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PD+SMC Quadrotor Control for Altitude and Crack Recognition Using
Deep Learning
J. M. Vazquez-Nicolas*, Erik Zamora, Iván González-Hernández, Rogelio Lozano, and Humberto Sossa

Abstract: Building inspection is a vital task because infrastructure damage puts people at risk or causes economic
losses. Thanks to the technological breakthroughs in regard to Unmanned Aerial Vehicles (UAVs) and intelligent
systems, there is a real possibility to implement an inspection by means of these technologies. UAVs allow reaching
difficult places and, depending on the hardware carried onboard, take data or compute algorithms to understand
the environment. This paper proposes a real-time robust altitude control strategy for a quadrotor aircraft, also
a convolutional neuronal network for crack recognition is developed. The main idea of this proposal is to lay
the background for an autonomous system for the inspection of structures using a UAV. For the robust control, a
combination of two control actions, one linear (PD) and another nonlinear (Sliding Mode) is used. The combination
of these control actions allows increasing the system’s performance. To verify the satisfactory performance of
proposed control law, simulations and experimental results with a quadrotor, in the presence of disturbances, are
presented. For crack recognition in images, several experiments were carried out validating the proposed model.
For CNN training, a database of cracks was built from images taken from the Internet.

Keywords: Deep learning, embedded control system, inspection, quadrotor aircraft, robust altitude control, UAV.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) have become a help-
ful tool for performing autonomous tasks in the industrial,
commercial and research areas. Given your advantages
(managed remotely or autonomously, fly over areas of dif-
ficult access, etc.), these robots are an ideal tool for in-
spection, as the case of structures. In Mexico, as well as
in other parts of the world, natural disasters are frequent.
On September 19, 2017, the worst earthquake in the story
of Mexico, since 1985, was occurred. Many buildings suf-
fered structural damages (see Fig. 1) which put the lives of
people at risk.

The need to inspect buildings became evident during
this tragic event. The civil protection protocol indicates
that an inspector must return to the building and identify
the risks of the structure and, if there are any, do not al-
low the re-entry to the building. In this sense, the inspec-
tor runs a risk when re-entering the building to perform

the inspection. The difficulty of carrying out the check is
that the areas to be inspected are usually difficult to access
or there exist a risk for the human inspector. One of the
most common failures are cracks, which can put at risk the
structure and the integrity of people.

To improve the previous work [1] where a Convolu-
tional Neural Network (CNN) was proposed to detect
cracks in images taken by a quadrotor aircraft, the present
work is focused on the robust altitude control of the UAV,
in presence of external disturbances, and in the increase of
the images dataset to re-train the CNN and improve their
performance. Our future aim is to build an UAV-based au-
tonomous inspection system for structures such as build-
ings, tunnels, bridges, etc. However, in this paper, we fo-
cus on the control subsystem and the crack recognition
subsystem.

The main contribution of this work is an altitude hy-
brid control for a system based on a quadrotor aircraft, fo-
cused towards an autonomous wall inspection in the pres-



Fig. 1. Damaged building during an earthquake in Mexico
in 2017.

ence of disturbances. The hybrid control proposed is a
Proportional-Derivative (PD) plus a Sliding Mode Con-
trol (SMC). Experimental and simulation results are pre-
sented. Another contribution is the application of the pro-
posal introduced in [1] to a more extensive database. This
database is formed, mainly, by images of buildings dam-
aged after the earthquake in Mexico City in 2017.

The rest of the paper is organized as follows: The re-
lated work is presented in Section II. Mathematical model
of the vehicle is provided in Section III. Section IV gives
the robust control strategy. Section V presents the simu-
lation results for PD+SMC control. Section VI gives the
CNN design and implementation. The real-time results
are shown in Section VII. Finally, Section VIII gives the
conclusion.

2. RELATED WORK

Unmanned Aerial Vehicles (UAV) have been an im-
portant research topic in recent years. In particular, the
quadrotor helicopter has been under the focus of exten-
sive research due to their many advantages. The control
of these systems was extensively covered in the literature;
for instance, PD linear control [2–7] and SMC [8–13] have
been commonly used to control quadrotor systems.

