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Building inspection is a vital task because infrastructure damage puts people at risk or causes economic losses. Thanks to the technological breakthroughs in regard to Unmanned Aerial Vehicles (UAVs) and intelligent systems, there is a real possibility to implement an inspection by means of these technologies. UAVs allow reaching difficult places and, depending on the hardware carried onboard, take data or compute algorithms to understand the environment. This paper proposes a real-time robust altitude control strategy for a quadrotor aircraft, also a convolutional neuronal network for crack recognition is developed. The main idea of this proposal is to lay the background for an autonomous system for the inspection of structures using a UAV. For the robust control, a combination of two control actions, one linear (PD) and another nonlinear (Sliding Mode) is used. The combination of these control actions allows increasing the system's performance. To verify the satisfactory performance of proposed control law, simulations and experimental results with a quadrotor, in the presence of disturbances, are presented. For crack recognition in images, several experiments were carried out validating the proposed model. For CNN training, a database of cracks was built from images taken from the Internet.

INTRODUCTION

Unmanned aerial vehicles (UAVs) have become a helpful tool for performing autonomous tasks in the industrial, commercial and research areas. Given your advantages (managed remotely or autonomously, fly over areas of difficult access, etc.), these robots are an ideal tool for inspection, as the case of structures. In Mexico, as well as in other parts of the world, natural disasters are frequent. On September 19, 2017, the worst earthquake in the story of Mexico, since 1985, was occurred. Many buildings suffered structural damages (see Fig. 1) which put the lives of people at risk.

The need to inspect buildings became evident during this tragic event. The civil protection protocol indicates that an inspector must return to the building and identify the risks of the structure and, if there are any, do not allow the re-entry to the building. In this sense, the inspector runs a risk when re-entering the building to perform the inspection. The difficulty of carrying out the check is that the areas to be inspected are usually difficult to access or there exist a risk for the human inspector. One of the most common failures are cracks, which can put at risk the structure and the integrity of people.

To improve the previous work [START_REF] Vazquez-Nicolas | Towards automatic inspection: crack recognition based on Quadrotor UAVtaken images[END_REF] where a Convolutional Neural Network (CNN) was proposed to detect cracks in images taken by a quadrotor aircraft, the present work is focused on the robust altitude control of the UAV, in presence of external disturbances, and in the increase of the images dataset to re-train the CNN and improve their performance. Our future aim is to build an UAV-based autonomous inspection system for structures such as buildings, tunnels, bridges, etc. However, in this paper, we focus on the control subsystem and the crack recognition subsystem.

The main contribution of this work is an altitude hybrid control for a system based on a quadrotor aircraft, focused towards an autonomous wall inspection in the pres- 

RELATED WORK

Unmanned Aerial Vehicles (UAV) have been an important research topic in recent years. In particular, the quadrotor helicopter has been under the focus of extensive research due to their many advantages. The control of these systems was extensively covered in the literature; for instance, PD linear control [START_REF] Sandiwan | Robust proportional-derivative control on SO(3) with disturbance compensation for quadrotor UAV[END_REF][START_REF] Liu | Robust tracking control of a quadrotor helicopter[END_REF][START_REF] Elfeky | Modeling and simulation of quadrotor UAV with tilting rotors[END_REF][START_REF] Rafifandi | Leader-follower formation control of two quadrotor UAVs[END_REF][START_REF] Jeong | Cartesian space control of a quadrotor system based on low cost localization under a vision system[END_REF][START_REF] Zuo | Trajectory tracking control design with commandfiltered compensation for a quadrotor[END_REF] and SMC [START_REF] Barghandan | Improved adaptive fuzzy sliding mode controller for robust fault tolerance of a quadrotor[END_REF][START_REF] López-Gutiérrez | Robust quadrotor control: attitude and altitude real-time results[END_REF][START_REF] Aboudonia | Composite hierarchical anti-disturbance control of a quadrotor UAV in the presence of matched and mismatched disturbances[END_REF][START_REF] Escareño | Trajectory control of a quadrotor subject to 2d wind disturbances[END_REF][START_REF] Liu | Altitude control for variable load quadrotor via learning rate based robust sliding mode controller[END_REF][START_REF] L'afflitto | An introduction to nonlinear robust control for unmanned quadrotor aircraft: how to design control algorithms for quadrotors using sliding mode control and adaptive control techniques [Focus on Education[END_REF] have been commonly used to control quadrotor systems.

