3N with the conditional measure µζζζ (dq) that is a delta
measure for q for a given ξ (q) = ζ such as µζζζ (dq)dζζζ = dq, and Z
is the canonical partition function5.

The free energy profile can be integrated within different
frameworks. In traditional ABF, a bias is added directly to the
forces acting on the atoms, counteracting the average force along
the CV direction16. This, unfortunately, requires the knowledge
of the derivatives of the Jacobian determinant of the CV function.
To avoid this, d fictitious degrees of freedom ζζζ (one per dimen-
sion d of the reaction coordinate) in eABF17,18 are coupled to the
system through a harmonic potential:

Uk(q,ζζζ ) =U(q)+
k
2
‖ξ (q)−ζζζ‖2, (5)

where ‖ · ‖ is the euclidean distance and k a force coupling con-
stant. In this formulation, the free energy associated to the ex-
tended potential Ak becomes:

Ak(ζζζ ) =−β
−1 ln

( ∫
D e−βUk(q,ζζζ )dq∫

D×Z e−βUk(q,ζζζ )dqdζζζ

)
(6)

where D and Z are the domains of q and ζζζ , respectively, and the
argument of the logarithm is equal to the probability Pk(ζζζ ) to find
the system at the coordinate ζζζ . The reaction coordinate provided
by the present AE architecture ξ (q) = fe ◦ PCA(q), makes the d
components of the latent space almost independent and, more-
over, the coupling with eABF method helps decouple the CV by
the introduction of the extended potential. This formulation is
close to the recent extended generalized ABF (egABF) formula-
tion21. The crucial difference with classic and extended ABF is
that in eABF the biasing force is applied to the fictitious particle
ζζζ . The equation of motion for an overdamped Langevin dynamics
gives:

dqt = −∇qUk(qt ,ζζζ t)+
√

2β−1dW 1
t

dζζζ t = −∇ζζζ [Uk(qt ,ζζζ t)−Ak(ζζζ t)]+
√

2β−1dW 2
t

∇ζζζ Ak(ζζζ t) =

∫ t
0 ∇ζζζUk(qs,ζζζ s)1(ζζζ t |ζζζ s)ds∫ t

0 1(ζζζ t |ζζζ s)ds
= E

[
∇ζζζUk(qt ,ζζζ t)|ζζζ t = ζζζ

]
where W 1 and W 2 are 3N-dimensional and d-dimensional Wiener
process, respectively. 1(ζζζ |ζζζ ?) is some identity function being 1
when ζζζ and ζζζ

? are in the same bin (i.e. in infinitesimal small
neighbourhood of each other) and zero otherwise. For the case
d = 1 the above equation reduces to the standard eABF case17,18.
In the present scheme the bias, converges to an approximation,
Ak(ζζζ ), of the initial free energy, A(ζζζ ). This biased free energy is
defined as a convolution of the associated densities of states52.
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In numerical implementation the time is discrete t→ tn = nδ t and
the integration over the values of reaction coordinate is made on
nbin bins between min(ζ ) = 0 and max(ζ ) = 1 (we consider only
the case d = 1). The eABF algorithm between the step n and n+1
becomes:

qn+1 = qn−∇qUk(qn,ζn)δ t +
√

2δ t/βG1
n

ζn+1 = ζn +
[
A′n(ζn)−∂ζUk(qn,ζn)

]
δ t +

√
2δ t/βG2

n

A′n+1(ζn+1) =
∑

n+1
i=1 ∂ζUk(qi,ζi)1(ζn+1|ζi)

∑
n+1
i=1 1(ζn+1|ζi)

where (G1
n,G

2
n) is Gaussian 3N + 1-dimensional vector. The step

n requires the coordinates (qn,ζn), extended potential energy as
well as the bias (An) and its derivative (A′n) and predicts new
coordinates (qn+1,ζn+1) and new bias An+1/A′n+1.

