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Abstract

In this work we propose to use a multidimensional spatial model to
represent preferences of a group of decision makers in multi-criteria deci-
sion aiding. The decision makers are represented in a shared space with
the alternatives so that their positions are consistent with the pref-
erences that they express on pairs of alternatives. We show how the
parameters of this preference model can be learnt from holistic prefer-
ence judgements, and discuss its various consequences and properties.
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1 Introduction

1.1 Context and motivations

In the spatial theory of voting, voters and candidates are represented as points
in a space defined by a set of attributes or political issues. The position of the
voters and the candidates is defined by the way in which they espouse these
issues. This space could be single dimensional (left, right), double dimensional
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2 1 INTRODUCTION

(social and economic policy) or could have many more dimensions. The main
purpose of the spatial voting model is to describe and analyse the voters’
behaviours and to estimate the outcome of an election using the distance
between the voters and the candidates [1]. But other tasks are made possible,
such as classifying voters or candidates according to similar characteristics,
understanding the preferences that certain voters have for certain candidates,
and how candidates should adapt their strategy to meet more voters. Spatial
representation of voting situation is an old topic in the field of social choice
theory. Since the seminal and early works of Hotelling [2], Black [3] and Downs
[1], many developments have been proposed to model voting situations within
the spatial model framework. One can refer to Enelow and Hinich [4] or Miller
[5] for a good introduction to spatial voting models, to Eguia [6, 7] for a
theoretical approach and to Armstrong et al. [8] or Negriu and Piatecki [9] for
recent applicative approaches.

The objective of multi-criteria decision aiding [10] is to provide a recom-
mendation to a decision maker, confronted with a set of alternatives, described
through a set of potentially conflicting criteria, by taking into account his or
her preferences. This recommendation usually takes one of three forms: the
choice of an alternative considered satisfactory, a sorting of the alternatives
into categories, or a ranking of the alternatives from best to worst. Next to
that, in many real-world decision problems it may be interesting to under-
stand the behavior of the decision maker when faced with these alternatives
or to compare the behavior of several decision makers when faced with these
alternatives.

These observations lead us to draw a parallel between multi-critera decision
and spatial voting theory. The decision maker plays the role of the voter, the
alternatives are the candidates, and the criteria can be seen as attributes or
political issues describing the voters and the candidates.

Therefore, in this work we propose to use an approach similar to spatial
voting theory in multi-criteria decision aiding. We represent the decision maker
in the criteria space so that his or her position is consistent with the preferences
that s/he expresses on pairs of alternatives. The idea is as follows: if s/he says
that s/he prefers alternative a to alternative b, then the point representing the
decision maker in the criteria space must be closer to a than to b. Similarly, if
s/he also says that s/he prefers c to d, then the point representing the decision
maker must also be closer to c than to d, while being closer to a than to b. An
example of such a spatial representation of multi-criteria preferences is given
in Figure 1 for 2 decision makers.

The idea of positioning the decision maker in the same multidimensional
space as the alternatives can be used for different purposes. For example, sim-
ilarly as in the spatial theory of voting, this paradigm allows us to explain to
a decision maker in which part of the criteria space s/he is located, and con-
sequently, which alternatives can be the best for him or her. Moreover, it will
allow us to position different decision makers in this space in order to eval-
uate their proximity, or to determine on which alternatives their preferences
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Fig. 1: Example of a spatial representation of 5 alternatives described on 2
attributes and 2 decision makers (DM1 and DM2). Preferences are a ≻1 b ≻1

d ≻1 c ≻1 e and d ∼2 e ≻2 c ≻2 a ≻2 b.

are similar or dissimilar to facilitate group decision making. And last but not
least, the preferences on the criteria do not have to be monotonically increasing
or decreasing, as usually supposed in multi-criteria decision aiding, but sim-
ply single-peaked. This single-peakedness property of the preferences allows to
deal with a larger range of decision problems. Most of all do not require a re-
encoding of the underlying criteria scales, which in turn tends to degrade the
readability of the results for the decision maker.

1.2 Related work

Just a few related contributions have been identified concerning multi-criteria
decision aiding dealing with spatial representations of both alternatives and
decision makers. Some works propose to represent the decision maker as a
vector of parameters of a particular preference model in the parameter space.
For example, Mareschal et al. [11] have introduced a geometrical represen-
tation of the decision problem when the preferences are modelled through
PROMETHEE [12]. This work has led to various recent improvements and
variations [13–15], however it is linked to a very specific preference model, and
requires the determination of preference parameters. Pajer et al. [16] propose
to perform a visual analysis of weight spaces when the aggregation is performed
through a weighted sum. The proposed technique allows to better understand
how robust a decision is to plausible weights variations. Again, this work is
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situated in the parameters space, and does not allow for any analysis of the
alternatives in the criteria space.

Still in multi-criteria decision aiding, several methods make use of an ideal
alternative (which could be seen as a representation of the decision maker
in the criteria space) and a notion of distance. The TOPSIS method [17–19]
evaluates the preferences between the alternatives and their ranking using a
distance to an ideal alternative. Chen et al. [20, 21] propose a sorting model
using a case-based distance procedure using the weighted Euclidean distance
in order to relax the assumption of preference monotonicity. These distance-
based approaches are the closest to the model that we develop here, but they
are applied for a specific decision problem (ranking or sorting). They suppose
that the ideal alternative is known, which is not the case of our work.

As we will see, another advantage of our proposal is that it does not require
that the preference directions of the criteria be specified by the decision maker,
nor that they be assumed to be monotonic. In multi-criteria decision aiding,
several preference models require to identify whether the criteria are to be
maximized or to be minimized. Usually it is also supposed that the preferences
on the criteria are monotonic. Different contributions propose to handle the
case of non-monotonic preferences on criteria. For the Multi-Attribute Value
Theory (MAVT) approach, Despotis et al. [22], Kliegr [23], Liu et al. [24],
Ghaderi et al. [25], Kadziński et al.[26] or Guo et al. [27] propose various models
and elicitation techniques for models with non-monotonic or single-peaked
criteria. For the outranking approach, these non-monotonic assumptions are
more rarely encountered, except in the work of Minoungou et al. [28, 29].

The works mentioned above are specific to a single decision-maker. The
questions of finding a compromise for a group of decision makers and to build
a common preference model are not studied in these articles.

In social choice theory, and more specifically the spatial theory of voting,
these non-monotonicity and single peaked criteria issues have also been dealt
with. We can cite for example the work of Conitzer [30] who deals with eliciting
single-peaked preferences using comparison queries. More recently, Escoffier
et al. [31] undertake a comparison of popular distance measures for single-
peakedness.

1.3 Contribution

In this work, we propose to represent the preferences of decision makers with
respect to alternatives through the distance of these decision makers to these
alternatives in the attribute space. This model is user-oriented and preferences
are fully explainable directly from the available data.

We also propose several algorithms to identify the parameters of the model
under various hypotheses. The consequences of this proposal are also discussed,
first concerning the ability to provide a position of the decision makers in the
attributes space; and second concerning the comparison of several decision
makers to each other and to make relevant group decision recommendations.
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We also show that the model allows to deal with single-peaked preferences,
and we apply the proposal to a real case study.