In this work a hybrid PD+SMC is used to carry out the altitude control. This approach has been used to control robotic arms and robot teleoperation ( [START_REF] Salinas | P+d plus sliding mode control for bilateral teleoperation of a mobile robot[END_REF][START_REF] Ouyang | PD with sliding mode control for trajectory tracking of robotic system[END_REF][START_REF] Tang | Nonlinear PD sliding mode control for robotic manipulator[END_REF][START_REF] Ouyang | Adaptive PD plus sliding mode control for robotic manipulator[END_REF]) but, to the best of our knowledge, this approach has not been used for a quadrotor UAV.

There are works focused on crack detection in structures, some using computer vision algorithms. The images for the experiments are commonly recollected by humans, in a safe area or with the help of a robotic system. However, in recent years, UAVs have been used to obtain images for inspection tasks, mainly in structures that involve risk for the human or in areas where access is difficult.

Concerning the detection of cracks without UAVs, in [START_REF] Lins | Automatic crack detection and measurement based on image analysis[END_REF] authors used the color characteristics via a detection algorithm and, based on this information, an estimate of the length of the cracks is made. In [START_REF] Shi | Automatic road crack detection using random structured forests[END_REF], the authors im-plement crack detection in images of asphalt, where features extraction is carried out by decision trees and classification is performed by k-nearest neighbors method and support vector machines (SVM). Authors in [START_REF] Talab | Detection crack in image using Otsu method and multiple filtering in image processing techniques[END_REF], use classic computer vision techniques like edge detection (Sobel filter) and thresholding (Otsu algorithm) to locate cracks.

In [START_REF] Phung | Automatic crack detection in built infrastructure using unmanned aerial vehicles[END_REF], [START_REF] Wang | Automatic detection of wind turbine blade surface cracks based on UAV-taken images[END_REF], and [START_REF] Choi | Building crack inspection using small UAV[END_REF], present images which are obtained by means of UAVs and subsequently the detection of cracks was performed. In [START_REF] Phung | Automatic crack detection in built infrastructure using unmanned aerial vehicles[END_REF], the authors use lasers to generate a 3D model of the surface to be inspected for the autonomous navigation system, and the detection of cracks is made by means of the histogram and adaptive thresholds. Authors in [START_REF] Wang | Automatic detection of wind turbine blade surface cracks based on UAV-taken images[END_REF], use classifiers and features extraction to find flaws on a wind generator blade surface. A UAV is used to take pictures of a generator. In [START_REF] Choi | Building crack inspection using small UAV[END_REF] a UAV for building inspection is proposed, implementing a basic edge detection algorithm.

Given that our work uses deep learning approach to accomplish the cracks recognition, it is important to mention works related to applications of UAVs and convolutional neural networks (CNN). In [START_REF] Pan | Power line detection via background noise removal[END_REF], [START_REF] Tang | Fast vehicle detection in UAV images[END_REF], [START_REF] Zhang | Application of deep learning and unmanned aerial vehicle technology in traffic flow monitoring[END_REF], [START_REF] Ma | Hand gesture recognition with convolutional neural networks for the multimodal UAV control[END_REF] and [START_REF] Zhang | Road crack detection using deep convolutional neural network[END_REF] where CNN were used to face problems such as high voltage inspection, vehicular traffic tracking, recognition of gestures, and crack recognition on pavement. Authors in [START_REF] Yang | Deep concrete inspection using unmanned aerial vehicle towards CSSC database[END_REF] presents a crack recognition algorithm in images taken by a UAV using a CNN. In terms of deep learning, our work uses a smaller CNN structure than presented in [START_REF] Yang | Deep concrete inspection using unmanned aerial vehicle towards CSSC database[END_REF] and the database of cracks were taken from damaged buildings.