The above forms of ABF formalism are the most used44. In the
present study we couple the CVs based on AE with other types of
ABF, which are based on a Bayesian formulation23–25. Within this
formalism the joint dynamics in ζ can be integrated into an im-
plicit Bayesian formalism without computing an explicit dynamics
for the extended variable. In the Bayesian procedure, we need the
values of the system’s free energy along the entire sampling his-
tory, because at each sth step of sampling the algorithm requires a
conditional probability pAs(ζ |qs) together with the free energy As,
at the same time s. If n molecular dynamics steps are performed
and we are able to provide the free energy As(ζ ) and pAs(ζ |qs) at
each sth step, with s = 0, . . . ,n−1, then the move s = n→ s = n+1
can be performed using following steps.

Step 1. Firstly, A′n(ζ ) is computed as:

A′n(ζ ) =
∑

n−1
s=1 ∇ζUk(ζ ,qs)pAs(ζ |qs)

τ +∑
n−1
s=1 pAs(ζ |qs)

, (7)

where ∇ζU(ζ ,qs) is easily computed from Eq. 5.
Step 2. The free energy An(ζ ) is determined using standard

integration, e.g. trapezoidal rule over the Z domain of ζ :

An(ζ ) =
∫

ζ

0
A′n(x)dx+An(0). (8)

Step 3. The corresponding conditional probability for ζ for a
given qn is calculated as:

pAn(ζ |qn) =
exp{−β [Uk(ζ ,qn)−An(ζ )]}∫

Z exp{−β [Uk(ζ ,qn)−An(ζ )]}dζ
(9)

Step 4. The “effective" force field is obtained by the equation:

FAn(qn) =
∫

Z
−∇qUk(ζ ,qn)pAn(ζ |qn)dζ . (10)

Step 5. Integration of the dynamics equation is carried out to
obtain:

qn+1 = qn +FAn(qn)δ t +
√

2β−1δ tG1
n (11)

The main difficulty with this approach is in initializing the al-
gorithm efficiently. The conditional probability in Eq. 9 depends
on the free energy An(ζ ). For a given ζ , the initial guessed val-

ues of An(ζ ) and pn(ζ ) may be far from the ground truth, and in
general they start converging towards the correct value once the
full range of ξ (q) has been explored. This sometimes leads to an
amplification of the error on An(ζ ) during the initial steps, which
results in a slow exploration of the reaction coordinate, thereby
a slow convergence of the algorithm. In order to eliminate the
dependency on the initialization, we reweigh the update of the
free energy derivative in Eq. 7 to reflect the growing confidence
on the conditional probability values along the simulation:

A′n(ζ ) =
∑

n−1
s=1 ∇ζUk(ζ ,qs)pAs(ζ |qs)ws

τ +∑
n−1
s=1 pAs(ζ |qs)ws

, (12)

We use the simplest possible choice of a linearly increasing weight
over the simulation, ws = s/N, with N the total number of steps
during the simulation.

2.4 Iterative CV discovery

The CV is defined as an application ξ (q) :R3N→Rd . It is designed
to encode the state of the system q into a manifold with low di-
mension d, and it is needed to couple the system dynamics with
the bABF extended variable (Eq. 5). In turn, a finite-temperature
CV can be extracted from the bABF simulation using an AE trained
on snapshots of the dynamics.

For this reason, we employ an iterative approach alternating
biased molecular dynamics simulations and AE training, similarly
to previous studies of molecules43–45. However, our approach
is designed for the specific case of materials science where the
defect migration implies a much bigger number of degrees of
freedom. Moreover, defect migration processes in cubic metals
like Fe are highly degenerate, as the defect can move in differ-
ent symmetry-equivalent directions. For this reason we fix the
starting and final value of the CV to two local minima, q0 and
q1, respectively, as opposed to freely exploring the free energy
surface. This strategy also allows to start the iterative process
from the simulations biased on the 0 K minimum energy path,
which reduces the number of required MD steps and accelerates
the convergence of the CV. Moreover, preconditioning the finite
temperature pathway with the sequence minimum - saddle point
- minimum generated at 0 K reduces the risk of instability in the
iterative procedure, which are sometimes found when starting
from unbiased simulations.44 This workflow is different from the
procedure adapted for molecules which requires only the initial
state. Such unconstrained exploration of the free energy surface
is in principle possible in a materials science context, but will re-
quire a modified workflow, including a treatment of degeneracies
as well as a reweighting of the configurations in order to avoid
instabilities of the iterative procedure.44

