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ABSTRACT
This paper presents how the nested saturation control introduced in Teel (1992) can be modified to sta-
bilise the model of the Planar Vertical Take-Off and Landing (PVTOL) system. A particular choice of the
amplitudes of the nested saturations controller is given such that global stability of the closed loop system
is obtained. The proof is given in detail. Numerical simulations illustrate the performance of the proposed
control algorithm.

1. Introduction

In the last decades, the PVTOL (Planar Vertical Take-Off and 
Landing) problem has attracted many researchers. The inter-
est is motivated by  the fact that many diff erent confi gurations  
of aerial systems are currently used in numerous applications. 
The PVTOL is a challenging nonlinear system mainly because 
it is an under-actuated mechanical system, i.e. the number of 
control inputs is less than the number  of degrees-of-freedom.  
Therefore, finding an appropriate feedback control strategy will 
help achieving a high level of performance.

One of the first c ontrollers p roposed f or t he P VTOL was 
introduced by Hauser et al. (1992). They showed that apply-
ing an exact input–output linearisation technique to the flight 
control of the VTOL leads to a system with unstable inter-
nal dynamics. They proposed a solution with an approximate 
input–output linearisation procedure developed for slightly 
non-minimum phase nonlinear systems.

The beginning of the 90s was also marked by the interest 
on stabilising linear systems with bounded inputs. The nested 
saturation control technique introduced by Teel (1992) was  pro-
posed to stabilise n integrators in cascade with  a bounded input.  
However, it should be pointed out that it is not straightforward 
to apply such nested saturation approach to the PVTOL since it 
is a nonlinear system.

Lozano et al. (2004) and Garcia et al. (2006) proposed to use 
the nested saturation control to stabilise the PVTOL. The sta-
bility was ensured only when the orientation angle theta and 
its derivative were initially sufficiently sm all. Th e id ea to  use 
the nested saturation technique surged from the fact that when 
the altitude is controlled by nonlinear compensation, then the 
resulting subsystem from the torque input τ to the output x (the 
horizontal displacement) reduces to four integrators in cascade 
when θ is small, i.e. when tan θ ≈ θ .

The closed loop system obtained when using the controller  
proposed in Lozano et al. (2004) was only locally stable. Extend-
ing the proof to establish global stability of the closed loop has 
been hampered by  the possibility of crossing the singular point

cos θ = 0. The search for a global stability proof is motivated by
the fact the controller based on nested saturations is relatively
simple and is currently used in practice with good performance.

Nicotra et al. (2014, June) have also applied the nested sat-
uration control to an UAV for the transportation of suspended
loads. They proved stability of the equilibrium for small sway
angles of the suspended load.

An almost-globally stable controller was proposed by Hua
et al. (2009) using a Lyapunov approach. The results showed
robustness with respect to aerodynamic drag disturbances.

A hierarchical controller was proposed for the PVTOL in
Abdessameud and Tayebi (2010) for trajectory tracking in the
absence of linear velocity measurements.

Aguilar (2017) presented a controller based on a combina-
tion of a PD controller and a sliding mode controller to stabilise
both the horizontal and angular variables to the desired rest
position. The closed loop system was proved to be locally sta-
ble provided that the initial angular rate and angular position
belong to a given region where no singularity occurs.

Naldi et al. (2016) proposed a hierarchical control strat-
egy for a miniature VTOL vehicle to track a desired trajectory
globally with respect to the initial position and attitude. Their
control strategy overcome the topological constraint on the ori-
entation by using this orientation angle as a virtual input to
stabilise the aircraft position. Tran et al. (2018) proposed also a
control algorithm to obtain a globally stable controller for UAVs.
Furthermore, their control strategy is adaptive and can deal also
with unknown system parameters.

Zavala-Río et al. (2003) propose a global stabilising control
design for PVTOL aircraft, with bounded inputs. This approach
is based on the use of non-linear combinations of linear sat-
uration functions bounding the thrust input and the rolling
moment to arbitrary saturation limits. Their proof of stability
has been extended to the case of small lateral force coupling
in López-Araujo et al. (2010). A global stabilising control law
is proposed for a non-minimum phase under-actuated PVTOL
aircraft by Poulin et al. (2007). Their approach is based on
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receding horizon control and takes into account the positiveness
of the thrust and its saturation to any arbitrary level.