DYNAMIC MODEL FOR QUADROTOR AIRCRAFT

The mathematical model of the quadrotor aircraft is widely discussed in the literature ( [START_REF] Lozano | Unmanned Aerial Vehicles: Embedded Control[END_REF], [START_REF] Castillo | Real-time stabilization and tracking of a four-rotor mini rotorcraft[END_REF] and [START_REF] Gonzalez | Chattering-free sliding mode altitude control for a quad-rotor aircraft: realtime application[END_REF]) where the vehicle is considered as a rigid body that unfolds in three dimensions, which is subject to a main force and three moments that will be formulated by means of the Euler-Lagrange equations. Fig. 2 shows a free-body diagram of the quadrotor aircraft. The generalized coordinates of the vehicle are given by

q = (x, y, z, ψ, θ , ϕ ) ∈ R 6 , (1) 
where we can define ξ = (x, y, z) ∈ R 3 which denotes the position of the center of mass of the vehicle with respect to the inertial frame I and we also define η = (ψ, θ , ϕ ) ∈ R 3 which represents the angles of Euler, ψ is the angle of yaw, θ is the angle of pitch and ϕ is the angle of roll which are used to represent the orientation of the vehicle. We can decompose the equations into translational and rotational displacement. As first step, we obtain the Lagrangian of the aerial vehicle, which is given by the following equation

L(q, q) = T trans + T rot -U, ( 2 
)
where

T trans = m 2 ξ T ξ , T rot = 1 2
ω T Iω and U = mgz are the translational kinetic energy, the rotational kinetic energy and the potential energy of the system, respectively. The Euler-Lagrange equation is used to obtain the quadrotor dynamic model

d dt ∂ L ∂ q - ∂ L ∂ q = [ F ξ τ ] = F, (3) 
where F ξ is the translational force that is applied to the quadrotor and that is due to the control input that is a function of the force applied by the motors, τ ∈ R 3 refers to the moments of Euler's angles.

The translational force F ξ = R F where R refers to the rotation matrix R(ψ, θ , ϕ ) of the vehicle with respect to a fixed reference axis.

We define the force F = [0 0 u] T and the control input

u = f 1 + f 2 + f 3 + f 4 in such that f i = k i ω i 2 , ∀i = 1, ..., 4, (4) 
where k i is the value constant of the i-st engine and ω i is its angular velocity. On the other hand, the moments are defined by:

τ =   τ ψ τ θ τ ϕ   △ =   ∑ 4 i=1 τ M i ( f 2 -f 4 )l ( f 3 -f 1 )l   , ( 5 
)
where l is the distance between the engines and the center of gravity of the vehicle, while τ M i represents the moment produced by the engine M i , i = 1, ..., 4 around the center of gravity of the quadrotor aircraft. Defining C(η, η) as a function that represents the associated Coriolis terms to the gyroscopic and centrifugal effects corresponding to η

C(η, η) = J - 1 2 ∂ ∂ η ( ηT J). ( 6 
)
We can write the equations of the system as

F ξ = m ξ + mgE z , (7) 
J η = -C(η, η) η + τ. ( 8 
)
Using a change of the input variables

τ = C(η, η) η + J τ, (9) 
where τ = [ τ ψ , τθ , τϕ ] T Finally we obtain the system equations given by

m ẍ = -u sin θ , m ÿ = u cos θ sin ϕ , mz = u cos θ cos ϕ -mg, φ = τϕ , θ = τθ , ψ = τψ . ( 10 
)

ALTITUDE CONTROL BASED ON PD+SMC ALGORITHM

A widespread method for altitude control in a quadrotor UAV is a typical PD controller, which is widely used due to their simplicity and acceptable performance. However, for a real-time application where there are disturbances such as wind gusts, it is necessary to use a nonlinear control which provides robustness [START_REF] Escareño | Trajectory control of a quadrotor subject to 2d wind disturbances[END_REF][START_REF] Gonzalez | Chattering-free sliding mode altitude control for a quad-rotor aircraft: realtime application[END_REF]. One well-known control method is the Sliding Mode Controller (SMC). Both PD and SMC control have strengths and weaknesses, these motivate the use of a combination of these techniques.