This article is structured as follows. First, in Section 2 we introduce the
spatial decision model and study some of its properties and consequences,
especially regarding group decision making. Section 3 details how the param-
eters of the model can be determined through a holistic approach, where the
decision makers provide preferential statements regarding pairs of alternatives.
In Section 4 we detail a real-world case study which has been solved using
the proposed model, before drawing some conclusions and mentioning some
perspectives in Section 5.

2 Multidimensional spatial model

2.1 Spatial decision model

Let us consider a set of alternatives denoted A. Each alternative a ∈ A is
evaluated on a set of m attributes denoted M = {1, . . . ,m}. Let aj be the
quantitative evaluation of a on attribute j ∈ M, with aj ∈ R. a can be
identified with its performance vector, i.e., a ≡ (a1, . . . , am). As a consequence,
an alternative a ∈ A can be represented by a point in a multidimensional space
E = Rm, in which each dimension corresponds to one attribute of M. We do
not suppose in this work any preference direction given by the decision maker
on the attribute scales. Following Roy [10], we therefore do not use the word
“criteria” here, and rather speak of “attributes”.

The proposed decision model is based on the relative positions of the deci-
sion makers and the alternatives in the same multidimensional space. Let
X = {1, . . . , n} be the set of n decision makers.

Let ≿i⊆ A ×A be the preference relation of ith decision maker i ∈ X on
the alternatives of A. The symmetric part of ≿i, which models indifferences,
is denoted ∼i , whereas the asymmetric part is denoted ≻i and models strict
preferences.

We define the spatial preference model (SP-model) as follows:

Definition 1. (Spatial preference model) Let i ∈ X . A preference relation ≿i

on A follows a spatial preference model if and only if
• there exists a representation Xi ≡ (xi

1, . . . , x
i
m) of i in E

• there exists a distance δ on E×E a real function of two variables
such that ∀(a, b) ∈ A×A:

{
a ≻i b ⇐⇒ δ(a,Xi) < δ(b,Xi)
a ∼i b ⇐⇒ δ(a,Xi) = δ(b,Xi).
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2.2 Properties

The spatial preference model of Definition 1 is obviously a utility-based model,
and it therefore models total pre-orders on the set of alternatives. The hypoth-
esis of single-peakedness on each attribute is the second characteristic of spatial
preference models. We develop these properties in the following.

Utility-based models are described as follows, for a given decision maker of
X . To ease the notation, we do not index or superscript each of the elements
by i ∈ X in Properties 1 and 2 and Proposition 1.

Property 1. The preference relation ≿ follows an utility-based model if there
exists a function F : Rm → R and m function u1, . . . , um from R to R such
that ∀a, b ∈ A,

a ≿ b ⇐⇒ F (u1(a1), . . . , um(am)) ≥ F (u1(b1), . . . , um(bm))

Moreover the preference relation ≿ is said to follow an additive utility-based
model iff

a ≿ b ⇐⇒
∑
j∈M

uj(aj) ≥
∑
j∈M

uj(bj)

A complete characterization of preference relations that can be represented
by a spatial model using a Minkowski metric as distance has been proposed
in [7] in the framework of political issues. This characterization is based on
both utility functions and single-peakedness property. Following [7], and denot-
ing (aj , b−j) the alternative that takes the value aj on attribute j and bi on
attributes i ∈ M, i ̸= j, we define multi-attribute single-peakedness as follows.

Property 2. (Multi-attribute single-peakedness) There exists an ideal alter-
native x∗ = (x∗

1, . . . , x
∗
m) ∈ E such that for each attribute j ∈ M and any

values ak, bk, ck, dk ∈ R,

ak < bk < x∗
k < ck < dk ⇒ (bk, x

∗
−k) ≻ (ak, x

∗
−k) and (ck, x

∗
−k) ≻ (dk, x

∗
−k)

Eguia [7] therefore proposes a characterization theorem, which we adapt in
our framework with the following proposition:

Proposition 1. For any positive real number α, there exists a spa-
tial representation fα = (fα

1 , . . . , f
α
m) such that the utility function

u(a)x = −
∑m

j=1 | fα
j (aj) − fα

j (xj) |α represents the preference order ≿
if and only if ≿ follows an additive utility model satisfying the multiple
single-peakedness properties.

Note that the utility function u(a)x is negative to ensure that the closer a
is to x (and the smaller the absolute value of u(a)x), the most a is preferred
by the decision maker. Proposition 1 is not so informative as, emphasized by
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Nehring and Puppe in [32], obviously, every given preference ordering is single-
peaked with respect to some appropriate betweenness relation. Therefore, using
both utility functions and a specific α distance, Proposition 1 leads to over-
parametric models facing an observed preference situation. We propose in our
proposal to restrict the number of parameters in two different ways. First, we
consider that the model should be user-oriented, and fully explainable directly
from the available data. Therefore, we do not encourage the use of utility
functions as all the attributes are described with values on R. The issue of
using different scales for the different attributes can be fixed by two other
means: standardization of the attributes (for example using the same 0-1 or 0-
100 scale for each attribute) and / or a weighted distance, which is developed
below.

Proposition 1 proposes a large (infinite) possibility of distances to model
spatial preferences. Keeping in mind the aim that the model should be easily
understandable by the decision-makers, we focus on the classical Euclidean
distance, i.e. α = 2.

However, with a fixed distance and without any utility functions, the model
could sometimes be under-parameterized. Therefore, in order to capture the
importance given by different decision makers to the same attributes, we pro-
pose to use an extension of the Euclidean distance, which weighs the various
attributes differently, and gives further flexibility to the model. The weighted
Euclidean distance is defined as follows for an alternative a ∈ A and i ∈ X :

δ(a,Xi) =

√∑
j∈M

wi
j · (xi

j − aj)2, (1)

where wi
j ≥ 0 and

∑m
j=1 w

i
j = 1.

We use this weighted Euclidian distance in the model of Definition 1 to
specify our spatial preference model.

Definition 2. (Spatial weighted Euclidean preference model)
Let i ∈ X . A preference relation ≿i on A follows a spatial weighted

Euclidean preference model if and only if
• there exist a representation Xi ≡ (xi

1, . . . , x
i
m) of i in E

• a set of weights wi
j ≥ 0, j = 1, . . . ,m and

∑m
j=1 w

i
j = 1

such that ∀(a, b) ∈ A×A:

a ≿i b ⇐⇒
√∑

j∈M

wi
j · (xi

j − aj)2 ≤
√∑

j∈M

wi
j · (xi

j − bj)2

The advantage of this weighted Euclidean distance compared to the clas-
sical Euclidean distance, is that it leads to a larger flexibility of the model, by
allowing for differences on the attributes to be more or less important in the
distance calculation for each decision maker. We therefore keep the main inter-
est of the SP-model, that is to capture in a single explainable model preferences
that are different for different decision makers.
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Fig. 2: Two decision makers posi-
tioned in X1 ≡ (0.63, 0.51) and X2 ≡
(0.63, 0.30).