Both control schemes (Naldi et al., 2016; Tran et al., 2018)
used the orientation angle as a virtual control input in such
a way that the PVTOL model appears as fully actuated. Such
virtual control is based on smooth saturation functions of the
position and velocity. The first and second derivatives of the
virtual control are required so that the actual orientation angle
converges to the required virtual control. These derivatives are
needed even if the objective is to stabilise the system at hover.
A drawback of this technique is that the expressions for the
first and second derivatives of the orientation virtual control
input are very complex. The approach based on virtual control
forces requires the thrust input to be strictly positive, since for
u = 0 the virtual control input for θ is undefined. To avoid this
singularity, the virtual force for the altitude is chosen as F =
g − σ(z, ż) > 0 where g is the gravitational acceleration and σ is
a smooth saturation function. Therefore the thrust control input
u will satisfy 0 <u< 2g (neglecting the virtual control input for
x). The upperbound on the trust input u may not be a prob-
lem in many situations, but this constraint on u could limit the
agility of those aerial vehicle which require to perform aggres-
sive manoeuvres. These control schemes require measurement
of the acceleration signal which is often noisy.

The present paper proposes a controller which is simpler
compared to those based on virtual control proposed by Naldi
et al. (2016); Tran et al. (2018). The control strategy is presented
in a multistage constructive procedure as follows. The torque
control input τ is chosen as a nested saturation controller which,
after a transient time, ensures bounds for the orientation rate
θ̇ and angular position θ so that the orientation θ is bounded
away from the singular point of 90◦. We exploit the fact that
provided the control inputs u and τ are bounded, the PVTOL
system cannot have a finite escape time. Boundedness of ẋ and
x is established later after the altitude converges to its desired
value. The control input u is based on the compensation of the
nonlinearity cos θ and therefore can only be computed after θ

is bounded away from the singular point θ = 90◦. The bounds
of the saturation functions have been modified from those pro-
posed by Teel (1992) in order to guarantee that after an explicit
finite time the orientation angle θ is constrained to evolve in
an interval which does not contain the singular point θ = 90◦.
Consequently, once θ is inside the region which is free of singu-
larities, then the altitude can be stabilised by compensating the
nonlinear term cos θ . We then resume the analysis of the nested
saturation control of the torque input τ to study the bound-
edness and convergence of ẋ and x. It turns out that provided
some conditions on the bounds of the saturation functions we
can prove that the state of the closed loop system converges to
the origin. The proposed controller does not require computing
the first and second derivatives of a virtual force. The con-
troller requires only the measurements of the system state and
does not require measurement of linear acceleration nor angu-
lar acceleration. The presented controller can be interpreted as
an extension of nested saturation controller for n integrators in
cascade including nonlinearities as the tangent function.

Aguilar et al. (2019) solve the trajectory-tracking control
problem of the PVTOL aircraft under crosswind. The PVTOL
is linearised by differentiating twice the system equations which

is called dynamic extension. This method requires the obtained 
control input to be different from zero, which is often the case 
in practical applications. This method is based on disturbance 
observers designed using sliding mode techniques.

Escobar et al. (2019) focused on finding the conditions for 
local asymptotic stability when using a control based on feed-
back linearisation of the PVTOL based on dynamic extension. 
The domain of attraction is obtained by using a Lyapunov 
approach.

Hernández et al. (2020) use the immersion and invariance 
control technique to design a controller that globally stabilises 
the PVTOL aircraft system. The controller gives priority to 
the aircraft’s altitude before controlling the lateral displacement 
resulting in less thrust effort and less roll moment.

Aguilar et al. (2020) present an energy shaped approach 
to stabilise the PVTOL aircraft, in conjunction with an exact 
differentiator o bserver, t o e stimate t he n on-available veloci-
ties. Asymptotic convergence is proved by applying LaSalle’s 
theorem, assuming that the system is initialised in the interval 
(−π/2, π/2).

