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ABSTRACT

Invariance-based learning is a promising approach in deep learning.
Among other benefits, it can mitigate the lack of diversity of avail-
able datasets and increase the interpretability of trained models. To
this end, practitioners often use a consistency cost penalizing the
sensitivity of a model to a set of carefully selected data augmen-
tations. However, there is no consensus about how these augmen-
tations should be selected. In this paper, we study the behavior
of several augmentation strategies. We consider the task of sound
event detection and classification for our experiments. In particular,
we show that transformations operating on the internal layers of a
deep neural network are beneficial for this task.

Index Terms— sound event detection, data augmentation, ad-
versarial learning

1. INTRODUCTION

Ambient sound analysis is a rapidly growing field, which has sev-
eral important industrial applications such as security (e.g., au-
dio surveillance), health (e.g., home monitoring, diagnosis based
on sound), transportation (e.g., autonomous driving), manufactur-
ing industry (e.g., predictive maintenance) and bioacoustics (e.g.,
ecosystem evolution tracking). In this context, sound event detec-
tion and classification consists in identifying and temporally local-
izing sound events in a complex acoustic scene. Deep learning has
been successfully applied to this task, significantly improving the
state of the art. However, this approach has two major drawbacks
[1]. On the one hand, it requires a large amount of annotated data,
which is costly and time-consuming to gather. On the other hand,
the models obtained by this approach lack interpretability, making
it hard to assess their reliability in unseen situations.

Data augmentation is an efficient technique which can miti-
gate the lack of available data and exploit unlabeled data [2]. This
method also makes it possible to force trained models to learn spe-
cific invariants. By selecting relevant data augmentations, one can
increase the model robustness to annotation errors and make them
easier to interpret [2]. Moreover, data augmentation can be easily
applied to any training algorithm and can improve its performance
at a minimal development cost. This explains the popularity of this
approach, especially in the field of sound event detection.

Many data augmentation strategies have been designed over the
past decades. They now form a large set of methods that is costly to
explore exhaustively. As a consequence, default settings are often
passed from one system to another with only limited investigation
[3], which leads to sub-optimal design choices.

This paper proposes a comparative study of the impact of sev-
eral data augmentation strategies on task 4 of the DCASE chal-

lenge.1 We focus on domain agnostic data augmentations. In this
context, we study the impact of adversarial augmentations and la-
tent augmentations (data augmentations applied directly on the la-
tent space of a deep neural network). We propose a common train-
ing framework to compare these augmentation strategies. By care-
fully selecting them, we show that it is possible to outperform the
baseline model we compete against and to simplify its training ob-
jective.

This article is organized as follows. Section 2 presents a brief
state of the art. Section 3 introduces task 4 of the DCASE chal-
lenge and describes its baseline. Section 4 explains the experimen-
tal framework that we use. Finally, section 5 discusses the obtained
results.

2. STATE OF THE ART

There are two main strategies used to overcome the lack of training
data: exploiting additional data from a related domain, and con-
straining the algorithm using domain knowledge [2]. Combining
both ideas, invariance-based approaches penalize the variations of a
model f in the neighborhood of the training data. More precisely,
these approaches aim to reduce the quantity ∥f(x)− f(τ(x))∥,
where x denotes a training point, ∥·∥ denotes a norm and τ de-
notes a data augmentation. This forces the model f to learn some
invariants, which can be defined explicitly. We thus obtain some
guarantees on the behavior of f , and consequently improve its in-
terpretability. We briefly review here the main developments in this
field.

The Ladder Network [4] adds to the objective function a cost
enforcing the invariance of the model to small perturbations of its
input and internal representations. A key point is that this method
can leverage unlabeled data. In [5], the authors use Dropout aug-
mentation [6] instead of random noise.

Temporal Ensembling (TE) [7] compares the prediction
f(τ(x)) computed for an augmented input τ(x) with an average
of the predictions f (n)(τ(x)) computed at different epochs n. This
method is inspired by the state of the art in stochastic optimization
[8]. The idea is to accelerate the convergence of f by mitigating the
randomness resulting from the selection of the mini-batches and the
augmentation of the input.

Mean Teacher (MT) [9] is an improvement of TE: instead of
averaging the predictions at each training epoch, it maintains an
average of the model parameters. Moreover, it updates this average
after each mini-batch instead of updating it after each epoch, which
speeds up training.

In [10], the authors use Mixup augmentation [11] within the
MT framework. This new training method encourages convex in-

1https://dcase.community/
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terpolation between two input samples. It is based on the follow-
ing hypothesis: the decision boundaries of a classifier should be
located between samples of different classes. Consequently, instead
of moving an input sample in a random direction, which is inef-
ficient, it is better to move it in the direction of a sample from a
different class.