A
M

1 2

a 0.73 0.48
b 0.45 0.75
c 0.30 0.30
d 0.90 0.90

Table 1: 4 alterna-
tives on two quantitative
attributes

2.3 Use cases of the model

Let us now discuss a few intuitive consequences of the preference model of
Definition 2. Remember that the parameters of a spatial weighted Euclidean
preference model are 1) the positions of each of the decision makers Xi in the
space E, 2) the weights wi

j , ∀j ∈ M, for each decision maker.

Influence of the weights

For a given position of a decision maker, different weights in the weighted
Euclidean distance can lead to different preference orders of the alternatives.

To illustrate this, consider the two-dimensional example of Figure 2. A
decision maker is represented as point X1 which is positioned in (0.63, 0.51).
We consider four alternatives a, b, c and d whose performances can be found
in Table 1.

If we consider for this decision maker equal weights in the distance (w1
1 =

w1
2 = 0.5) the preference order on a, b, c and d is a ≻1 b ≻1 c ≻1 d. If we

consider non-equal weights for this same decision maker (w1
1 = 0.9, w1

2 = 0.1)
the preference order is however a ≻1 b ≻1 d ≻1 c.

This shows that these weights allow to modify how differences on the
attributes influence the distance calculation in the preference model, and thus
the final pre-order. To illustrate this, when non-equal weights are considered,
very small difference on the first attribute have a high impact on the distance
calculation, whereas the differences on the second attribute must be very large
in order to influence the distance significantly. This allows to modify the pref-
erence order between c and d, without changing the position of the decision
maker.
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Influence of the position

We also observe that the weighted Euclidean distance allows to obtain the
same preference orders on the alternatives for very different decision maker
positions and their associated weights, i.e. for very different decision maker
profiles.

To illustrate this, reconsider the same example as in Table 1. The first
decision maker considered here is again positioned in X1 ≡ (0.63, 0.51) and
we consider equal weights. As before this leads to a ≻1 b ≻1 c ≻1 d. A
second decision maker whose optimal alternative is in X2 = (0.63, 0.30) with
(w2

1 = 0.75, w2
2 = 0.25) leads to the same preference order.

Positions of the decision maker compatible with a given preference
order

If we fix the weights for a decision maker, it is quite straightforward to deter-
mine his or her positions which are compatible with a given preference order
of the alternatives.

As it can be deduced from Definition 1, these positions are located in a
polyhedron defined by a set of inequalities, which can be deduced from the
preference model. The way of obtaining this set of possible positions will be
further explored in Section 3, where we show how to determine the parameters
of the model.

Preference directions

As already said, the preference directions on the attributes are not specified
beforehand in the proposed decision model. This removes a burden of the
decision maker, as s/he does not have to specify whether the attributes are
to be maximized or minimized. In the examples we can also see that the
representation of the decision maker in the attributes space does not necessarily
have to be in an extreme position, i.e., in one of the “corners”. This means
that his or her “ideal” alternative can have intermediate evaluations on the
attributes. This is directly linked to the single-peakedness of the attributes, as
mentionned in Section 2.2.

In the classical situation, with known criteria preference directions and
monotone preferences, the proposal still holds. In this situation the decision
maker will be located at the position of the classically called “zenith” alterna-
tive, which is the ideal solution (maximizing or minimizing the performances
on all the criteria) [17].

Compromise alternative

As already said above, depending on the positions of the decision makers and
the weights used in the weighted Euclidean distance, the pre-orders of the
alternatives may potentially be very different. Therefore, determining a com-
promise alternative (for the choice problem) for the group of decision makers is
a hard task, if it is solely based on these rankings. The proposed model allows
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to determine a compromise alternative by searching for the alternative which
is “closest” to all the decision makers in E.

However, this notion of proximity can be interpreted and defined in various
ways. Here we propose to use the “average” distance between the decision
makers and the alternatives, and select the alternative, which on average, is
the closest to the positions of the decision makers in E. More formally this
comes down to searching for alternative c ∈ A such that:

c = arg min
a∈A

∑
i∈X

δ(a,Xi)

As mentioned in the introduction, if we apply this rule to the problem of
Figure 1, this leads to recommending c to the two decision makers.

Clusters of similar decision makers

Another interesting use of the proposed model is to group together decision
makers who are close to each other in E, in order to be able to describe them
in a synthetic way.

However, this supposes that they share the same definition of the distance,
i.e., in our case the same weights in the Euclidean distance. In that case,
any distance-based clustering method can be used, as for example k-means or
hierarchical clustering [33].

3 Inference of parameters

Usually in the spatial voting models, the unknown parameters are both the
positions of the candidates (the decision makers for us) and the voters (the
alternatives). The methods used in this case, as shown by Armstrong et al.
[8], are not suitable for our paradigm where the positions of the alternatives
are known, and where mainly two types of parameters have to be determined:
the positions of the decision makers in E and the weights used in the weighted
Euclidean distance.

As classically done in Multi-Criteria Decision Aiding, they could be elicited
in a direct way [34], by questioning the decision makers. However, as one or
both of these elements are not necessarily known by the decision makers, we
propose to use an indirect elicitation approach to learn the parameters of the
model through a holistic approach [35]. Each of the decision makers will express
his or her preferences on couples of alternatives (either a strict preference or
an indifference).

We will consider two situations that characterize the relationships among
the decision makers in the group. First, we will consider a situation where the
decision makers in the group do not share any elements of the preference model
among themselves. This means that each individual has their own position
and weights. The second situation considers that a part of the model is shared
among the decision makers, either the weights or the positions. We will refer
to the decision makers as ”unconnected” in the first situation, or ”connected”
in the second situation.
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In addition to this, it is possible that the preferences expressed by some
decision makers in the group are incompatible with the proposed model. How-
ever, in this study, we will attempt to find model parameters that minimize
errors in the expressed holistic preferences. We will refer to decision makers as
”compatible” or ”incompatible” with the proposed model.

In this section we first present various mathematical models to learn
the preference parameters of the proposed model from preference judgments,
for the various situations discussed above. Then we detail an experimental
study on artificial data to estimate the calculation times for this parameter
identification and the generalization power of the model on unseen data.

3.1 Mathematical modeling and resolution

Let us now present how the preference parameters of the proposed model can
be determined by using mathematical programming techniques. The unknowns
(or the variables) to be determined are the values of the preference parameters
of the proposed model, i.e.:

1. the positions of the decision makers in the multidimensional space E,
Xi ≡ (xi

1, x
i
2, . . . , x

i
m), ∀i ∈ X ,

2. the weights of the different attributes wi
j , for j ∈ M used in the distance,

∀i ∈ X (see Equation 1).

3.1.1 Unconnected decision makers compatible with the
model

In this first formulation we consider that all the decision makers are uncon-
nected and thus do not share any preferential parameters (neither the weights
nor the positions). This means they all have independent preference models.
Next to that, we assume here that the preference statements expressed by
these decision makers are all compatible with the proposed model.