This paper is organised as follows : Section 2 presents the 
PVTOL model. Section 3 presents the nested saturation control 
algorithm for the torque control input and shows that the angu-
lar rate θ̇ has an upperbound. Section 4 gives the upperbound 
on the orientation angle θ . Section 5 presents the thrust con-
trol algorithm. Section 6 shows an upperbound for the  velocity
ẋ. Section 7 finally shows convergence of the position x to zero. 
The proposed algorithm is tested in numerical simulations in 
Section 8. Final remarks are given in the conclusion.

2. PVTOL model

The model of the PVTOL is given by Lozano et al. (2004):

mẍ = u sin θ (1)

mz̈ = u cos θ − mg (2)

θ̈ = τ (3)

where m is the mass, θ is the angle of the aircraft with respect 
to the horizontal line, g is the gravitational acceleration, x is the 
horizontal displacement, z is the vertical displacement. u and τ 
are the total thrust and torque respectively.

3. Upperbound on the orientation rate θ̇

x1 = x
g

x2 = ẋ
g

x3 = θ x4 = θ̇ (4)

Let us define the following variables:

ν1 = x3 + x4

ν2 = x2 + 2x3 + x4

ν3 = x1 + 3x2 + 3x3 + x4

(5)

In this section, we will present the nested saturation controller 
applied to the x-θ subsystem. We will show that after some 
finite time the upperbound on θ̇ is smaller than a given value.

The state of the x − θ subsystem is given as



consider the subsystem

ẋ4 = τ (6)

ν̇1 = x4 + τ (7)

and the torque input given by the following nested saturation
control law:

τ = −σa(x4 + σb(ν1 + σc(ν2 + σd(ν3)))) (8)

where σa is the saturation function:

σa =

⎧⎪⎨
⎪⎩
a x > a
x −a ≤ x ≤ a
−a x < −a

(9)

Introducing (8) into (6)

ẋ4 = −σa(x4 + σb(w1)) (10)

with

w1 = ν1 + σc(ν2 + σd(ν3)) (11)

Assume that

a ≥ 2b + ε1 (12)

for some ε1 > 0.
Appendix 1 gives the expression for a finite time t1 such that

for some ε1 > 0

|θ̇ | = |x4| ≤ b + ε1 ∀ t ≥ t1 (13)

4. Upperbound on the orientation angle θ

In this section, we will show that after some finite time θ will
belong to an interval which does not include the singular point
θ = 90◦.

After t = t1 and in view of (7), (8), (12) and (13), (7) reduces
to

ν̇1 = −σb(ν1 + σc(w2)) (14)

with

w2 = ν2 + σd(ν3) (15)

Let

b ≥ 2c + ε2 (16)

for c> 0 and some ε2 > 0. Appendix 2 gives the expression for
a finite time t2 such that

|θ + θ̇ | = |ν1| ≤ c + ε2 ∀ t ≥ t2 (17)

Let us choose c such that

c + ε2 <
π

n + 1
(18)

for some integer n = 3, 4, . . . to be determined. From (4) and (5)
it follows:

θ̇ = −θ + ν1 (19)

Appendix 3 gives the expressions for a finite time t3 such that

|θ | ≤ π

n
∀ t ≥ t3 (20)

π π

The integer n = 3, 4, 5, . . .  will be chosen later so that (tan θ − 
θ)  is small enough to guarantee the stability of the overall 
system.

5. Thrust control input u

In this section, we present the thrust control input u which is 
based on nonlinear compensation.

Notice that after time t3 the value of θ in (20) is far away 
from the singular points 2 and − 2 . We can then propose the
following thrust control input u:

u =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[−2ż − (z − zd)]m + mg
cos θ

|θ | <
π

n
mg

π

n
≤ |θ | ≤ π

3
0 |θ | >

π

3

(21)

where zd is the constant desired altitude. The constant values
for u above when |θ | > π

n do not play a role in the convergence
analysis. However, they can be used to improve the performance
of the algorithm in the presence of disturbances as will be shown
in the numerical simulations.