Following a similar line of research, Virtual Adversarial Train-
ing (VAT) promotes invariance to small perturbations of the input.
This method uses adversarial perturbations (which maximize the
variation of f ) instead of using random perturbations. According to
the authors, adversarial perturbations constitute a better heuristic,
and can speed up the convergence of the algorithm. This algorithm
is however based on a second order approximation of the adversar-
ial perturbations, which is slow to compute. The Adversarial Noise
Layer [12] generalizes the idea of adversarial perturbation to the in-
termediate layers of a model. It uses a first order approximation,
which is faster to compute. In [13], the authors study a variant of
this method based on the Dropout augmentation.

Universal Adversarial Perturbation (UAP) [14] is a further gen-
eralization of adversarial attacks. While the approaches presented
above focused on fooling one model on a single instance of the
training set, UAP seek to fool several models on most instances of
the training set. The authors have shown that the resulting pertur-
bations exploit the geometry of the classifiers’ decision boundaries.
This makes them useful to design an invariance metric. However,
their high computational cost discourages any use, aside from eval-
uation.

Finally, we can mention Mixmatch [15]. In addition to a consis-
tency cost enforcing invariance to data augmentations, this method
takes into account an entropy cost. The purpose of this cost is to
increase the confidence level of the predictions made by the trained
model.

Some of the methods presented above have already been ap-
plied to DCASE Task 4. Since 2019, the MT method has been
used as the baseline for this task, and many algorithms submitted
to the challenge are also based on this method. The authors of [3]
propose an in-depth study of the application of MT to this task.
The VAT method has also been applied to this task, with three dif-
ferent architectures: A Recurrent Convolutional Network (CRNN)
[16], a Gated Recurrent Neural Network [17], and a Gated Recur-
rent Convolutional Neural Network [18]. More recently, the authors
of [19] have studied a variant in which the noise is not adversarial
but random. However, both the training method and the architecture
change from one of these articles to another. It is therefore difficult
to factor out the impact of the data augmentation strategy alone.

Closest to our work, [20] and [21] study the impact of several
types of data augmentations on a single model. The authors focus
on audio-specific data augmentations: pitch shifting, time shifting,
reverberation, frequency masking and time masking. Unlike these
studies, however, we focus our work on adversarial and latent data
augmentation. There are two main reasons for this. First, these aug-
mentations are domain agnostic, and could potentially work across
a vast range of tasks. This makes them very potent and interesting
to study. Second, these augmentations can be restricted to the au-
dio domain, giving birth to adversarial audio augmentations (which
could be seen as realistic worst-case scenarios), and latent audio
augmentations (which would force the internal representations of
a deep neural network to keep the structure of audio data, such as
time-shift or pitch-shift invariance). The aim of this paper is to
provide insights about the impact of adversarial and latent augmen-
tations on sound event detection. We use task 4 of DCASE as a case

study.

3. TASK DEFINITION

Task 4 of DCASE uses the dataset Domestic Environment Sound
Event Detection (DESED) [20], which is composed of 10-second
audio recordings made in domestic environments. DESED is di-
vided into three distinct datasets: an unlabeled dataset Du, a weakly
labelled dataset Dw, and a synthetic strongly labelled dataset Ds.
There are ten possible classes for the annotation of sound record-
ings. Each recording in Dw is annotated with the set of sound events
it contains. For Ds, each event is temporally localized in addition
to being identified by a label.

Two metrics are used to evaluate the models. To measure the
temporal accuracy of the predictions, we use an event-based F1
macro score, which is denoted by macro in the following. In or-
der to measure the labeling accuracy, we use the Polyphonic Sound
Detection Score [22], which is denoted by psds in the following.
For the computation of these two metrics, we adopt the parameters
proposed for the 2020 edition of the DCASE challenge. We use the
macro score, computed on the public evaluation dataset2 proposed
in this same edition, to evaluate and compare the models.

In order to increase the usability of our results, we build our
study on [20], which already investigates several design choices
concerning task 4 of DCASE. In particular, we use the same base-
line model3 as a basis for our experiments. This baseline exploits a
CRNN architecture, which is commonly used in audio. It achieves
high performance on the task. Moreover, the impact of its various
components has been exhaustively studied. The baseline takes as
input Mel spectrograms with 128 Mel bands, built with an analysis
window of size 2048 and a hop length of 255. The input signals
are sampled at 16kHz. The convolutional block of the CRNN is
composed of 7 layers with filter sizes (16, 32, 64, 128, 128, 128,
128) and a kernel of size 3x3. Each convolution is followed by a
Batch Normalization layer, a Gated Linear Unit, a Dropout layer
with probability 0.5, and a Maxpooling layer. The recurrent block
is composed of two Gated Recurrent Units with 128 layers each. It
is followed by the attention pooling layer described in [23]. Me-
dian filtering is applied during post-processing. This architecture
features 11 million trainable parameters. The model is trained on
200 epochs with the Adam optimizer.