In this work a hybrid PD+SMC is used to carry out the
altitude control. This approach has been used to control
robotic arms and robot teleoperation ( [14–17]) but, to the
best of our knowledge, this approach has not been used for
a quadrotor UAV.

There are works focused on crack detection in struc-
tures, some using computer vision algorithms. The images
for the experiments are commonly recollected by humans,
in a safe area or with the help of a robotic system. How-
ever, in recent years, UAVs have been used to obtain im-
ages for inspection tasks, mainly in structures that involve
risk for the human or in areas where access is difficult.

Concerning the detection of cracks without UAVs, in
[19] authors used the color characteristics via a detection
algorithm and, based on this information, an estimate of
the length of the cracks is made. In [20], the authors im-

plement crack detection in images of asphalt, where fea-
tures extraction is carried out by decision trees and classi-
fication is performed by k-nearest neighbors method and
support vector machines (SVM). Authors in [21], use clas-
sic computer vision techniques like edge detection (Sobel
filter) and thresholding (Otsu algorithm) to locate cracks.

In [22], [23], and [24], present images which are ob-
tained by means of UAVs and subsequently the detection
of cracks was performed. In [22], the authors use lasers
to generate a 3D model of the surface to be inspected for
the autonomous navigation system, and the detection of
cracks is made by means of the histogram and adaptive
thresholds. Authors in [23], use classifiers and features
extraction to find flaws on a wind generator blade surface.
A UAV is used to take pictures of a generator. In [24] a
UAV for building inspection is proposed, implementing a
basic edge detection algorithm.

Given that our work uses deep learning approach to ac-
complish the cracks recognition, it is important to men-
tion works related to applications of UAVs and convolu-
tional neural networks (CNN). In [30], [31], [32], [33] and
[34] where CNN were used to face problems such as high
voltage inspection, vehicular traffic tracking, recognition
of gestures, and crack recognition on pavement. Authors
in [29] presents a crack recognition algorithm in images
taken by a UAV using a CNN. In terms of deep learning,
our work uses a smaller CNN structure than presented in
[29] and the database of cracks were taken from damaged
buildings.

3. DYNAMIC MODEL FOR QUADROTOR
AIRCRAFT

The mathematical model of the quadrotor aircraft is
widely discussed in the literature ([26], [27] and [28])
where the vehicle is considered as a rigid body that un-
folds in three dimensions, which is subject to a main force
and three moments that will be formulated by means of
the Euler-Lagrange equations. Fig. 2 shows a free-body
diagram of the quadrotor aircraft.

Fig. 2. Free-body diagram of the UAV.



The generalized coordinates of the vehicle are given by

q = (x,y,z,ψ,θ ,ϕ) ∈ R6, (1)

where we can define ξ = (x,y,z) ∈ R3 which denotes the
position of the center of mass of the vehicle with respect to
the inertial frame I and we also define η = (ψ,θ ,ϕ) ∈R3

which represents the angles of Euler, ψ is the angle of
yaw, θ is the angle of pitch and ϕ is the angle of roll which
are used to represent the orientation of the vehicle.

We can decompose the equations into translational and
rotational displacement. As first step, we obtain the La-
grangian of the aerial vehicle, which is given by the fol-
lowing equation

L(q, q̇) = Ttrans +Trot −U, (2)

where Ttrans =
m
2

ξ̇ T ξ̇ , Trot =
1
2

ωT Iω and U = mgz are the
translational kinetic energy, the rotational kinetic energy
and the potential energy of the system, respectively. The
Euler-Lagrange equation is used to obtain the quadrotor
dynamic model

d
dt

∂L
∂ q̇

− ∂L
∂q

=

[
Fξ
τ

]
= F, (3)

where Fξ is the translational force that is applied to the
quadrotor and that is due to the control input that is a func-
tion of the force applied by the motors, τ ∈R3 refers to the
moments of Euler’s angles.

The translational force Fξ = RF̂ where R refers to the
rotation matrix R(ψ,θ ,ϕ) of the vehicle with respect to a
fixed reference axis.