To determine the values of these preference parameters in this first case,
we model the problem as a non-linear mathematical program. The formulation
of this program is presented in Table 4 and its parameters and variables are
respectively given in Tables 2 and 3.

A the set of alternatives
M the set of m attributes
Li
P a set of pairs (a, b) ∈ A×A where a is

preferred to b by i,∀i ∈ X
Li
I a set of pairs (a, b) ∈ A×A where a

and b are considered as indifferent by
i,∀i ∈ X

γ a small constant used to model strict
inequalities

Table 2: Input parameters of the first mathematical model
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wi
j continuous : the weights of the attributes, ∀j ∈ M for

i,∀i ∈ X
xi
j continuous : the position of i on dimension j,

∀j ∈ M,∀i ∈ X
δia continuous : the distance between Xi and a,

∀a ∈ A,∀i ∈ X (auxiliary variables)

Table 3: Variables of the first mathematical model

min 0
s.t.
wi

j ⩾ γ ∀j ∈ M, ∀i ∈ X
m∑
j=1

wi
j = 1 (i)

0 ≤ xi
j ≤ 1 ∀j ∈ M,∀i ∈ X

δia =

√√√√ m∑
j=1

wi
j(aj − xi

j)
2 ∀a ∈ A,∀i ∈ X (ii)

δia + γ ⩽ δib ∀(a, b) ∈ Li
P ,∀i ∈ X (iii)

δib = δia ∀(a, b) ∈ LI ,∀i ∈ X (iv)

Table 4: First mathematical model

In the model of Table 4, no objective function is considered, which comes
down to simply looking for a feasible solution. However, it could be possible to
avoid extreme values for the weights by minimizing the standard deviation of
the different criteria weights. The constraints (i) specify that all the weights
have to be strictly positive and sum up to 1 and that the positions of the
decision makers are bounded in the unit interval, while constraints (ii) model
the distance between an alternative a ∈ A and the ith decision maker’s position
Xi ≡ (xi

1, x
i
2, . . . , x

i
m). Constraints (iii) (resp. (iv)) are used to represent strict

preference (resp. indifference) judgments of each decision maker.
Let us illustrate the use of this mathematical program on a small example

in which we consider a problem with 2 attributes and 6 alternatives a, b, c, d, e
and f of A and a single decision maker, i.e. X = {1}. The performances
of the 6 alternatives on the 2 attributes are given in Table 5. This decision
maker considers that a ≻1 b, c ≻1 d and e ≻1 f . Solving the first mathe-
matical model with these preferential statements leads to a feasible solution
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given by X1 = (0.2, 0.1), w1
1 = 0.75 and w1

2 = 0.25. It is possible to repre-

A \M 1 2
a 0.1 0.1
b 0.3 0.3
c 0.5 0.2
d 0.6 0.5
e 0.3 0.4
f 0.2 0.5

Table 5: Performances of the alternatives for the preference elicitation

sent this problem in a plane, which is shown on Figure 3. The axes represent
the attributes and the alternatives are represented as points. When two alter-
natives are linked by a dotted segment, the decision maker has expressed a
preferential judgement on this pair. The line passing through the center of this
segment delimits two half-planes. In each of these half-planes, either one of the
two considered alternatives is strictly preferred to the other one, or vice versa.
On the line delimiting these two half-planes, both alternatives are considered
as indifferent. Each gray half-plane correspond to the area in which the deci-
sion maker has to be located to respect the corresponding strict preference
constraint. The intersection of the 3 half-planes corresponding to the 3 strict
preferential statements is the dark grey triangle-shaped area on the bottom
left (the darker an area, the more half-planes are intersecting in this area). All
the points in this triangle area are closer to a than they are to b, while being
closer to c than to d and closer to e than to f . X1, determined by the previous
mathematical program, is obviously located in this triangle. The angles of the
indifference lines with the dotted segment depend on the values of the weights
in the weighted Euclidean distance.

As already said, using this first model assumes that all the preferences
expressed by all the decision makers are compatible with the proposed distance
model. If this is the case, this program will have a feasible solution. However,
in real-world cases this might not always be the case, and some of the strict
preference and indifference judgements expressed by the decision makers might
not be compatible with the proposed model. To solve this issue, we propose
an extension of this initial mathematical program hereafter.

3.1.2 Unconnected decision makers partially incompatible
with the model

The idea behind this first extension is that if there is no feasible solution
compatible with the decision maker i’s preferences, then we try to position
Xi in such a way as to minimize an error measure. Intuitively, for each strict
preference and indifference statement, we allow the distance condition to be
violated by a certain amount. The goal of the mathematical program is then
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Fig. 3: 3 pairs: a ≻1 b, c ≻1 d, e ≻1 f

to minimize the total error, throughout all the decision makers. In case all the
preference and indifference statements of all the decision makers are compatible
with the proposed model, then there are no such errors, and the program
comes down to that of the initial mathematical program. More precisely, for a
strict preference constraint (iii), a positive continuous auxiliary variable σP,i

(a,b)

is added to the right hand side, so that in case δia cannot be strictly smaller

than δib, then σP,i
(a,b) will be chosen positive by the solver. For an indifference

constraint (iv), a continuous (positive or negative) auxiliary variable σI,i
(a,b) is

added to the right hand side in order to allow for the distance from Xi to a
to be larger or smaller than that from Xi to b. The objective function is the
sum over all decision makers of the sum of two terms: first the sum of the
(positive) errors from the preference constraints, and second the sum of the
absolute values of the errors from the indifference constraints. To model the
absolute values τ I,i(a,b) of σI,i

(a,b), we use constraints (v), where ρI,i(a,b) is a binary

variable, and N a positive parameter, larger than the largest possible distance
which may be encountered. The extra variables and parameters needed for this
program are given in Tables 6 and 7.

This elicitation model supposes again that all the decision makers are
unconnected and therefore do not share any common preference parameters.

Figure 4 shows the example from Table 1 in which the decision maker has
expressed the following holistic preferences : a ≻1 b, c ≻1 d, e ≻1 f , f ∼1 d
and e ∼1 d. The 2 dashed lines correspond to the 2 indifference statements.
The first mathematical program is not able to find a feasible solution for this
problem. However the second program finds a solution in which the decision
maker is positioned in X1 ≡ (0.40, 14), with w1

1 = 0.2 and w1
2 = 0.8). This

position violates the indifference statement between e and d, but the other
statements are respected. The weighted distance between X1 and e is lower
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σP,i
(a,b) continuous auxiliary variables that allow to violate the

preference condition on (a, b), σP,i
(a,b) ≥ 0,

∀(a, b) ∈ Li
P ,∀i ∈ X

σI,i
(a,b), continuous auxiliary variables that allow to violate

the preference condition on (ab) ∀(a, b) ∈
L,iI ,∀i ∈ X

τ I,i(a,b) continuous variable representing the absolute value of
σI,i, τ I,i(a,b) ≥ 0, ∀(a, b) ∈ Li

P ,∀i ∈ X
ρI,i(a,b) binary variable for the modelling of the absolute value

of σI,i
(a,b), ∀(a, b) ∈ Li

P ,∀i ∈ X

Table 6: Extra variables for the extended mathematical model

N a sufficiently large positive constant,
larger than the largest possible distance

Table 7: Extra parameter for the extended mathematical model
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Fig. 4: Example with a ≻1 b, c ≻1 d, e ≻1 f , f ∼1 d and e ∼1 d. The dashed
lines correspond to indifference statements.

than that between X1 and d, which means that according to this solution
e ≻1 d.