4. AUGMENTATION STRATEGIES

4.1. Training framework

We compare several training objectives. In each case, the training
objective can be decomposed into three cost functions: a classifica-
tion metric penalizing prediction errors Lclass, a consistency metric
promoting invariance to data augmentations Lconst and a regular-
ization metric Lreg .

We segment the training mini-batches into three parts, each cor-
responding to one of the datasets Du, Dw and Ds. We use the re-
spective proportions (1/2, 1/4, 1/4).

We note f the baseline and fema its exponential moving av-
erage across iterations. If we note f (n) the model obtained after

2https://zenodo.org/record/3588172
3https://github.com/turpaultn/dcase20_task4/
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iteration n (similar notation for fema) and α(n) a coefficient vary-
ing during the training, then fema is defined by

f (n+1)
ema = α(n)f (n) + (1− α(n))f (n)

ema. (1)

Noting x a recording in the DESED dataset, y the corresponding
label when it exists, d a Gaussian noise vector, LBCE the binary
cross-entropy and LMSE the mean square error, we can define the
training objective of the baseline as follows:

Lclass =

{
LBCE [f(x), y] if (x, y) ∈ Dw ∪ Ds

0 else
, (2)

Lconst = LMSE [f(x), fema(x+ d)], (3)
Lreg = 0. (4)

Through our experiments, we keep the classification cost used by
the baseline. However, we will experiment with other consistency
and regularization costs.

4.2. Consistency costs

The simplest consistency cost we considered is the L2 distance be-
tween a prediction f(x) and a perturbed prediction f(x+ d) (with
d a Gaussian noise vector):

Lconst = LMSE [f(x), f(x+ d)]. (5)

We have also considered an adversarial consistency cost,

d = ∇d LMSE [f(x), f(x+ d)] |d=0, (6)
Lconst = LMSE [f(x), f(x+ d)], (7)

as well as the following variant of VAT:

d = argmax∥d∥≤ϵ LMSE [f(x), f(x+ d)], (8)
Lconst = LMSE [f(x), f(x+ d)]. (9)

The original VAT algorithm uses the KL-divergence as a metric to
compare the two outputs of the classifier f(x) and f(x+ d). How-
ever, the L2 distance proved to be empirically better for this task.
This choice also has the added benefit to homogenize the definition
of the consistency costs Lconst that we study. Indeed, these costs
differ now only by the definition of the perturbation d.

Finally, we use a Mixup consistency cost, computed from a sec-
ond sample x′

Lconst = LMSE [Mixup(f(x), f(x′)), (10)

f(Mixup(x, x′))].

All these augmentations can be applied to the internal representa-
tions of the model. We apply data augmentation to the output of the
CNN block and to the output of the RNN block of the baseline (see
Figure 1).

4.3. Regularization costs

The baseline does not use an explicit regularization cost. This is be-
cause MT combines a consistency criterion and regularization cri-
terion into a single training objective

Lconst = LMSE [f(x), fema(x+ d)]. (11)

Audio

Augmentation

CNN

Augmentation

RNN

Augmentation

Attention pooling

Weak Strong

Figure 1: Architecture of the baseline system and location of the
data augmentation modules.

However, this method prevents us from fine tuning the trade-off be-
tween regularization and consistency in the final training objective.
Yet, we have observed that this fine tuning is crucial when the model
is dealing with difficult augmentations, such as adversarial attacks
(see subsection 5.1).

For this reason, we have also experimented with a more tradi-
tional L2 regularization cost

Lconst = LMSE [f(x), f(x+ d)], (12)
Lreg = L2[f ], (13)

where L2[f ] is computed on the model parameters.

5. EXPERIMENTAL RESULTS

The different training methods that we have used and the scores
that we have obtained are summarized in Table 1. Hyperparameters
have been selected using the validation score computed on a split of
Ds.

Table 1: Comparison of training methods. Highest values are shown
in bold, and scores above the baseline are underlined. The baseline
uses random noise as an augmentation strategy.