We define the force F̂ = [0 0 u]T and the control input
u = f1 + f2 + f3 + f4 in such that

fi = kiωi
2, ∀i = 1, ...,4, (4)

where ki is the value constant of the i-st engine and ωi is
its angular velocity. On the other hand, the moments are
defined by:

τ =

τψ
τθ
τϕ

 △
=

 ∑4
i=1 τMi

( f2 − f4)l
( f3 − f1)l

 , (5)

where l is the distance between the engines and the center
of gravity of the vehicle, while τMi represents the moment
produced by the engine Mi, i = 1, ...,4 around the center
of gravity of the quadrotor aircraft.

Defining C(η , η̇) as a function that represents the as-
sociated Coriolis terms to the gyroscopic and centrifugal
effects corresponding to η

C(η , η̇) = J̇− 1
2

∂
∂η

(η̇TJ). (6)

We can write the equations of the system as

Fξ = mξ̈ +mgEz, (7)

Jη̈ =−C(η , η̇)η̇ + τ. (8)

Using a change of the input variables

τ =C(η , η̇)η̇ +Jτ̃, (9)

where τ̃ = [τ̃ψ , τ̃θ , τ̃ϕ ]
T Finally we obtain the system equa-

tions given by

mẍ =−usinθ ,
mÿ = ucosθ sinϕ ,
mz̈ = ucosθ cosϕ −mg,

ϕ̈ = τ̃ϕ ,

θ̈ = τ̃θ ,

ψ̈ = τ̃ψ . (10)

4. ALTITUDE CONTROL BASED ON PD+SMC
ALGORITHM

A widespread method for altitude control in a quadrotor
UAV is a typical PD controller, which is widely used due
to their simplicity and acceptable performance. However,
for a real-time application where there are disturbances
such as wind gusts, it is necessary to use a nonlinear con-
trol which provides robustness [11, 28]. One well-known
control method is the Sliding Mode Controller (SMC).
Both PD and SMC control have strengths and weaknesses,
these motivate the use of a combination of these tech-
niques.

4.1. Control design
The design problem is to enforce the behavior of the

states towards the desired trajectories which are known.
The following procedure describes how to determine a
control law for any of the dynamics of the quadrotor (x, y,
z, ψ , θ or ϕ ). In this paper, the control for the z dynamics
has been obtaining. Denote the reference trajectories by żd

and zd which is velocity and altitude desired, respectively.
Afterwards, we define the tracking errors by ez = z− zd

and ėz = ż− żd , where zd is the desired altitude. Since alti-
tude control concerns only the displacement in the z-axis
can be considered the following model from (10)

z̈ =
1
m
(ucos(ϕ)cos(θ)−mg). (11)

To start, the control law u is proposed as follows:

u =
m(r+g)

cos(ϕ)cos(θ)
(12)

with

r =−kp tanh(ez)− kd tanh(ėz)︸ ︷︷ ︸
u1

−ρ sign(s)︸ ︷︷ ︸
u2

, (13)



Fig. 3. Schematic of the control system.

where kp, kd and ρ are gains to tune the altitude controller
while s is the sliding surface of SMC. In order to solve
the input saturation problem, we use the approach used in
[25], adding a tanh function to saturate the control input.
A schematic of the control proposed is presented in Fig. 3.

Equation (13) has u1 and u2 that represents a PD
and SMC control actions, respectively. The SMC con-
trol scheme introduces a "sliding surface" along which the
sliding motion is to take place. This surface is denoted by
s and is defined as follows:

s =
(

d
dt

+λ
)

ez,

s = ėz +λez, (14)

where λ > 0 is the slope of the sliding line. If a control
law enforces the trajectories in the phase space such that
s = 0 in (14), then the errors converge in a finite time to
the origin due to

0 = ėz +λez,

ėz =−λez, (15)

where the solution is: ez(t)= ez(0)e−λ t . Consider the two-
dimensional system [35]