Introducing (58) into (55) gives

z̈ + 2ż + (z − zd) = 0 (22)

or [
ż
z̈

]
=

[
0 1

−1 −2

] [
z − zd

ż

]
(23)

6. Upperbound on the velocity ẋ

In this section, it will be shown that the velocity ẋ will converge 
to a bounded interval.

Introducing (58) into (54) and (4) gives

ẍ1 = ẍ
g

= tan θ + e1 (24)

where

e1 = tan θ[−2ż − (z − zd)]
g

(25)

which can be rewritten as

ẍ1 = θ + e1 + e2 (26)

where

e2 = tan θ − θ (27)

Thus, from (54) and (57), the subsystem for x, ẋ, θ and θ̇ is given
by (see (4))

ẋ1 = x2

ẋ2 = x3 + e

ẋ3 = x4

ẋ4 = τ

(28)



with

e = e1 + e2 (29)

From (5)

ν̇2 = ẋ2 + 2ẋ3 + ẋ4

= x3 + e + 2x4 + τ

= x4 + ν1 + e + τ (30)

Taking into account (13) and (17), (8) reduces to

τ = −x4 − ν1 − σc(ν2 + σd(ν3))

Introducing the above into (30) leads to

ν̇2 = −σc(ν2 + σd(ν3)) + e (31)

Choose d so that for some ε3 > 0

c ≥ 3d + ε3 (32)

Appendix 4 gives the expression for a finite time t4 such
(see (25))

|e1| ≤ d
6

∀ t ≥ t4 (33)

The integer n ≥ 3 will be chosen such that for some k> 0 the
following holds (see (20) and (27))

|e2| = | tan θ − θ |
≤ k|θ |

≤ k
π

n
≤ d

6
(34)

Introducing (33) and (34) into (29)

|e| ≤ |e1| + |e2|

≤ d
3

(35)

Using (31), (32) and the above, the expression for a finite time
t5 is given in Appendix 5 such that

|ν2| ≤ 2d + ε3 ∀ t ≥ t5 (36)

Therefore (31) reduces to

ν̇2 = −ν2 − σd(ν3) + e (37)

7. Convergence of the position x

In this section, we will prove that the horizontal displacement x 
converges to zero.

From (5) and using (28) and (8)

ν̇3 = ẋ1 + 3ẋ2 + 3ẋ3 + ẋ4

= x2 + 3x3 + 3e + 3x4 + τ

= x4 + ν1 + ν2 + 3e + τ

= −σd(ν3) + 3e (38)

From (35) and (38) a finite time t6 is given in Appendix 6 such
that

|ν3| ≤ d ∀ t ≥ t6
From (4), (5) and (28) we get

ẋ3 = −x3 + ν1 (39)

ν̇1 = −ν1 − ν2 − ν3 (see (14) and (15)) (40)

ν̇2 = −ν2 − ν3 + e (see (37)) (41)

ν̇3 = −ν3 + 3e (see (38)) (42)

Define

XT = [
x3 ν1 ν2 ν3

]
(43)

bT = [
0 0 1 3

]
(44)

and

A =

⎡
⎢⎢⎣

−1 1 0 0
0 −1 −1 −1
0 0 −1 −1
0 0 0 −1

⎤
⎥⎥⎦ (45)

Therefore (39) through (42) can be rewritten as

Ẋ = AX + be (46)

The state space representation above has a system matrix A that
is stable with 4 eigenvalues located at −1. Recall that e = e1 + e2
(see 29) where e1 converges to zero, (see (22) and (25)). Fur-
thermore |e2| ≤ k|θ | = k|x3| for a value of ‘k’ that has to be
determined so that it satisfies (34) and is simultaneously small
enough such that (46) remains stable.

The values for k and n such that (46) is a stable system
could be obtained by using a Lyapunov function XTPX where
P> 0 is the solution of the Lyapunov equationATP + PA = −Q
for some Q> 0. Nevertheless, for simplicity we will proceed as
follows.