Control design

The design problem is to enforce the behavior of the states towards the desired trajectories which are known. The following procedure describes how to determine a control law for any of the dynamics of the quadrotor (x, y, z, ψ, θ or ϕ ). In this paper, the control for the z dynamics has been obtaining. Denote the reference trajectories by żd and z d which is velocity and altitude desired, respectively. Afterwards, we define the tracking errors by e z = zz d and ėz = żżd , where z d is the desired altitude. Since altitude control concerns only the displacement in the z-axis can be considered the following model from [START_REF] Aboudonia | Composite hierarchical anti-disturbance control of a quadrotor UAV in the presence of matched and mismatched disturbances[END_REF] 

z = 1 m (u cos(ϕ ) cos(θ ) -mg). ( 11 
)
To start, the control law u is proposed as follows:

u = m(r + g) cos(ϕ ) cos(θ ) (12) 
with

r = -k p tanh(e z ) -k d tanh( ėz ) u 1 -ρ sign(s) u 2 , ( 13 
)
Fig. 3. Schematic of the control system.

where k p , k d and ρ are gains to tune the altitude controller while s is the sliding surface of SMC. In order to solve the input saturation problem, we use the approach used in [START_REF] Sun | Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments[END_REF], adding a tanh function to saturate the control input.

A schematic of the control proposed is presented in Fig. 3. Equation ( 13) has u 1 and u 2 that represents a PD and SMC control actions, respectively. The SMC control scheme introduces a "sliding surface" along which the sliding motion is to take place. This surface is denoted by s and is defined as follows:

s = ( d dt + λ ) e z , s = ėz + λ e z , (14) 
where λ > 0 is the slope of the sliding line. If a control law enforces the trajectories in the phase space such that s = 0 in [START_REF] Salinas | P+d plus sliding mode control for bilateral teleoperation of a mobile robot[END_REF], then the errors converge in a finite time to the origin due to

0 = ėz + λ e z , ėz = -λ e z , ( 15 
)
where the solution is: e z (t) = e z (0)e -λt . Consider the twodimensional system [START_REF] Khalil | Nonlinear Control[END_REF] ẋ1

= x 2 , ẋ2 = h(x) + p(x)u, ( 16 
)
where h(x) and p(x) are unknown locally Lipschitz functions and p(x) ≥ p 0 for all x. The goal is to design a controller that constraints the trajectory to the manifold s = ax 1 +x 2 = 0. Choosing a > 0 guarantees that x(t) tends to zero as t tends to infinity and the rate is controlled by the parameter a. The surface s satisfies the equation

ṡ = a ẋ1 + ẋ2 = ax 2 + h(x) + p(x)u. ( 17 
)
Suppose that h and g satisfy

ax 2 + h(x) p(x) ≤ ρ(x), ∀x ∈ R 2 . ( 18 
)
This assumption allows us to define a bounded region by ρ(x) to limit the control input of the SMC. Defining the states

x 1 = z x 2 = ż, ( 19 
) therefore ẋ1 = ż ẋ2 = z, ( 20 
)
so that our system is defined as

ẋ1 = x 2 , ( 21 
) ẋ2 = -g h(x) + ( cos ϕ cos θ m ) p(x) u, ( 22 
)
under the restriction from ( 18)

ax 2 + (-g) cos ϕ cos θ m ≤ ρ(x), ∀ x ∈ R 2 , ( 23 
)
where ρ(x) is the upper bound of the states (altitude and velocity in the z-direction). For the design process, the control inputs (u 1 and u 2 ) are analyzed separately.

Stability analysis

We propose the following Lyapunov function candidate given as

V = 1 2 s 2 V 1 + 1 2 ė2 z + k p ln(cosh(e z )) V 2 . ( 24 
)
The Lyapunov function candidate is composed by two parts: SMC control (V 1 ) and PD control (V 2 ) so the stability analysis is made separately.

Stability for V 1

For V 1 function, your derivative can be computed as follows:

V1 = s ṡ, ( 25 
) considering a control input ũ ũ = -β (x) sign(s), (26) 
thereby

V1 ≤ g(x)|s|ρ(x) -g(x)[ρ(x) + β 0 ] sign(s)s ≤ -g(x)β 0 sign(s)s, (27) 
considering the next properties sign 2n (s) = 1 for n = 1, 2, 3 . . . , [START_REF] Gonzalez | Chattering-free sliding mode altitude control for a quad-rotor aircraft: realtime application[END_REF] s = sign(s)abss for s ∈ R,

we obtain

V1 ≤ -g(x)β 0 |s| ≤ -g 0 β 0 |s|, ( 30 
)
which implies that the system is asymptotically stable since V1 < 0 for s ̸ = 0 in the region bounded by g 0 β 0 .