Furthermore, we introduce a new stopping rule for the iterative
algorithm. Two CVs are considered equivalent when they describe
the same isosurfaces in phase space, even if the isosurfaces do
not correspond to the same value. This is equivalent to requiring
ξ (n)(q) = φ(ξ (n)(q)) for some scalar function φ . A test based on
this idea, but additionally requiring that φ is a linear function,
has recently been suggested.44 When φ is a generic, unknown
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Fig. 4 Workflow of the iterative procedure for discovery of CV.

function, a test can be constructed based on ∇ξ . At convergence,

∇qξ
(n)(q) = φ

′(ξ (n−1)(q))∇qξ
(n−1)(q) (13)

and consequently both the following are true:

∇qξ
(n) ·∇qξ

(n−1) = φ
′(ξ (n−1))‖∇qξ

(n−1)‖2 (14)

‖∇qξ
(n)‖= |φ ′(ξ (n−1))|‖∇qξ

(n−1)‖ (15)

where the q arguments have been dropped to lighten the nota-
tion. Given that we fix the value of the CV at the starting and
final local minima (as discussed below) φ ′ is always positive and
the modulus can be dropped, leading to the following equivalence
condition between ξ (n) and ξ (n−1):

∇qξ (n) ·∇qξ (n−1)

‖∇qξ (n)‖‖∇qξ (n−1)‖
≈ 1 (16)

The iterative procedure can be summarized as follows:

0. An initial guess ξ (0) for the CV is provided, constructed in
such a way that the value at the local minima is ξ (0)(q0) = 0
and ξ (0)(q1) = 1. This can be any reasonable guess, includ-
ing the projection on the line connecting the initial and final
state ξ (0)(q) = (q−q0) ·(q1−q0)/‖‖q1−q0‖‖2, which we use
in the following. As an alternative to speed up the conver-
gence, the 0 K minimum energy path can be used. Such a
path can be found by various 0 K methods, of which we use
the Nudged Elastic Band53 approach. The AE can be trained
to reproduce the minimum energy path as described in Sec.
3.2.

At each iteration n, the following steps are executed:

1. A biased MD simulation using Bayesian Adaptive Biasing
Force (bABF) is performed using ξ (n−1)(q) as CV. The free
energy path between ξ (n−1)(q0) and ξ (n−1)(q1) along the re-
action coordinate is computed, and the atomic coordinates
from full trajectory are recorded. The retained structures

from MD trajectory are saved every 10 MD steps in order to
avoid strong correlations between the snapshots

2. A new AE is trained on the atomic structures from the
previous trajectory in order to obtain an improved CV,
ξ (n−1)(q)→ ξ (n)(q). The output of the AE is rescaled in or-
der to retain the same value of CV at the start and endpoint
of the simulation, i.e. ξ (n)(q0) = 0 and ξ (n)(q1) = 1.

3. The new CV ξ (n) is compared with ξ (n−1) to assess conver-
gence. In order to assess the condition of Eq. 16, we exploit
the capability of decoders to be used as generative models to
compute the mean CV path q̃i = f (n−1)

d (ζi) for a uniform grid
of ζi = i/N for i= 0, ...N. To satisfy the convergence criterion,
the derivative of the CV path must have the same direction
for the two AEs:

N

∑
i=0

1−
∇qξ (n)(q̃i) ·∇qξ (n−1)(q̃i)

‖∇qξ (n)(q̃i)‖‖∇qξ (n−1)(q̃i)‖
< NεTOL (17)

for some value of εTOL.