From (20) and (22) it follows that e1 in (25) converges to zero.
Since A in (46) is a stable matrix, the contribution of e1 in X will
also converge to zero. From (34) |e2| ≤ k|θ |. Thus, following the
procedure developed in Appendix 3, we can prove using (42)
that there exists a finite time t7 such that

|ν3| ≤ 3k|θ | + ε ∀ t ≥ t7 (47)

for some ε > 0.
Similarly, using (41), there exists a finite time t8 such that

|ν2| ≤ 4k|θ | + 2ε ∀ t ≥ t8 (48)

Similarly, from (40) it follows that there exists t9 such that

|ν1| ≤ 7k|θ | + 3ε ∀ t ≥ t9 (49)

Let us assume that k also satisfies

μ2 = 1 − 7k > 0 (50)

Finally from (4) and (39)

θ̇ = −θ + ν1 (51)

Let V = 1
2θ2 then, using (49)

V̇ = θ θ̇ = θ(−θ + ν1)



≤ −θ2 + 7kθ2 + 3|θ |ε

≤ −μ2θ2 + 2
(

μ|θ |
2

)(
3ε

μ

)

≤ −3
4
μ2θ2 + 9ε2

μ2

≤ −3
2
μ2V + 9ε2

μ2 (52)

Since ε can be chosen arbitrarily small it follows from the above
that V → 0 and therefore θ → 0. From (51) and (4), we con-
clude that x3 → 0 and x4 → 0. From (47)–(49) it follows that
ν1 → 0, ν2 → 0 and ν3 → 0. From (5), x2 → 0 and x1 → 0.
From (4) it finally follows x → 0, ẋ → 0, θ → 0, θ̇ → 0.

The constraints required for n and k are given in (34)
and (50). Appendix 6 proves that for n = 9 and k = 0.0424 both
constraints are verified. Notice that π

9 = 20◦.
Finally let us summarise the constraints on the saturation

upperbounds a, b, c and d. See (12), (16), (18), (32) and (34)

a ≥ 2b + ε1

b ≥ 2c + ε2

0.1π ≥ c + ε2

≥ 3d + ε2 + ε3

≥ 0.085π + ε2 + ε3

(53)

The choice of the parameter a depends on the  upperbound of  
the torque control input  τ . In practice the higher the value of a 
the faster the angular rate θ̇ will decrease after a disturbance and 
therefore the aerial vehicle attitude will be more robust to distur-
bances. Nevertheless, when the parameter a is chosen too high, 
it is common that mechanical vibrations appear. The parame-
ters b, c and d are determined by the choice of the parameter 
a.  Concerning the parameters εi, they have been introduced so 
that the corresponding state variables are smaller than a given  
bound in finite time. The higher the value of ε i the shorter the 
corresponding time period ti will be.

8. Numerical simulation results

In this section, we will present a comparison between the pro-
posed control algorithm and the control strategy introduced in 
Lozano et al. (2004). We will also show the robustness proper-
ties of the proposed algorithm with respect to plant parameter 
changes. We will consider that the PVTOL is represented by the 
following equations:

mẍ = u sin θ (54)

mz̈ = u cos θ − mg (55)

θ̇ = θ1 + wp (56)

θ̇1 = kτ (57)

where wp is a perturbation given as follows:

wp =
{

2.3 15s ≤ t ≤ 16s
0 otherwise

(58)

Figure 1. PVTOL configuration.

Figure 2 presents the comparison between the control algorithm 
proposed in the present paper and the algorithm in Lozano  
et al. (2004).  This fi gure presents (a)  t he displacement x, (b) 
the control input u, (c) the orientation angle theta and (d) the 
altitude z. The initial conditions have been chosen as z(0) = 
0, θ(0) = 0, x(0) = 0.

We have introduced a disturbance at time 15 s in the ori-
entation rate θ̇ . As can be seen in Figure 2 the disturbance 
produces a much smaller displacement x in the case of the pro-
posed algorithm and the displacement  x takes much less time to  
come back to the origin. Figure 2(b) shows that the thrust input 
is smaller for the proposed algorithm. The angular displacement  
in Figure 2(c) is just a little smaller for our algorithm. Figure 2(d) 
shows that the price to be paid for obtaining the above advan-
tages with the proposed algorithm is to reduce the altitude of the 
PVTOL during a few seconds.