ẋ1 = x2,

ẋ2 = h(x)+ p(x)u, (16)

where h(x) and p(x) are unknown locally Lipschitz func-
tions and p(x) ≥ p0 for all x. The goal is to design a
controller that constraints the trajectory to the manifold
s= ax1+x2 = 0. Choosing a> 0 guarantees that x(t) tends
to zero as t tends to infinity and the rate is controlled by
the parameter a. The surface s satisfies the equation

ṡ = aẋ1 + ẋ2 = ax2 +h(x)+ p(x)u. (17)

Suppose that h and g satisfy∣∣∣∣ax2 +h(x)
p(x)

∣∣∣∣≤ ρ(x), ∀x ∈ R2. (18)

This assumption allows us to define a bounded region by
ρ(x) to limit the control input of the SMC. Defining the

states

x1 = z x2 = ż, (19)

therefore

ẋ1 = ż ẋ2 = z̈, (20)

so that our system is defined as

ẋ1 = x2, (21)

ẋ2 = −g︸︷︷︸
h(x)

+

(
cosϕ cosθ

m

)
︸ ︷︷ ︸

p(x)

u, (22)

under the restriction from (18)∣∣∣∣ax2 +(−g)
cosϕ cosθ

m

∣∣∣∣≤ ρ(x), ∀ x ∈ R2, (23)

where ρ(x) is the upper bound of the states (altitude and
velocity in the z-direction). For the design process, the
control inputs (u1 and u2) are analyzed separately.

4.2. Stability analysis
We propose the following Lyapunov function candidate

given as

V =
1
2

s2︸︷︷︸
V1

+
1
2

ė2
z + kp ln(cosh(ez))︸ ︷︷ ︸

V2

. (24)

The Lyapunov function candidate is composed by two
parts: SMC control (V1) and PD control (V2) so the sta-
bility analysis is made separately.

4.2.1 Stability for V1

For V1 function, your derivative can be computed as fol-
lows:

V̇1 = sṡ, (25)

considering a control input ũ

ũ =−β (x)sign(s), (26)

thereby

V̇1 ≤ g(x)|s|ρ(x)−g(x)[ρ(x)+β0]sign(s)s

≤−g(x)β0 sign(s)s, (27)

considering the next properties

sign2n(s) = 1 for n = 1,2,3 . . . , (28)

s = sign(s)abss for s ∈ R, (29)

we obtain

V̇1 ≤−g(x)β0|s|
≤ −g0β0|s|, (30)

which implies that the system is asymptotically stable
since V̇1 < 0 for s ̸= 0 in the region bounded by g0β0.



4.2.2 Stability for V2

The time derivative of V2 is

V̇2 = ėzëz + kp tanh(ez)ėz, (31)

where

ëz = z̈− z̈d . (32)

The goal to the control is to let zd = 0 so ëz = z̈. From (11)
and (13), we obtain

V̇2 =ėz(−kp tanh(ez)− kd tanh(ėz))

+ kp tanh(ez)ė

=− kp tanh(ez)ė− kd ė tanh(ėz)

+ kp tanh(ez)ė

=− kd ė tanh(ėz), (33)

which implies that the system is asymptotically stable
since V̇2 < 0 for ė ̸= 0.

5. SIMULATION RESULTS

Simulation results of the quad-rotor aircraft for altitude
control (z-axis dynamic) are presented below. For simula-
tion purposes, an external disturbance has been introduced
to test the robustness of the control scheme proposed.

5.1. Wind-gust model
In order to perform a more realistic simulation of the

system, wind effects are considered as disturbances. The
wind model selected is the Dryden wind-gust. This model
is defined as a sum of sinusoidal signals

vω(t) = v0
ω +

n

∑
i=1

ai sin(Ωit +φi), (34)

where vω(t) is an estimate of the wind vector, Ωi are ran-
domly selected frequencies, φi are phase shifts, ai is the
amplitude of sinusoids and v0

ω is the static wind vector.
The simulation was developed in the Simulink platform,
where the force caused by the wind gust is considered pro-
portional to the velocity given by (34). This force is shown
in Fig. 4.

5.2. PD Control with Sliding Mode Compensation
(PD+SMC)

Three different control laws were simulated; a) Pro-
portional - Derivative (PD), b)Sliding Mode (SM) and c)
PD+SM. The results of these control laws simulation are
shown, respectively, in Figs. 5-7.