3.1.3 Connected decision makers partially incompatible with
the model

We now consider the case where there exists a link between the decision makers
of the group and where they share parts of the preference parameters of the
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min
∑
i∈X

(
∑

(a,b)∈Li
P

σP,i
(a,b) +

∑
(a,b)∈Li

I

τ I,i(a,b))

s.t.
wi

j ⩾ γ ∀j ∈ M,∀i ∈ X
m∑
j=1

wi
j = 1 (i)

0 ≤ xi
j ≤ 1 ∀j ∈ M,∀i ∈ X

δia =

√√√√ m∑
j=1

wi
j(aj − xi

j)
2 ∀a ∈ A,∀i ∈ X (ii)

δia + γ ⩽ δib + σP,i
(a,b) ∀(a, b) ∈ Li

P ,∀i ∈ X (iii)

δib = δia + σI,i
(a,b) ∀(a, b) ∈ Li

I ,∀i ∈ X (iv)

σI,i
(a,b) + NρI,i(a,b) ≥ τ I,i(a,b) ∀(a, b) ∈ Li

I ,∀i ∈ X
−σI,i

(a,b) + N(1 − ρI,i(a,b)) ≥ τ I,i(a,b) ∀(a, b) ∈ Li
I ,∀i ∈ X (v)

σI,i
(a,b) ≤ τ I,i(a,b) ∀(a, b) ∈ Li

I ,∀i ∈ X
−σI,i

(a,b) ≤ τ I,i(a,b) ∀(a, b) ∈ Li
I ,∀i ∈ X

Table 8: Extended mathematical model coping with incompatible preference
and indifference judgements

model. As already said, this connection could either concern the parameters
of the distance or the positions of the decision makers.

If the goal is to create clusters of similarly behaving decision makers, this
link between the decision makers has to be established in the distance measure,
so that a common definition of the distance allows to model a common behavior
regarding the attributes.

To learn such a common model, we propose to impose that all the deci-
sion makers share common weights in constraints (i) and (ii) of the extended
mathematical program. To do so, it is enough to add a set of constraints which
say that:

wi
j = wk

j ∀j ∈ M,∀i, k ∈ X .

These constraints will generate the same distance measure for each decision
maker. This limits the search for the model parameters much more, and it
is obvious that some preferential statements of some decision makers may no
longer be representable by this common model. In that case, the error vari-
ables will allow to find a feasible solution, by violating some of the preference
judgements, for certain decision makers. However, with this common distance
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measure, it is possible to use distance-based clustering algorithms to deter-
mine similar behaviors among the decision makers, in terms of their positions
in the attributes space.

We present an illustrative example in which we use the same alternatives as
in example from Table 1. This time we have two decision makers X = {1, 2}.
The first decision maker has expressed the following holistic preferences: a ≻1

b, c ≻1 d, e ≻1 f and f ∼1 d while the second one has expressed the following
holistic preferences: b ≻2 a, c ≻2 d and f ≻2 e. The solution found by the
elicitation model with common weights for the two decision makers places the
first decision maker at X1 = (0.39, 0.10) and the second at X2 = (0.10, 0.40),
with the weights w1

1 = w2
1 = 0.3 and w1

2 = w2
2 = 0.7. Figure 5 illustrates this

problem: on the left the constraints for decision maker 1, and on the right the
constraints for decision maker 2. We have chosen to represent both decision
makers in both Figures for illustrative purposes. Note that for this example,
all the holistic preferences of the 2 decision makers are respected.
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Fig. 5: Group decision problem with shared weights (decision maker 1’s con-
straints on the left, 2’s constraints on the right)

Another possibility is to link the decision makers by their position in the
attributes space. This comes down to allowing the weights to take independent
values among the decision makers, while imposing that the decision makers are
located in the same point in the attributes space. Similarly as to the previous
model, in constraint (ii) it is necessary to impose that the xi

j are common to
all the decision makers i ∈ X . To allow for some flexibility in the determination
of the preference parameters, we could however impose some tolerance on this
common location, by imposing that all the positions of the decision makers are
located in a small hypercube (of length 0 ≤ µ ≤ 1, which becomes a parameter
of the model).
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Thus, to locate the decision makers in this small hypercube, we have to
ensure that:

|xi
j − xk

j | ≤ µ ∀j ∈ M,∀i, k ∈ X .

To linearize this absolute value of the differences, we add these constraints to
the extended mathematical model:

xi
j − xk

j ≤ µ ∀j ∈ M,∀i, k ∈ X

−xi
j + xk

j ≤ µ ∀j ∈ M,∀i, k ∈ X
To illustrate this, we consider the same example with the same holistic

preferences expressed by the two decisions makers as above (1 : a ≻1 b, c ≻1 d,
e ≻1 f and f ∼1 d, 2 : b ≻2 a, c ≻2 d and f ≻2 e). With µ = 0.05, we obtain
a solution that places decision maker 1 at X1 = (0.29, 0.15) with weights
w1

1 = 0.001, w1
2 = 0.999 and the second one at X2 = (0.24, 0.20) with weights

of w2
1 = 0.999, w2

2 = 0.001. This solution violates the indifference between d
and f expressed by decision maker 1. On the left of Figure 6, it looks as if X1

could be moved further to the right to be positioned on the indifference line
separating f and d. However this is not possible, as the positions of X2 and
X1 are very constrained by µ. Consequently, for decision maker 1 f ≻1 d.
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Fig. 6: Group decision problem with close positions (decision maker 1 on the
left, 2 on the right)

The third possibility to link the decision makers is through the weights and
their positions simultaneously. This constraints the elicitation problem even
more than in the two previous variants. However, it allows to determine a com-
mon preference model for all the decision makers, which allows to rank the
alternatives through that unique model. It is obvious that a lot of incompatibil-
ities may arise in the individual preference judgements through this elicitation
model.
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In any case, it is obvious that if either the positions of the decision makers,
or their weights are known in advance, all these mathematical programs can
easily be adapted by transforming the variables related to the know preferences
into parameters.

3.2 Resolution and experimental study

Due to the square root in the definition of the weighted Euclidean distance,
and the product between the weights and the position of the decision maker,
the above mathematical programs are non-linear mixed integer programs.

It can be easily understood that dropping the square root from constraints
(ii) does not modify the resolution of these programs, as the square root is
a strictly monotonic function, and we only compare distances here. Dropping
the square root therefore leads to simpler non-linear programs, which we solve
using the non-linear solver in Gurobi [36]. We use the addGenConstrPow()

function of this solver to model power function constraints as piecewise-linear
approximations (we use FuncPieces=-2 as parameter that bounds the relative
error of the approximation).