The free energy and CV obtained in the last iteration are the
results of the iterative process. The convergence of the free en-
ergy barrier during the iterative procedure can be easily verified
visually or quantitatively, providing an independent check that
the iterative procedure provides converged free energy profiles.

3 Computational details
3.1 Autoencoder design and training
In this study, the encoder function fe : RD → R is a dense NN
with two (L = 2) hidden layers of dimension dl , plus a bottle-
neck layer of dimension d = 1. In the following, the dimension
dl is chosen equal to D, except the cases when different dimen-
sion is stated. This results in a number of parameters equal to
dl × (D+ dl + 2)+ 1. The choice of a one-dimensional bottleneck
is mainly due to the underlying physical processes studied, which
can be modeled through a single reaction coordinate. Even when
this is known, in the general case a larger bottleneck may be
needed to account for unrelated large scale motions which may
occur in the system. Preconditioning the iterative procedure with
the 0 K minimal energy path, however, should help to produce
a CV which correctly separates the metastable states. We use a
symmetric decoder function fd , i.e. with the same weights as the
encoder, but different biases which account for D+2dl additional
parameters. We find that this constraint on weights is sufficient to
regularize the AE(x) function, without including an explicit regu-
larization term or dropout layers.

For all hidden layers, we use Rectified Linear Unit (ReLu) ac-
tivation functions, and linear activations for output and bottle-
neck layers. Despite the ReLu activation function having a dis-
continuity in the derivative, the gradients of the embedding are
sufficiently smooth for our purposes. In general we found ReLu
provides better results and easier training of the NN with respect
to smoother activation functions such as sigmoid, as is commonly
found for deep learning applications. We do not use batch nor-
malization layers, as they give different results at inference with
respect to training54,55
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We initialize the AE weights using Glorot Normal initializer. The
training is always started from scratch, as one of the advantages
of PCA preprocessing is a relatively fast training of the small re-
sulting NN. The position of the center of mass is subtracted from
the structures in order to eliminate any spurious drift, and the
dataset is divided in batches of 1000 structures for training. We
use the Adam optimizer, and the learning rate is gradually re-
duced on a schedule starting from 20 epochs at rate 0.02 and
progressively reducing the learning rate to 0.000005 for which
200 epochs are performed. We do not use early stopping.

3.2 Encoding synthetic data
In Sec. 4.1 we test the reconstruction of 0 K reaction coordinates
(i.e. minimal energy paths) from noisy data. This has two goals.
The first is testing the quality of the CV and fine-tune the AE pa-
rameters and data pre-processing without coupling the AE with
molecular dynamics. This makes the testing faster while allowing
to identify clearly any difficulties arising from the machine learn-
ing part of the workflow, separately from molecular dynamics and
free energy integration. The second is that the 0 K CV obtained in
this way is a useful starting point for the iterative procedure out-
lined above. The minimal energy path (MEP) is relatively easy to
identify in the vast majority of materials science problems, using
0 K methods such as the Replica Chain method 56, Nudged Elas-
tic Band53, Discrete Path Sampling 57, String method 58. As we
want this to be a fair test of the AE capabilities, we train the AE
by adding a Gaussian noise to the MEP of comparable magnitude
to the thermal fluctuations during a molecular dynamics simu-
lation, as described below. Once the training of AE is achieved,
we encode each NEB image structure in order to obtain the CV
ξ (xi) and its derivative ∇xξ (xi) We denote by xi the transformed
atomic coordinates using PCA operator of the ith NEB replica of
the system along the reaction pathway qi = X(λi). We then com-
pute the energy profile by integrating along the resulting CV and
compare the result with the reference energy of the configurations
along the path.

Training data. The minimum energy pathway at 0 K is obtained
with the climbing image NEB method59–61 from LAMMPS 62,
which provides K knots replica of the system between initial q0

and final q1 state configurations. In the following we use K=28,
except for the dislocation glide where K=128 knots are used. The
forces are converged to 10−3 eV/Å.