Note that the quadrotor aircraft reached the desired al-
titude using sliding mode control and PD control with
Sliding Mode Compensation (PD+SM) while with only
a PD control the error increase due to disturbances. Fig. 8
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Fig. 4. Disturbance simulation from Dryden wind-gust
model.
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Fig. 5. Altitude PD control.

0 5 10 15 20 25

Time[sec]

0

0.2

0.4

0.6

0.8

1

1.2

A
lt
it
u

d
e

(z
-p

o
s
it
io

n
)[

m
]

altitude control (SM)

desired altitude

disturbance

Fig. 6. Altitude sliding mode (SM) control.

shows that PD+SM control presents the best performance
since the error converges to zero, as in SM control, in a
fast way.
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On the other hand, Fig. 9 shows the PD and SM con-
trol signals from simulation. Fig. 10 is a zoom from 9 to
observe in a better way the signals.
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Fig. 10. Zoom from Fig. 9.

Fig. 11. Relationship between convolution window and a
neuron.

6. CONVOLUTIONAL NEURONAL NETWORKS

In this work, a deep learning model called convolutional
neuronal network (CNN) is used to determine if there exist
cracks in images of buildings. The CNNs has been used
to solve, in an effective way, different problems related to
artificial vision (mainly related to the image recognition)
and currently is an important research topic.

Classical algorithms for object detection are based on
two-stage: features extraction and classification. By con-
trast, the CNNs implement this two-stage in the same pro-
cess.

Fig. 11 shows the basic idea behind the CNN. In classi-
cal artificial neural networks, the synaptic weights (Wi j)
and the bias W0 determine the output of the network.
On the other hand, in a CNN, a neuron and convolution
window are equivalent. The parameters of the network
(synaptic weights and bias) are the coefficients of the con-
volution window.

The convolution operation is performed sliding the the
window (neuron) over the complete image. This convo-
lution generate feature maps that represent the output of
each layer of the network. The output y of one layer of the
network is

y = Relu(⟨W,x⟩+b), (35)



where ⟨·, ·⟩ represents the dot product between the ten-
sor formed by the synaptic weights and x is the image on
which the convolution operation is performed, b is a polar-
ization value or bias while Relu is the activation function.

At first, the synaptic weights Wi j are selected randomly
and the training process modify them in such a way that
the CNN is able to classify the cracks in the images.

The last stage within the network is dense or strongly
connected, where the flow of information from the convo-
lutional layers is connected to a conventional neural net-
work that functions as a classifier. Since it is a bi-class
problem, the last layer consists of a single neuron that will
indicate whether or not there is a crack in the image.

In a CNN, the convolutional layers extracts features of
the images to later be classified by a classical neural net-
work.

7. EXPERIMENTAL RESULTS

This section describes the CNN which has been adopted
for classifying cracks in images taken by a quadrotor, it is
compared with a Viola-Jones classifier commonly used for
this task. Also, our quadrotor aircraft platform is described
briefly and real-time experimental results are shown. Sev-
eral experiments were carried out to stabilize the altitude
of our platform. The controller’s parameters were tuned
by trial and error until obtaining better performance.

7.1. Convolutional Neural Network Clasification
In order to perform the process of training the CNN and

a Viola-Jones classifier, images of cracks were searched
on the Internet, mainly of the earthquake in Mexico City in
2017. Fig. 12 shows some of the images from the database.

It is necessary to create two sets, the positive set, that is,
those that contain cracks and the other of negatives, which
do not contain cracks. We obtained 350 positive images
and 450 negative images for a total of 800 images. All of
them were resized to 50x50 pixels. In search of improving
the detection results, our database was combined with the

Fig. 12. Samples of images with cracks taken from the In-
ternet.

one used in [20], in such a way that the number of positive
images was increased to 450.