Concerning the robustness of the proposed algorithm with 
respect to changes in the plant parameter, we have consid-
ered two different plant parameters: the mass m and the torque 
control gain k.

We have used the same initial conditions as before as well as 
the same disturbance in the angular orientation rate θ̇ . Figure 3 
shows the performance of the proposed controller when the 
plant mass m increases or decreases 20%. As can be seen a 
change in the plant m produces an error in between the alti-
tude and the desired altitude. The rest of the closed-loop system 
behaves with no significant changes.

Figure 4 shows the performance of the proposed controller 
when the torque gain k increases or decreases 20%. As can be 
seen when k increases the closed loop system behaves well. 
However, when k decreases the system requires a larger control 
input and more time to converge.

9. Conclusion

This paper addressed the problem of obtaining a simple con-
trol algorithm for the PVTOL. The nonlinearity of the PVTOL 
has been an obstacle for obtaining stable controllers. Since the 
PVTOL can be approximated by four integrators in cascade, 
the nested saturations controller proposed in Teel (1992)  has  
been currently used to control the PVTOL. However, no proof 
of stability of the closed loop has been obtained in the past. 
This paper has shown that a particular choice of the ampli-
tudes of the saturations involved in the technique in Teel (1992) 
allows for the proof of global stability of the closed loop. The 
performance of the proposed controller is shown in numerical 
simulations.



Figure 2. Comparison between the proposed control algorithm and the original Teel’s strategy when a disturbance is introduced at time 15 s: (a) x-position, (b) u 
control input, (c) θ orientation angle and (d) z-position.



Figure 3. Robustness of the proposed algorithm with respect to variations of the mass value m: (a)  x-position, (b) u control input, (c) θ orientation angle and (d) z-position.



Figure 4. Robustness of the proposed algorithm with respect to variations of the gain value k: (a)  x-position, (b) u control input, (c) θ orientation angle, (d) z-position.
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Appendices

Appendix 1. Bound for x4 = θ̇ 
Let

V1 = 1
2

x2
4 (A1)

Introducing (10) into above

V̇1 = x4ẋ4 = −x4σa(x4 + σb(w1)) (A2)

If
|x4| > b + ε1 (A3)

it follows that
V̇1 ≤ −(b + ε1)ε1 (A4)

or
V̇1 + (b + ε1) ≤ 0 (A5)

Integrating
V1 − V1(0) + (b + ε1)ε1t ≤ 0 (A6)

or
V1 ≤ V1(0) − (b + ε1)ε1t (A7)

Define t1 such that the RHS of the above satisfies

V1(0) − (b + ε1)ε1t1 = 1
2
(b + ε1)

2 (A8)

thus

t1 = V1(0)

(b + ε1)ε1
− (b + ε1)

2ε1
(A9)

Therefore
|x4| ≤ b + ε1 ∀ t ≥ t1 (A10)

then, for t ≥ t1, (10) reduces to

ẋ4 = −x4 − σb(w1) (A11)

thus
V̇1 = x4ẋ4 = −x4(x4 + σb(w1)) (A12)

Notice that when |x4| > b + ε1 it follows that V̇ 1 < 0, and V1 will decrease. 
So if |x4| ≤  b + ε1 at some time, it will remain so from then on.

Appendix 2. Bound for ν1 = θ + θ̇
Let

V2 = 1
2
ν2

1 (A13)

V̇2 = ν1ν̇1 = −ν1σb(ν1 + σc(w2))

If |ν1(t1)| > c + ε2 it follows from (14) that for t ≥ t1

V̇2 ≤ −(c + ε2)ε2 (A14)

or
V̇2 + (c + ε2)ε2 ≤ 0 (A15)

Integrating from t = t1

V2 − V2(t1) + (c + ε2)ε2(t − t1) ≤ 0 (A16)

or
V2 ≤ V2(t1) − (c + ε2)ε2(t − t1) (A17)

Define t2 such that the RHS of the above satisfies

V2(t1) − (c + ε2)ε2(t2 − t1) = (c + ε2)
2

2
(A18)

thus

t2 = t1 + V2(t1)