Stability for V 2

The time derivative of V 2 is V2 = ėz ëz + k p tanh(e z ) ėz , (

where

ëz = z -zd . ( 32 
)
The goal to the control is to let z d = 0 so ëz = z. From ( 11) and ( 13), we obtain

V2 = ėz (-k p tanh(e z ) -k d tanh( ėz )) + k p tanh(e z ) ė = -k p tanh(e z ) ė -k d ė tanh( ėz ) + k p tanh(e z ) ė = -k d ė tanh( ėz ), (33) 
which implies that the system is asymptotically stable since V2 < 0 for ė ̸ = 0.

SIMULATION RESULTS

Simulation results of the quad-rotor aircraft for altitude control (z-axis dynamic) are presented below. For simulation purposes, an external disturbance has been introduced to test the robustness of the control scheme proposed.

Wind-gust model

In order to perform a more realistic simulation of the system, wind effects are considered as disturbances. The wind model selected is the Dryden wind-gust. This model is defined as a sum of sinusoidal signals

v ω (t) = v 0 ω + n ∑ i=1 a i sin(Ω i t + φ i ), (34) 
where v ω (t) is an estimate of the wind vector, Ω i are randomly selected frequencies, φ i are phase shifts, a i is the amplitude of sinusoids and v 0 ω is the static wind vector. The simulation was developed in the Simulink platform, where the force caused by the wind gust is considered proportional to the velocity given by [START_REF] Zhang | Road crack detection using deep convolutional neural network[END_REF]. This force is shown in Fig. 4.

PD Control with Sliding Mode Compensation

(PD+SMC) Three different control laws were simulated; a) Proportional -Derivative (PD), b)Sliding Mode (SM) and c) PD+SM. The results of these control laws simulation are shown, respectively, in Figs. 567.

Note that the quadrotor aircraft reached the desired altitude using sliding mode control and PD control with Sliding Mode Compensation (PD+SM) while with only a PD control the error increase due to disturbances. Fig. 8 shows that PD+SM control presents the best performance since the error converges to zero, as in SM control, in a fast way. On the other hand, Fig. 9 shows the PD and SM control signals from simulation. Fig. 10 is a zoom from 9 to observe in a better way the signals. Fig. 11. Relationship between convolution window and a neuron.

CONVOLUTIONAL NEURONAL NETWORKS

In this work, a deep learning model called convolutional neuronal network (CNN) is used to determine if there exist cracks in images of buildings. The CNNs has been used to solve, in an effective way, different problems related to artificial vision (mainly related to the image recognition) and currently is an important research topic.

Classical algorithms for object detection are based on two-stage: features extraction and classification. By contrast, the CNNs implement this two-stage in the same process.

Fig. 11 shows the basic idea behind the CNN. In classical artificial networks, the synaptic weights (W i j ) and the bias W 0 determine the output of the network. On the other hand, in a CNN, a neuron and convolution window are equivalent. The parameters of the network (synaptic weights and bias) are the coefficients of the convolution window.

The convolution operation is performed sliding the the window (neuron) over the complete image. This convolution generate feature maps that represent the output of each layer of the network. The output y of one layer of the network is

y = Relu(⟨W, x⟩ + b), ( 35 
)
where ⟨•, •⟩ represents the dot product between the tensor formed by the synaptic weights and x is the image on which the convolution operation is performed, b is a polarization value or bias while Relu is the activation function. At first, the synaptic weights W i j are selected randomly and the training process modify them in such a way that the CNN is able to classify the cracks in the images.

The last stage within the network is dense or strongly connected, where the flow of information from the convolutional layers is connected to a conventional neural network that functions as a classifier. Since it is a bi-class problem, the last layer consists of a single neuron that will indicate whether or not there is a crack in the image.

In a CNN, the convolutional layers extracts features of the images to later be classified by a classical neural network.

EXPERIMENTAL RESULTS

This section describes the CNN which has been adopted for classifying cracks in images taken by a quadrotor, it is compared with a Viola-Jones classifier commonly used for this task. Also, our quadrotor aircraft platform is described briefly and real-time experimental results are shown. Several experiments were carried out to stabilize the altitude of our platform. The controller's parameters were tuned by trial and error until obtaining better performance.