In this section we propose to study experimentally the behaviour of the
proposed elicitation model when facing artificially generated random data, for
a single decision maker. The goal is to answer the following questions:

• How do resolution times vary with the number of input preference
statements?

• How does the model generalize when confronted with unseen data?
• What is the influence of noise in the input preference judgements on the

model?
In the experiments, the decision maker is replaced by a randomly generated

model (denoted by MDM), which is used to compare pairs of alternatives (and
which generates the holistic preferential statements).

We use two different sets of alternatives:
• a training dataset D of 100 alternatives, from which we will extract pair-

wise comparisons that will be used for the identification of the model
parameters through the second mathematical program (Table 8), without
the square root,

• and a test dataset Dtest composed of 1000 alternatives, which is used to
evaluate the performance of the elicited model on unseen data (to evaluate
the generalization capacity of the model).

The performance vectors attached to alternatives are randomly drawn as
floats (with 2 digits after the decimal point) within the interval [0, 1] using a
uniform distribution. We test different sizes of problems in terms of number
of attributes (3, 5, 7 and 9 attributes).

In a first step, we generate all possible (unordered) pairs of alternatives
from D. We obtain 4950 pairs with 100 alternatives. They correspond to all the
preference queries which could be presented to the decision maker regarding the
alternatives of D. Let Q denote the set of all (unordered) pairs of alternatives
in set D.
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To answer the questions related to resolution time and generalization, dif-
ferent sizes of learning sets (5, 20, 40, 60, 80 and 100 pairs) are generated. For
each size we select randomly pairs from Q and we obtain LP ∪ LI by apply-
ing MDM on the selected pairs. Using this information, we generate a model
(denoted by Mcur) using the second mathematical program from the previous
section (without the square root). Two rankings of the alternatives in Dtest

are then computed using both MDM and Mcur models and the Kendall ’s rank
correlation (τ) [37] is used to compare them. This measure is used as a sim-
ilarity indicator for the two rankings, and varies between -1 and 1. If both
rankings are identical then τ = 1, while if they are completely reversed then
τ = −1. We repeat this process 100 times (using different sets of alternatives
and generated models (MDM) and report the averaged results below.

To determine the influence of noise on the model, similar tests are per-
formed. However, we limit ourselves to 100 pairs in the learning set, and insert
different levels of noise. More precisely, a certain amount (5%, 10% 15% and
20%) of preference pairs are reversed (compared to those generated with Dtest),
which could lead to preference statements incompatible with the proposed
model. The goal here is to study the influence of this noise on both the quality
of the learnt model w.r.t. the learning set, and the test set.

All the experiments are performed on a computing server using 20 cores
and 100 GB of RAM.

Figure 7 shows execution times for the various problem sizes (in terms of
number of attributes). The abscissa represents the numbers of pairs in the
learning set, whereas the ordinate shows execution time in seconds. We can
observe that for a given problem size, execution time increases with the size
of the learning set. For example, for a learning set containing 100 pairs for
problems of 9 attributes, the solver requires about 500 seconds on average
to obtain the parameters of the model. Next to that, we can also see that
computation times increase with the number of attributes, for a given size of
the learning set.

The performance of the Inference of parameters algorithm for various prob-
lem sizes is shown on Figure 8. It shows the average Kendall’s tau of 100
executions on the test datasets between the ranking obtained through MDM

and the one obtained through Mcur, for different sizes of the learning set (and
different problem sizes). As we can see, Kendall’s Tau increases with the size
of the learning set. This was expected, since adding preference and indifference
constraints to the mathematical program reduces the uncertainty on the vari-
ables, and therefore allows to find a model which ranks similarly as MDM. For
example, for a problem with 5 attributes, this rank correlation index equals
on average about 0.9 when using 100 pairs. We can also see that Kendall’s
Tau decreases when the number of attributes increases, for a given size of the
learning set. This was also expected, as a higher complexity of the problem (in
terms of number of attributes) requires more learning examples.

Regarding noise in the preference statements, Figure 9 shows, for learning
sets of size 100, Kendall’s tau between the ranking obtained through the sought
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Fig. 7: Mean execution time in seconds for all problem sizes
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Fig. 8: Mean Kendall tau for all problems

model MDM and Mcur, for various levels of noise, and various numbers of
attributes, both on the learning set and the test set. It can be observed that
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adding noise to the input statements decreases the quality of the model, both
on the learning and the test datasets. Obviously, for 0% of noise, Kendall’s
tau on the learning set equals 1. Similarly, still for 0% of noise, Kendall’s tau
on the test set equals the highest value achieved in Figure 8. Due to higher
computational times in this noisy situation, tests were only performed on 3
attributes.
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Fig. 9: Mean Kendall tau for the different error percentage and both learning
and test dataset

4 Real world application: OOCIT

OOCIT1 is a set of tools which aims at facilitating the dialogue between various
stakeholders concerning urban and industrial territories. It has been devel-
oped in the context of the TIGA project [38], whose objective is to reconnect
industries with the territories and their inhabitants.

Among the different tasks of the laboratory, here we focus on the task that
aims at extracting the priorities of the various stakeholders with regards to
the future of their territory. These stakeholders are the industrial companies,
the public authorities and the inhabitants of the territory.

These priorities, which might differ from one stakeholder to another, are
expressed along different themes (“getting around”, “finding a place to live
or set up a business”, “resourcing (nature, culture, sports)”, “eating and
drinking”, “protecting yourself”, “work and training”). Inside each of these
themes, various features or attributes are contributing to the evaluation of the
territories according to each theme.

In the TIGA project, we have observed that, when the various stakeholders
were interviewed, they often had difficulties for expressing preferences related

1https://www.oocit.fr/public/home

https://www.oocit.fr/public/home
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to some of these attributes. Either they were unable to indicate clear preference
directions, or their preferences seemed to be non monotonically increasing
or decreasing with the attribute scales. Next to that, these stakeholders also
expressed the need to understand the differences of their priorities with those
of the other stakeholders.

This led us to develop the approach proposed in this paper, which allows
us to position the stakeholders (the decision makers of this proposal) with the
territories (the alternatives of this proposal) in a common space. Moreover,
it simplifies the comparison of the preferences of the various stakeholders and
allows us to find compromise territories for all the stakeholders, according to
each theme.

To show the interest of the approach in such a real world problem, we now
detail the output of the method on one specific theme, namely “finding a place
to live or set up a business”. It is composed of the following five attributes :
“population density”, “access to housing”, “security”, “industrial activities”
and “available space”. These attributes are the result of the aggregation of
several indicators, and their evaluation scales are therefore normalized between
0 and 1. Note that several indicators obtained through the use of open access
public statistics. Their evaluation scales have been normalized between 0 and
1 and aggregated with a weighted mean, under the supervision of experts of
the territory.

For reasons of confidentiality, we will not detail the characteristics of each
of the stakeholders interviewed. We will simply call them stakeholder1 and
stakeholder2.