The knot images are interpolated using akima cubic splines of
atomic coordinates, X(λ ) : [0,1] ∈ R→ R3N with X(0) = q0 and
X(1) = q1. This procedure has two purposes: (i) accurate evalu-
ation of the migration barriers from the mean force19,63 at 0 K,
and (ii) use of the interpolated structures for data augmentation.
To this end, we generate Mtrain+Mtest structures, qλ = X(λ ), by a
grid of equally spaced λ in the interval [0,1]. For each configura-
tion we add a Gaussian noise with a variance of 0.005 Å which
is close to the average atomic displacements in bcc Fe at 300 K.
Translations and the component of the noise along the spline are
removed so that the data are evenly spaced along the NEB path.

Energy integration. Integration of the total energy at 0 K is per-
formed on the minimum energy path. A free energy profile along

a reaction coordinate can be obtained by integration of the aver-
age force16,19, with an expression that simplifies for the energy
at T=0 K to:

∂ζ E(ζ ,T = 0) =
〈

w(q) ·∇V (q)
w(q) ·ξ (q)

〉
ξ (q)=ζ

(18)

where w(q) is any vector field for which w(q) ·ξ (q) 6= 0, of which
ξ (q) itself is the obvious choice if known as in our case. In ad-
dition, at 0 K the conditional thermodynamical average can be
dropped in favor of a direct integration along the MEP, which is
known at least at the discrete points provided by the NEB path,
allowing a numerical integration.

In the general case, where the AE bottleneck is not one-
dimensional, the components ξa of the embedding are not or-
thogonal, and the derivatives ∇xξa(xi) are orthogonalized with
their Gram matrix:

Ei = Ei−1 +
1
2
(ξξξ (xi)−ξξξ (xi)) · (Fi +Fi−1)

Fi = UDS−1
i ∇xξξξ (xi−1) ·∇V (q) (19)

Si = ∇xξξξ (xi)
>

∇xξξξ (xi)

where we have explicitly expanded ξξξ (q) = UDξξξ (x). In the one-
dimensional case this reduces to:

Ei = Ei−1 +
1
2
[ξ (xi)−ξ (xi−1)] (Fi +Fi−1)

Fi =
UD∇xξ (xi) ·∇V (q)
‖∇xξ (xi)‖2 (20)

and it can be easily seen that Eq. 20 is Eq. 18 minus the thermo-
dynamical average.

3.3 Bayesian adaptive biased force

The latent coordinate ξ̃ (q) obtained from the AE is renormalized
via a linear transformation ξ (q) = (ξ̃ (q)− ξ̃ (q0))/(ξ̃ (q1)− ξ̃ (q0))

so that ξ (q0) = 0 and ξ (q1) = 1 for the start and endpoint of
the simulation. The extended degree of freedom ζ for bABF is
discretized in nζ = 100 bins between 0 and 1. This discretiza-
tion extends to the ζ -dependent quantities An(ζ ), A′n(ζ ) and
pAn(ζ |q). Following the established procedure for eABF22, we use
a temperature-dependent value of the spring constant k = kBT n2

ζ

which results in 〈(ζ−ξ (q))2〉∼ 1/nζ . The regularization constant
takes the value of τ = 3T 2/(Nstepsnζ ), where the total number of
steps Nsteps is used for consistency with the choice of probability
reweighting in Eq. 12. For the integration of the Langevin dy-
namics we use a time step of δ t = 1fs and a damping constant
γ = δ t · T/mFe, which result in an average discretization step of
approximately 0.01 Å. For the convergence of the iterative pro-
cedure of Sec. 2.4, we use εTOL = 0.1, which provided well-con-
verged free energy barriers. We stop the procedure after five iter-
ations if the convergence threshold is not reached yet.
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4 Results

4.1 Reconstruction of 0K energy barriers by encoding syn-
thetic data

Energy barriers can be accurately reconstructed from the integra-
tion of mean force of the system, both for 0 K and finite tempera-
ture19,63. This requires a knowledge of the minimum energy (or
free energy) pathway and its derivatives. Here we first test the
quality of the CVs provided by the AE for the energy profiles at
0 K. This test is particularly informative as it does not require to
couple the AE with molecular dynamics simulations, which brings
additional methodological degrees of freedom and acts as possi-
ble sources of added error. To this end, we train the AE on noisy
synthetic data as described in Sec. 3.2 and test its accuracy in re-
producing the migration energy barriers of different defect types
in bcc iron.