Convolutional Neural Network Clasification

In order to perform the process of training the CNN and a Viola-Jones classifier, images of cracks were searched on the Internet, mainly of the earthquake in Mexico City in 2017. Fig. 12 shows some of the images from the database.

It is necessary to create two sets, the positive set, that is, those that contain cracks and the other of negatives, which do not contain cracks. We obtained 350 positive images and 450 negative images for a total of 800 images. All of them were resized to 50x50 pixels. In search of improving the detection results, our database was combined with the Fig. 12. Samples of images with cracks taken from the Internet.

one used in [START_REF] Shi | Automatic road crack detection using random structured forests[END_REF], in such a way that the number of positive images was increased to 450. The developed network consists of four convolutional layers and two dense layers, as well as polling operations after each convolutional layer, as can be seen in Fig. 13. We use Keras [START_REF] Chollet | [END_REF] to create a CNN. Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano [START_REF] Chollet | The Python Deep Learning library[END_REF]. We use a computer with AMD A8 processor and 8Gb of RAM to carry out the training stage, under the Ubuntu OS. A total of 400 positive and 400 negative images were used for training while for validation, 50 positive and 50 negative examples were used. A CNN obtained 95% accuracy in the training stage and 96% in the validation stage.

To implement the detection stage, a sliding window method was used. This method uses a fixed size window and this goes through the entire image in search of cracks.

Fig. 14a and14c shows results from the detection using CNN. In general, the detection is satisfactory, with an acceptable amount of cracks detected and some false positives.

On the other hand, results from Viola-Jones classifier are shown in Fig. 14b and14d. Even though detections are effective with this method, some false positives (red ellipses) detect as cracks the wall corner, which does not happen with CNN, in other words, our CNN can distinguish cracks from other edges in an acceptable way and the results are better than classical Viola-Jones classifier, as shown Fig. 15.

Quadorotor UAV real-time altitude control

As an experimental platform, we have used a quadrotor aircraft with a Pixhawk flight controller and a LIDAR-Lite v3 sensor for the altitude measure. This sensor was selected because it offers a better performance than the barometer. Fig. 16 shows the real-time embedded control architecture that we use. As is well known, the chattering problem (which is due to failures in switching devices and delays) is one of the most common handicaps in the sliding mode control. To reduce the chattering, we use the approach presented in [START_REF] Gonzalez | Chattering-free sliding mode altitude control for a quad-rotor aircraft: realtime application[END_REF] and replace the sign function, that is not continuous, for a continuous saturation function sat, defined as follows:

sat ( s ε ) =      s |s| , |s| ≥ ε, s ε , |s| < ε, ( 36 
)
where ε is a small positive constant. Fig. 17 present some experimental results obtained by applying the PD+SMC control algorithm. The arrows in Fig. 17b and17d show the time interval where the SMC action was canceled, which correspond with the vertical dotted line in Fig. 17a and17c. It is evident that the performance with PD+SMC is better than when the PD is working alone. Control gains and error until obtaining the desired behavior. A properly k p and k d selection for a PD controller affects the performance of a control system, for instance, improving damping, reducing maximum overshoot, and reducing rise time and settling time. On the other hand, parameters λ and ρ in the SMC let modify the convergence velocity and sliding surface frequency, respectively. This results could be improved by fine-tuning ρ, λ , k p and k d gains. Fig. 18 show some experiments carried out at CINVESTAV.

CONCLUSIONS

The paper presents simulations and experimental realtime results in the altitude control using a combination of two control actions, one linear (PD) and another nonlinear (Sliding Mode Control) for the future autonomous wall inspection task. The PD+SMC takes the advantages of the PD controller (simplicity and easy design) and the robustness of SMC to disturbances and model uncertainty. To our knowledge no works concerinig hybrid PD+SMC for UAV systems have been reported in literature. The simulations were conducted using the quadrotor aircraft dynamical model and the real-time experiments were performed in an outdoor environment where wind-disturbances were present. To see the flight that was carried out to test the control, a video is available on https://youtu.be/Aph-DgsFRF8. On the other hand, we increase our database of crack images for a CNNbased crack recognition system. The experiments showed that the recognition of the cracks is satisfactory. There are very few databases of images with cracks; it is important to have a greater number of images to be able to develop better applications of automatic detection of this type of anomalies. Generally, CNN has shown good results in object recognition tasks given their ability to train feature extractors and their classification stage.
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