Each of these stakeholders responded to a questionnaire, in which s/he
was presented with 4 among 64 possible territories, described according to the
attributes of the theme “finding a place to live or set up a business”. Each of
those attributes is an aggregation of multiple indicators through a weighted
sum, resulting in normalized scores in [0, 1].

The selection of these 4 alternatives is the result of an unsupervised hier-
archical clustering approach, where the 4 selected territories correspond to the
real territories closest to the centroids of the 4 obtained clusters.

To avoid any kind of bias related to the name of the territory we decided
to make them anonymous. The 4 territories are summarized in Table 9. The
remaining territories are in Table A.

Each stakeholder was then asked to rank those 4 territories according to
her or his priorities or preferences (the holistic preference statements). These
holistic preferences expressed by the stakeholders are summarized in Table 10.

Choosing the mathematical model to implement (among those presented
in Section 2) is obviously not an easy choice. In the context of this application,
we have noticed that this choice can depend on several factors. First, if in the
discussions with the stakeholders it turns out that they have similar views on
their ideal alternatives, it would probably be appropriate to choose a model
that links their position in E. If, on the other hand, it is observed that they
have very different preferences, the choice of a less restrictive model may be a



24 4 REAL WORLD APPLICATION: OOCIT

territory popula-
tion
density
(1)

access
to
housing
(2)

security
(3)

indus-
trial
activi-
ties (4)

available
space
(5)

t1 0.29 0.40 0.46 0.19 0.76
t55 0.31 0.42 0.52 0.09 0.00
t3 0.64 0.65 0.53 0.46 0.23
t4 0.33 0.34 0.68 0.11 0.01

Table 9: Performance table of the territories used to elicit the preferences

stakeholder ranking
stakeholder1 t55 ≻ t4 ≻ t3 ≻ t1
stakeholder2 t3 ≻ t1 ≻ t55 ≻ t4

Table 10: Holistic preferences of the 2 stakeholders

better solution. It may also be interesting to observe the differences between
the holistic preferences expressed and those reproduced by the models (the
“errors” discussed in Section 3.1.2). In the case where one model allows to
represent the holistic preferences of the decision-makers with fewer errors than
another, it would probably be preferable to choose this model to describe the
preferences of the respondents. Finally, if the characteristics of the stakeholders
are similar or if their areas of expertise are similar, it is probably preferable
to choose a model that links them together.

In the following, we detail the results obtained through 3 of the models
presented in Section 2 in order to be able to discuss their various implications.

We first use the preference elicitation model with unconnected decision
makers (see Section 3.1.2). This leads to the parameters of Table 11. These
parameters of the two decision makers are then used to rank the 64 territories
presented in Table A1. We show in Table 12 the ranking of the top 20 territories
only.

stakeholder position attributes weights
stakeholder1 (0.60, 0.32, 0.41, 0.23, 0.01) (0.015, 0.001, 0.001, 0.005, 0.978)
stakeholder2 (0.80, 0.80, 0.22, 0.75, 0.57) (0.159, 0.164, 0.190, 0.256, 0.231)

Table 11: The model parameters for the 2 stakeholders, considered as uncon-
nected

One can observe that the rankings are quite different from one stakeholder
to another. Using the rule from Section 2.3 it is possible to determine a good
compromise territory, according to the proposed model. In this case, it is t62,
which on average is the closest to each of the stakeholders. If we look at
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stakeholder Total pre-order of the 64 territories
stakeholder1 t57 ≻ t60 ≻ t58 ≻ t62 ≻ t2 ≻ t61 ≻ t33 ≻ t4 ≻ t55 ≻ t10 ≻ t18 ≻

t17 ≻ t52 ≻ t32 ≻ t59 ≻ t7 ≻ t35 ≻ t43 ≻ t31 ≻ t14 ≻ . . .
stakeholder2 t44 ≻ t42 ≻ t54 ≻ t3 ≻ t64 ≻ t59 ≻ t47 ≻ t34 ≻ t62 ≻ t41 ≻

t63 ≻ t45 ≻ t53 ≻ t58 ≻ t50 ≻ t57 ≻ t1 ≻ t6 ≻ t29 ≻ t60 ≻ . . .

Table 12: Total pre-order of 64 territories for each of the 2 stakeholders,
considered as totally unconnected

the 2 rankings obtained, we also see that t62 is positioned in the top 9 for
both decision-makers. Regarding their preferential parameters of Table 11,
we observe that they are very different between the 2 respondents, which is
normal, given that we chose a model that does not link them at all.

As a second preference elicitation model, we consider now that the two
stakeholders (or decision makers) use the same weights when comparing the
territories. This allows us to use the same definition of the distance for both
actors. We execute the program presented in Section 3.1.3 and we obtain
the solution presented in Table 13 with the corresponding rankings shown in
Table 14.

stakeholder position in [0, 1]5 attributes weights
stakeholder1 (0.78, 0.79, 0.46, 0.71, 0.06)

(0.028, 0.026, 0.030, 0.022, 0.893)
stakeholder2 (0.80, 0.80, 0.23, 0.73, 0.46)

Table 13: The model parameters for the 2 stakeholders, with linked weights

stakeholder Total pre-order of the 64 territories
stakeholder1 t58 ≻ t61 ≻ t57 ≻ t56 ≻ t62 ≻ t7 ≻ t22 ≻ t27 ≻ t5 ≻ t60 ≻ t42 ≻

t31 ≻ t39 ≻ t38 ≻ t1 ≻ t9 ≻ t40 ≻ t49 ≻ t51 ≻ t23 ≻ . . .
stakeholder2 t41 ≻ t46 ≻ t53 ≻ t28 ≻ t43 ≻ t52 ≻ t2 ≻ t44 ≻ t26 ≻ t47 ≻

t55 ≻ t63 ≻ t48 ≻ t24 ≻ t20 ≻ t50 ≻ t35 ≻ t8 ≻ t40 ≻ t45 ≻ . . .

Table 14: Total pre-order of 64 territories for each of the 2 stakeholders, with
linked weights

We can see that the positions of the two stakeholders are relatively close,
while having the same values for the attributes weights. This time, the com-
promise alternative according to the rule of Section 2.3 is t3. As it can be
seen in Table 14, this alternative does not appear in the first positions of the
pre-orders of the two stakeholders.

As a third possibility we use the inference algorithm which tries to posi-
tion the decision makers close in the attributes space. We therefore solve the
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program presented in Section 3.1.3 with µ = 0.05 and we obtain the solution
presented in Tables 15 and 16.

stakeholder position attributes weights
stakeholder1 (0.59, 0.59, 0.52, 0.0, 0.33) (0.756, 0.001, 0.001, 0.241, 0.001)
stakeholder2 (0.65, 0.65, 0.47, 0.0, 0.33) (0.001, 0.798, 0.001, 0.199, 0.001)

Table 15: The model parameters for 2 stakeholders, with linked positions

stakeholder Total pre-order of the 64 territories
stakeholder1 t56 ≻ t59 ≻ t57 ≻ t60 ≻ t62 ≻ t1 ≻ t22 ≻ t28 ≻ t3 ≻ t12 ≻ t39 ≻

t18 ≻ t2 ≻ t27 ≻ t54 ≻ t44 ≻ t5 ≻ t9 ≻ t7 ≻ t63 ≻ t50 ≻ . . .
stakeholder2 t60 ≻ t15 ≻ t59 ≻ t62 ≻ t22 ≻ t56 ≻ t18 ≻ t7 ≻ t44 ≻ t63 ≻

t12 ≻ t9 ≻ t17 ≻ t14 ≻ t50 ≻ t34 ≻ t4 ≻ t2 ≻ t26 ≻ t38 ≻ t54 ≻
. . .