Our first test case is migration of 〈110〉 self-interstitial dumb-
bell. The simulation cell contains 129 atoms described by 387
Cartesian coordinates. The distortion field produced by this small
defect is localized around it and impacts less than 20 atoms64. As
a consequence, the variance of the atomic positions along the mi-
gration path is concentrated on few atoms (Fig. 5c). Therefore,
this is a relatively easy case for the AE. Figure 5a compares the
energy profile obtained by integrating along the CV with the NEB
energy, showing a perfect agreement between the energy barriers.
The migration of the dumbbell occurs by translation rotation to
the first nearest neighbour position65, which can be recognized
in Fig. 5c where the atoms are colored according to the variance
varD(i) .

We further consider the formation of small cluster built from
two 〈110〉 interstitial dumbbells (Fig. 5b) in a 130-atom simula-
tion cell. The atomic displacements in this case are concentrated
around the interstitial that migrates to form the cluster, with only
a minor relaxation of the other dumbbell. Consequently, the vari-
ances of the atomic positions are actually very similar to the pre-
vious case, as can be appreciated in Fig. 5c. Also in this case the
CV is reconstructed accurately and we obtain an excellent agree-
ment with the NEB barrier (Fig. 5b). Thanks to the small number
of degrees of freedom, and thus of neural network parameters re-
quired, and to the relatively simple CV, these energy barriers can
be obtained without reducing the dimensionality of the AE input
by PCA. In addition, the result is little dependent on the choice of
the hyperparameters.

A single vacancy also represents a localized point defect (Fig.
6a). The number of AE parameters is nearly equal to the one of
the interstitials (Fig. 5). However, we find that the task of extract-
ing the CV from a 127-atom simulation cell with a mono-vacancy,
is more sensitive to the size of the training set and to the choice of
the hyperparameters, likely due to overfitting. Preprocessing the
input data with PCA, as described in Sec. 2.2, allows to overcome
this problem and yields very good results (Fig. 6a).

We further increase the complexity and consider a stringent
case with the transformation of a 3D C15 interstitial cluster IC15

2
66

into the so-called non-parallel cluster INP
2

67. The IC15
2 and INP

2
are intrinsically immobile and represent important instances that
impact the evolution of the microstructure in bcc Fe under irra-

diation30,68. The transformation pathway at 0 K, obtained us-
ing the activation relaxation technique (ART)69 involves simulta-
neous displacement of multiple atoms (from 57 to 32 along the
transition path64). In addition, moderately large unit cell (1 026
atoms) is needed to reduce the interactions between the periodic
images of the defect clusters. An increase of the dimensionality of
the input layer tends to promote overfitting of the AE. By tuning
the NN parameters through cross-validation a reasonable energy
barrier can be obtained (Fig. 6b). However, by performing a PCA
dimensionality reduction of the input data, we easily obtain bet-
ter results. Indeed, the collective variable is contained in the sub-
space spanned by the first ten principal components, which allows
to perform an accurate integration with a small neural network
(Fig. 6b).