The developed network consists of four convolutional
layers and two dense layers, as well as polling operations
after each convolutional layer, as can be seen in Fig. 13.
We use Keras [36] to create a CNN. Keras is a high-level
neural networks API, written in Python and capable of
running on top of TensorFlow, CNTK, or Theano [37].
We use a computer with AMD A8 processor and 8Gb of
RAM to carry out the training stage, under the Ubuntu OS.
A total of 400 positive and 400 negative images were used
for training while for validation, 50 positive and 50 nega-
tive examples were used. A CNN obtained 95% accuracy
in the training stage and 96% in the validation stage.

To implement the detection stage, a sliding window
method was used. This method uses a fixed size window
and this goes through the entire image in search of cracks.

Fig. 14a and 14c shows results from the detection us-
ing CNN. In general, the detection is satisfactory, with an
acceptable amount of cracks detected and some false pos-
itives.

On the other hand, results from Viola-Jones classifier
are shown in Fig. 14b and 14d. Even though detections
are effective with this method, some false positives (red
ellipses) detect as cracks the wall corner, which does not
happen with CNN, in other words, our CNN can distin-
guish cracks from other edges in an acceptable way and
the results are better than classical Viola-Jones classifier,
as shown Fig. 15.

7.2. Quadorotor UAV real-time altitude control
As an experimental platform, we have used a quadro-

tor aircraft with a Pixhawk flight controller and a LIDAR-
Lite v3 sensor for the altitude measure. This sensor was
selected because it offers a better performance than the
barometer. Fig. 16 shows the real-time embedded control
architecture that we use. As is well known, the chatter-
ing problem (which is due to failures in switching devices
and delays) is one of the most common handicaps in the
sliding mode control. To reduce the chattering, we use the
approach presented in [28] and replace the sign function,
that is not continuous, for a continuous saturation function
sat, defined as follows:

sat
( s

ε

)
=


s
|s|

, |s| ≥ ε,

s
ε
, |s|< ε,

(36)

where ε is a small positive constant. Fig. 17 present some
experimental results obtained by applying the PD+SMC
control algorithm. The arrows in Fig. 17b and 17d show
the time interval where the SMC action was canceled,
which correspond with the vertical dotted line in Fig. 17a
and 17c. It is evident that the performance with PD+SMC
is better than when the PD is working alone. Control gains



Fig. 13. Architecture of the proposed network.

Fig. 14. Crack detection on the original images.

Fig. 15. Zoom from Fig. 14.

selection is a complicated task, and we made it by trial

Fig. 16. Real-time embedded control architecture.

and error until obtaining the desired behavior. A properly
kp and kd selection for a PD controller affects the perfor-
mance of a control system, for instance, improving damp-
ing, reducing maximum overshoot, and reducing rise time
and settling time. On the other hand, parameters λ and ρ
in the SMC let modify the convergence velocity and slid-
ing surface frequency, respectively. This results could be
improved by fine-tuning ρ , λ , kp and kd gains. Fig. 18
show some experiments carried out at CINVESTAV.

8. CONCLUSIONS

The paper presents simulations and experimental real-
time results in the altitude control using a combination
of two control actions, one linear (PD) and another non-
linear (Sliding Mode Control) for the future autonomous
wall inspection task. The PD+SMC takes the advan-
tages of the PD controller (simplicity and easy design)
and the robustness of SMC to disturbances and model un-
certainty. To our knowledge no works concerinig hybrid
PD+SMC for UAV systems have been reported in litera-
ture. The simulations were conducted using the quadro-
tor aircraft dynamical model and the real-time experi-
ments were performed in an outdoor environment where
wind-disturbances were present. To see the flight that was
carried out to test the control, a video is available on
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Fig. 17. Altitude position in real-time experiments.

Fig. 18. Quadrotor aircraft flight using PD+SMC for alti-
tude control.

https://youtu.be/Aph-DgsFRF8. On the other hand,
we increase our database of crack images for a CNN-
based crack recognition system. The experiments showed
that the recognition of the cracks is satisfactory. There are
very few databases of images with cracks; it is important
to have a greater number of images to be able to develop
better applications of automatic detection of this type of
anomalies. Generally, CNN has shown good results in ob-
ject recognition tasks given their ability to train feature
extractors and their classification stage.
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