Table 16: Total pre-order of 64 territories for each of the 2 stakeholders, with
linked positions

It can be seen that both stakeholders are obviously positioned very closely
in E, while having relatively different weights in the used distances. According
to the rule of Section 2.3 alternative t60 is considered as the best compromise
alternative for both stakeholders, which is ranked in the top 4 positions of the
two pre-orders of Table 16.

The 3 inference techniques lead to different preference models. However, in
all 3 cases, the preferences of the 2 decision makers are respected and they are
compatible with the learned model. In this particular case, the inference model
chosen is the 3rd one, i.e. the one where the positions of the respondents are
very similar. The 2 main reasons for this choice are: first, the characteristics of
the 2 stakeholders are quite similar and therefore it was important that their
positions in E be close; second, the compromise alternative is found in the top
positions of both rankings.

In the OOCIT project, this approach is used as a discussion tool to better
understand the preferences of different stakeholders. In the real problem, the
number of stakeholders is of course much higher, and the preference modeling
and inference methods are applied to all themes. We decided in this simplified
version to focus only on two decision makers to underline the differences of the
proposed approaches.
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5 Conclusion and perspectives

In this article we have presented how to use techniques inspired from the spatial
theory of voting in multi-criteria group decision aiding. We have also illus-
trated how such a spatial preference model allows to identify ideal alternatives
representing the decision makers alongside the alternatives, while taking into
account non-monotonic preferences. We have also presented various preference
elicitation techniques, creating various links between the decision makers that
are related to the model parameters.

Such a preference model can be used as a basis for discussions with the
stakeholders, to understand their preferences, and how their various behav-
iors can (or cannot) lead to some consensus. The experiments show also that
the proposed model, and the various elicitation techniques, have a good gen-
eralization power on unseen data, which allows to use them in real world
applications.

However, a certain number of limitations remain to be studied. In partic-
ular the important question regarding an incremental preference elicitation of
the decision makers’ preferences, which should lead to models with a higher
generalization power, while requiring fewer preference queries. Next to that,
it could be interesting to work on graphical representations of the attributes
space, which allow to interpret the preferences contained in the position of the
decision maker and the corresponding weights. We can consider for example
the PCA (Principal Component Analysis) or MDS (Multi Dimensional Scall-
ing), which represents multidimensional distance matrices in a two-dimensional
space. And last but not least, integrating some negotiation techniques, in order
to solve certain incompatibilities between the decision makers, could also lead
to more robust preference models of the group.
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Appendix A Performance Table of 64
territories

Territory Population
density

Access to
housing

Security Industrial
activities

Available
space

t1 0.29 0.40 0.46 0.19 0.76
t2 0.44 0.45 0.83 0.34 0.02
t3 0.64 0.65 0.53 0.46 0.23
t4 0.33 0.34 0.68 0.11 0.01
t5 0.24 0.44 0.9616 0.20 0.01

Continued on next page
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Table A1 – continued from previous page

Territory population
density

access to
housing

security industrial
activities

available
space

t6 0.37 0.47 0.53 0.30 0.11
t7 0.27 0.42 0.82 0.20 0
t8 0.35 0.51 0.64 0.29 0.06
t9 0.32 0.47 0.91 0.34 0.18
t10 0.33 0.44 0.49 0.19 0.03
t11 0.26 0.42 0.64 0.19 0.06
t12 0.17 0.38 0.58 0.15 0.03
t13 0.36 0.46 0.771 0.21 0.10
t14 0.25 0.26 0.63 0.15 0
t15 0.25 0.47 0.61 0.29 0.11
t16 0.29 0.53 0.65 0.20 0.10
t17 0.31 0.41 0.70 0.38 0
t18 0.32 0.45 0.87 0.20 0
t19 0.33 0.47 0.84 0.16 0.04
t20 0.29 0.39 0.45 0.20 0.11
t21 0.29 0.36 0.64 0.28 0.21
t22 0.29 0.45 0.89 0.26 0.09
t23 0.38 0.51 0.66 0.27 0.10
t24 0.26 0.37 0.31 0.32 0.06
t25 0.28 0.41 0.65 0.13 0.21
t26 0.34 0.43 0.66 0.33 0.14
t27 0.30 0.42 0.75 0.16 0.63
t28 0.36 0.43 0.56 0.26 0.05
t29 0.36 0.43 0.56 0.20 0.35
t30 0.29 0.29 0.49 0.19 0.05
t31 0.26 0.43 0.10 0.20 0
t32 0.27 0.48 0.54 0.34 0.01
t33 0.33 0.42 0.69 0.25 0
t34 0.38 0.46 0.46 0.41 0.86
t35 0.28 0.44 0.65 0.23 0.03
t36 0.25 0.43 0.68 0.17 0.18
t37 0.26 0.41 0.86 0.33 0.05
t38 0.27 0.42 0.87 0.18 0.03
t39 0.33 0.47 0.76 0.30 0.06
t40 0.34 0.43 0.44 0.20 0.06
t41 0.40 0.47 0.44 0.43 0.14
t42 0.39 0.49 0.37 0.50 0.54
t43 0.34 0.40 0.54 0.29 0.04
t44 0.52 0.61 0.48 0.66 0.26
t45 0.36 0.48 0.61 0.28 0.65
t46 0.34 0.44 0.58 0.29 0.16
t47 0.32 0.41 0.29 0.34 0.52

Continued on next page
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Table A1 – continued from previous page

Territory population
density

access to
housing

security industrial
activities

available
space

t48 0.27 0.42 0.70 0.21 0.27
t49 0.26 0.26 0.62 0.26 0.23
t50 0.32 0.44 0.55 0.38 0.13
t51 0.34 0.46 0.63 0.27 0.20
t52 0.32 0.40 0.50 0.23 0.02
t53 0.28 0.48 0.55 0.36 0.26
t54 0.38 0.44 0.51 0.58 0.56
t55 0.31 0.42 0.52 0.09 0
t56 0.27 0.38 0.27 0.19 0.25
t57 0.68 0.78 0.53 0.25 0
t58 0.65 0.83 0.53 0.32 0
t59 0.55 0.66 0.53 0.60 0.04
t60 0.46 0.74 0.53 0.26 0
t61 0.40 0.55 0.53 0.24 0
t62 0.66 0.77 0.53 0.50 0
t63 0.47 0.64 0.53 0.36 0.13
t64 0.42 0.70 0.53 0.42 0.21

Table A1: Performance table of the 64 territories
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