A very complex and challenging case is the energy profile pro-
duced by dislocations. Here we consider the energy barrier of a
1
2 〈111〉 screw dislocation gliding in a {110} plane in bcc Fe. In this
case, complexity arises both due to the large number of degrees
of freedom (2 754 atoms in the simulation cell) and to the long
range displacement field produced by the dislocation, affecting
most of the atom positions in the simulation cell. In addition, the
total energy barrier for the dislocation glide is relatively small,
which in combination with the large unit cell results in a barrier
below 0.03 meV per atom, requiring high accuracy of the inte-
gration. If the AE is trained with atomic coordinates as input, it
fails to recover the reaction coordinate and reconstruct the en-
ergy profile due to strong overfitting. PCA can reduce the number
of AE input channels to 20, after which the AE is easily trained
to obtain a one-dimensional CV. However, with this approach, we
are able to reconstruct the energy barrier underestimated at best
by 5% (see Fig. 6c). This error already appears when integrating
the energy profile within the PCA subspace. It is slowly reduced
by increasing the number of training configurations, pointing to
a difficulty to identify the pertinent CV by dimensionality reduc-
tion in the presence of random thermal noise. We note that the
result shown in Fig. 6c is obtained using 8 times more training
configurations with respect to the cases of vacancy migration and
C15 cluster transition. The underestimation of the energy barrier
is similar to the one obtained from the integration based on the
distortion scores of local atomic environments64, when includ-
ing only the forces on the atoms that deviate sufficiently from
the defect-free bulk. This suggests that data-driven dimensional-
ity reduction, including PCA and AE networks, is not fully able
to distinguish between the long-range elastic displacement field
produced by dislocations and the thermal noise in the bulk. In-
creasing the size of the training set allows to better statistically
separate the two, but the full long range tail of the elastic dis-
placement would be recovered only in the limit of a very large
training set.

4.2 Iterative CV refinement for reconstruction of free energy
profiles at finite temperature

We apply the iterative procedure described in Sec. 2.4 to the mi-
gration of a vacancy in α-Fe at different temperatures. We note
that in this case, using the 0 K CV is sufficient for integrating the

8 | 1–12Journal Name, [year], [vol.],



Fig. 5 Migration of 〈110〉 self-interstitial dumbbells in bcc Fe. (a) 0 K Migration energy of mono-interstitial dumbbell obtained using AE with 1
hidden layer with 20 ReLu units. (b) Energy profile of di-interstitial cluster formation from 2 dumbbells obtained using AE with 1 hidden layer with
80 ReLu units. The energy barriers (a,b) are obtained based on 16 000 training configurations in each case. The inset structures in (a,b) illustrate
the defect structures in the initial and final states A and B, respectively. (c) The initial and final state structures A and B of mono- and di-interstitial
defects with atoms colored according to the variance varD(i) . A large variance indicates high mobility of atoms during the migration process. The
atoms with varD(i) < 0.07 are set transparent.

finite temperature free energy26, as the path does not radically
change with increasing temperature. However, the convergence
of such approach is slow, requiring up to 107 force calculations26.
For our simulations, we use between 105 and 106 MD steps (de-
pending on the temperature) for each free energy integration,
which are not sufficient to obtain accurate profiles from a non-
converged CV. Indeed, when the bABF algorithm is applied at the
first iteration using the CV guess, the profiles are noisy and the
energy barriers are underestimated, as can be seen in Fig. 7.

At 500 K, the kinetic energy is sufficient to overcome the migra-
tion even without applying the biasing procedure (the tempera-
ture of stage III of the vacancy in the resitivity recovery exper-
iments is between 250 K and 300 K70). Therefore, the vacancy
could occasionally migrate in a different direction, after which the
simulation would become trapped in this state degrading both the
free energy profile and the training data for the AE. To avoid this,
we stop the simulation when it deviates excessively from the CV
path, by projecting the position on the hyperplane orthogonal to
the CV derivative:∥∥∥∥(q− q̂)− ∇ξ (q) · (q− q̂)

‖∇ξ (q)‖

∥∥∥∥> α (21)

with α = 2.5 Å being adequate for this system and temperature.
We then restart the biased Langevin dynamics from the the ini-
tial position, while preserving the average force and conditional
probabilities computed up to that point.

We then train the AE on the snapshots of the MD trajectory
to obtain a new CV, iterating the procedure as described in Sec.
2.4. The results are shown in Fig. 7. For each temperature, the
approach returns a CV of good quality, allowing convergence in a
few iterations toward accurate free energy barriers. For T = 100 K
and T = 300 K, we obtain a smooth free energy profile with a
limited number of force calculations. At T = 500 K, the thermal

noise is high with respect to the migration barriers. Thereby, a
larger number of steps is required to obtain smooth curves.