Location Regularization ScoresAugmentation Input Latent None MT L2 macro psds
None x 0.291 0.500
Baseline x x 0.381 0.552
Random x x 0.397 0.534
Random x x 0.388 0.565
Adversarial x x 0.374 0.559
VAT x x 0.311 0.461
VAT x x 0.358 0.539
VAT x x 0.362 0.542
Mixup x x 0.351 0.507



Detection and Classification of Acoustic Scenes and Events 2022 3–4 November 2022, Nancy, France

5.1. Separate regularization and consistency costs

The experiments that we conducted on random and adversarial aug-
mentations suggest that it is advantageous to keep a separate regu-
larization and consistency cost.

If we compare lines 2 and 3 of Table 1, which both use input
noise as an augmentation strategy and differ only by the regulariza-
tion method, we notice an improvement in macro score (increasing
from 0.381 to 0.397) balanced by a drop in psds score (decreas-
ing from 0.552 to 0.534). This leads to the following observation.
Using L2 regularization instead of MT regularization gives us an
additional degree of freedom, which can be used to optimize either
the macro score or the psds score. This property is useful. Indeed,
macro and psds scores are partially conflicting: depending on the
use case, it might be advantageous to optimize either of them [24].

If we compare lines 6 and 7 of Table 1, which both use VAT
as an augmentation strategy and differ only by the regularization
method, we notice this time an improvement both in macro score
(increasing from 0.311 to 0.358) and psds score (increasing from
0.461 to 0.539). We hypothesize that, when the data augmentations
become harder to handle for the model, it becomes increasingly ad-
vantageous to keep a separate regularization and consistency cost.

5.2. Simplified training method

As we have seen by focusing on the macro metric and comparing
lines 2 and 3 of Table 1, the MT objective can be advantageously re-
placed by a L2 regularization cost and a consistency cost penalizing
the sensitivity of the model f to input noise. Further experiments
have shown that this advantage is maintained even when the amount
of data used for training is decreased. Moreover, the classification
score is improved across classes. This algorithm thus seems to es-
cape the curse of class dependency that has been recently discussed
in the literature on regularization and data augmentations [25].

This new method is a simplification of the MT approach. As we
have already mentioned, it makes it easier to analyze the individ-
ual impact of the training objectives (classification, regularization,
and consistency), and to fine-tune their relative contribution during
training. Moreover, since the fema model is no longer necessary,
we can divide by two the number of parameters kept in memory
during training. Although we did not observe it during our exper-
iments, this method may also lead to faster training. Indeed, the
update of fema is not necessary anymore, and the added regulariza-
tion cost is already computed implicitly by some implementation of
the Adam optimizer (for instance, this is the case in the widely used
framework Pytorch). However, these advantages come at the cost
of an additional hyperparameter to adjust.

5.3. Advantage of depth

The experiments that we conducted on random and adversarial aug-
mentations suggest that it is advantageous to use latent augmenta-
tions.

If we compare lines 3 and 4 of Table 1, we notice that using la-
tent noise instead of input noise leads to an increase in psds score.
This training method offers a good compromise between macro
score (decreasing slightly from 0.397 to 0.388) and psds score (in-
creasing from 0.534 to 0.565). This result could be explained by
the following. The authors of [2] suggest that adding noise to the
input of a classifier moves its decision boundaries away from the
training data, and thus improves its generalization power. Follow-
ing this hypothesis, adding noise to the internal layers of f improves

its performance as a classifier. This leads to an improvement of the
psds score, which is more sensitive to the labeling accuracy. On
the other hand, the macro score, which is more sensitive to the
temporal accuracy, does not vary as much.

5.4. Adversarial and Mixup augmentations

Despite encouraging first results, the experiments we performed
with adversarial and Mixup augmentations did not yield any im-
provement over our experiments with random noise. We may ex-
plain the failure of adversarial perturbations by observing that the
generated samples are not realistic. Consequently, the invariants
developed with these methods are not useful for the detection and
classification of sound events. This motivates the study of data aug-
mentations that are specific to the audio domain, and are more rele-
vant for this task.

6. CONCLUSION

This article analyzes the impact of several domain agnostic data
augmentation strategies on the baseline of task 4 of the DCASE
challenge. We propose a simple variant of the MT method, which
improves its performance. The results that we obtained with adver-
sarial augmentations suggest that it may be advantageous to restrict
the search space to realistic augmentations. In a future study, we
will test this hypothesis and examine the impact of audio related
augmentations on sound event detection. As the dimension of the
augmentation space increases, we anticipate that the search strategy
will become a central issue.
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Ç. Bilen, and S. Krstulović, “Improving sound event de-
tection metrics: insights from DCASE 2020,” in Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021.

[25] R. Balestriero, L. Bottou, and Y. LeCun, “The effects of reg-
ularization and data augmentation are class dependent,” arXiv
preprint arXiv:2204.03632, 2022.