(c + ε2)ε2
− (c + ε2)

2ε2
(A19)

Therefore
|ν1| ≤ c + ε2 ∀ t ≥ t2 (A20)
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Appendix 3. Bound for θ 
From (19)

θ̇ = −θ + ν1 (A21)
Let

V3 = 1
2
θ2 (A22)

Introducing (A20)

V̇3 = θ θ̇ = θ[−θ + ν1]

= −θ2 + θν1 ≤ −θ2 + |θ |(c + ε2) (A23)

From (18)

(c + ε2) ≤ π

n + 1
(A24)

Assume that |θ | ≥ π
n , then

V̇3 ≤ |θ |
[

π

n + 1
− |θ |

]
≤ |θ |

[
π

n + 1
− π

n

]
= |θ |

[
− π

n(n + 1)

]

≤ −|θ | π

n(n + 1)
≤ − π2

n2(n + 1)
(A25)

or

V̇3 + π2

n2(n + 1)
≤ 0 (A26)

Integrating from t = t2

V3 − V3(t2) + π2

n2(n + 1)
(t − t2) ≤ 0 (A27)

or

V3 ≤ V3(t2) − π2

n2(n + 1)
(t − t2) (A28)

Let t3 be such that the RHS of the above satisfies

V3(t2) − π2

n2(n + 1)
(t3 − t2) = 1

2

(π

n

)2
(A29)

Then

t3 = t2 + V3(t2)n2(n + 1)

π2 − (n + 1)

2
(A30)

Thus

|θ | ≤ π

n
∀ t ≥ t3 (A31)

Appendix 4. Bound for e1 in (25) 
Consider (23) and define

ZT = [
z − zd ż

]
and Ā =

[
0 1

−1 −2

]
(A32)

then the Lyapunov equation

ĀTP + PĀ = −Q (A33)

holds for

P =
[

3 1
1 1

]
> 0 and Q = 2I2 (A34)

Let

V = ZTPZ (A35)
then using (23) and (A32) – (A35)

V̇ = ZT ĀTPZ + ZT PĀZ

= −ZTQZ = −2‖Z‖2

≤ −αV (A36)

with

α = 2
λmaxP

(A37)

thus

V̇ ≤ −αV (A38)

Let

Ẇ = −αW (A39)

with

W(0) = V(0) (A40)

Since V̇ ≤ Ẇ

V ≤ W = V(0)e−αt (A41)

From (10) and (25) it follows that

|e1|2 ≤ k2
1(|ż|2 + |z − zd|2) (A42)

with

k1 =
6 tan

(π

3

)
g

(A43)

From (A34) and (A35)

|ż|2 + |z − zd|2 ≤ ZT PZ
λminP

= V
λminP

≤ W
λminP

≤ V(0)e−αt

λminP
(A44)

Let t = t4 be such that

e−αt4 = λminP
V(0)k2

1
(

d
6
)2 (A45)

Introducing the above into (A44) and (A42) leads to (33), i.e.

|e1| ≤ d
6

(A46)

Appendix 5. Bound for ν2

Define

V = 1
2
ν2

2 (A47)

then using (31)

V̇ = ν2ν̇2

= −ν2[σc(ν2 + σd(ν3)) + e] (A48)



If
|ν2| ≥ 2d + ε3 (A49)

then from (32) and (35)

V̇ ≤ −(2d + ε3)

(
2d
3

+ ε3

)
(A50)

π

Integrating and proceeding as in appendices 1 and 2 we conclude that there 
exists a f i nite time  t5 such that (36) is satisfied.

Appendix 6. Choice of k and n
Consider n = 9. From (34) we have that for θ̄ = 9 = 0.3491 = 20◦

|e2| = tan
π

9
− π

9
= 0.3639 − 0.3491

= 0.0148 ≤ 0.3491k (A51)

which implies k ≥ 0.0424
On the other hand (50) requires

k <
1
7

= 0.1428 (A52)

Therefore k = 0.0424 verifies both constraints.
Notice that tan θ − θ is a strictly increasing function and the result will

hold for values of |θ | smaller than π
9 .
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