5 Conclusions and perspectives
We have presented the performance and limitations of deep learn-
ing AEs coupled with accelerated MD free energy sampling when
applied to the evaluation of reaction coordinates and free en-
ergy profiles of defect migration in solids, taking the example
of common defects in bcc Fe. Applying AEs directly on all the
atomic positions implies very large number of parameters, which
not only increases the computational cost and requires enlarging
the size of the training dataset, but also can result in CVs that
do not reflect the dynamics of the system. Therefore, the effec-
tive application of AEs to atomic-scale processes in solids requires
preprocessing the input. To this end, we perform linear dimen-
sionality reduction by PCA, which filters out the degrees of free-
dom associated with low covariance of the data while preserving
the objective funtion minimized by the AE. The proposed strat-
egy provides accurate reaction coordinates in the case of local-
ized defects. However, for the defects with long-range displace-
ment field, like dislocations, our approach exhibits a limited per-
formance, which results in a systematic underestimation of the
energy barriers. Based on these results, we recommend inspect-
ing localization of the atomic-scale processes in the system before
the application of AEs for extracting collective variables. Such a
test can be performed, for instance, by taking the first princiapal
components of the atomic displacements along a minimum en-
ergy path and projecting them back on the atomic centers, as we
propose in this work.

The deep learning AEs has been successfully coupled with
bayesian ABF, resulting in an iterative procedure which enables
automatic discovery of reaction coordinates and reconstruction
of Landau free energy profile. Considering the example of va-
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Fig. 6 (a) Energy profile of vacancy migration in bcc Fe. NEBs label the full atomistic energy profile, whilst AE and AE+PCA are the present reaction
coordinate method. The PCA method of barrier energy reconstruction is used just for comparison and is not a reaction coordinate method i.e. the
energy profile is obtained after reducing the dimensionality of the data to 12 PCA components. For AE+PCA the same 12 components are used to
train a NN AE (2 hidden layers with 12 ReLu units, trained on 20 000 configurations) to obtain the true collective variable. (b) Energy profile of C15
cluster transition into triangular Gao cluster in bcc Fe. PCA profile is obtained by reducing the dimensionality of the data to 10 PCA components,
followed by NN AE (2 hidden layers with 10 ReLu units) trained on 50 000 configurations for the AE+PCA profile. (c) Energy profile of two 1

2 〈111〉
screw dislocations gliding successively in the {110} plane in bcc Fe. The AE+PCA are obtained after reducing the dimensionality of the data to 20
PCA components, followed by NN AE with 2 hidden layers with 120 ReLu units, trained on 150 000 configurations with a variance of the Gaussian
noise set to 0.0025 Å. The relative difference beween the PCA+AE energy profile and the NEB target is 5±3%. The structures on the lower panel
correspond to the initial and final state of the system with the atoms colored according to the variance varD(i) . Larger variance indicates high mobility
of atoms during the transition process. The color scale is similar to that in Figure 5.

cancy migration at various temperatures, we demonstrate that
such a coupling has very promising applications for the future
studies of localized defects. The capabilities of this approach
to provide appropriate CVs for phenomena such as phase transi-
tions, crystallization or amorphization, remain to be explored but
could require further methodological adaptations. Specifically, a
different preprocessing of the input coordinates into functions
of the interatomic distances71 or local atomic descriptors72,73

could be leveraged to deal with the delocalised and permutation-
symmetric CVs involved in these transitions. At the same time,
the excellent learning obtained with AEs for localised defects sug-
gests that similar architectures for deep generative models, such
as VAEs or invertible NNs74, could be applied to directly sam-
ple the phase space obviating the need to simulate explicitly the
system dynamics for these problems.

The present workflow COVAEM (COllective Variables from Au-
toEncoders in Materials) with examples necessary for the re-
production of the results are available at GitHub repository
https://github.com/ai-atoms/covaem.
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