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Abstract

In this work we propose to use a multidimensional spatial model to
represent preferences of multiple decision makers in multi-criteria deci-
sion aiding. The decision makers are represented in a shared space with
the alternatives so that their positions are consistent with the pref-
erences that they express on pairs of alternatives. We show how the
parameters of this preference model can be learnt from holistic prefer-
ence judgements, and discuss its various consequences and properties.

Keywords: multi-criteria decision aiding, spatial model, preference
elicitation, non-monotonic preferences

MSC Classification: 90B50 , 91B06 , 91B08 , 91B10

1 Introduction

1.1 Context and motivations

In the spatial theory of voting, voters and candidates are represented as points
in a space defined by a set of attributes or political issues. The position of the
voters and the candidates is defined by the way in which they espouse these
issues. This space could be single dimensional (left, right), double dimensional
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2 1 INTRODUCTION

(social and economic policy) or could have many more dimensions. The main
purpose of the spatial voting model is to describe and analyse the voters’
behaviours and to estimate the outcome of an election using the distance
between the voters and the candidates [1]. But other tasks are made possible,
such as classifying voters or candidates according to similar characteristics,
understanding the preferences that certain voters have for certain candidates,
and how candidates should adapt their strategy to meet more voters. Spatial
representation of voting situation is an old topic in the field of social choice
theory. Since the seminal and early works of Hotelling [2], Black [3] and Downs
[1], many developments have been proposed to model voting situations within
the spatial model framework. One can refer to Enelow and Hinich [4] or Miller
[5] for a good introduction to spatial voting models, to Eguia [6, 7] for a
theoretical approach and to Armstrong et al. [8] or Negriu and Piatecki [9] for
recent applicative approaches.

The objective of multi-criteria decision aiding [10] is to provide a recom-
mendation to a decision maker, confronted with a set of alternatives, described
through a set of potentially conflicting criteria, by taking into account his or
her preferences. This recommendation usually takes one of three forms: the
choice of an alternative considered satisfactory, a sorting of the alternatives
into categories, or a ranking of the alternatives from best to worst. Next to
that, in many real-world decision problems it may be interesting to under-
stand the behavior of the decision maker when faced with these alternatives
or to compare the behavior of several decision makers when faced with these
alternatives.

These observations lead us to draw a parallel between multi-critera decision
and spatial voting theory. The decision maker plays the role of the voter, the
alternatives are the candidates, and the criteria can be seen as attributes or
political issues describing the voters and the candidates.

Therefore, here we propose to use an approach similar to spatial voting
theory in multi-criteria decision aiding. We represent the decision maker in
the criteria space so that his or her position is consistent with the preferences
that s/he expresses on pairs of alternatives. The idea is as follows: if s/he says
that s/he prefers alternative a to alternative b, then the point representing the
decision maker in the criteria space must be closer to a than to b. Similarly, if
s/he also says that s/he prefers c to d, then the point representing the decision
maker must also be closer to c than to d, while being closer to a than to b. An
example of such a spatial representation of multi-criteria preferences is given
in Figure 1.

The idea of positioning the decision maker in the same multidimensional
space as the alternatives can be used for different purposes. For example, sim-
ilarly as in the spatial theory of voting, this paradigm allows us to explain to
a decision maker in which part of the criteria space s/he is located, and con-
sequently, which alternatives can be the best for him or her. Moreover, it will
allow us to position different decision makers in this space in order to evalu-
ate their proximity, or to determine on which alternatives their preferences are
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Fig. 1: Example of a spatial representation of 5 alternatives described on 2
attributes and 2 decision makers (DM). Preferences are a �1 b �1 d �1 c �1 e
and d ∼2 e �2 c �2 a �2 b. (DM)

similar or dissimilar. And last but not least, the preferences on the criteria do
not have to be monotonically increasing or decreasing, as usually supposed in
multi-criteria decision aiding, but simply single-peaked. This single-peakedness
property of the preferences allows to deal with a larger range of decision prob-
lems. Most of all it does not require a re-encoding of the underlying criteria
scales, which in turn tends to degrade the readability of the results for the
decision maker.

1.2 Related work

Just a few related contributions have been identified concerning multi-criteria
decision aiding dealing with spatial representations of both alternatives and
decision makers. Some works propose to represent the decision maker as a
vector of parameters of a particular preference model in the parameter space.
For example, Mareschal et al. [11] have introduced a geometrical represen-
tation of the decision problem when the preferences are modelled through
PROMETHEE [12]. This work has led to various recent improvements and
variations [13–15], however it is linked to a very specific preference model, and
requires the determination of preference parameters. Pajer et al. [16] propose
to perform a visual analysis of weight spaces when the aggregation is performed
through a weighted sum. The proposed technique allows to better understand
how robust a decision is to plausible weights variations. Again, this work is
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situated in the parameters space, and does not allow for any analysis of the
alternatives in the criteria space.

Still in multi-criteria decision aiding, several methods make use of an ideal
alternative (which could be seen as a representation of the decision maker
in the criteria space) and a notion of distance. The TOPSIS method [17–19]
evaluates the preferences between the alternatives and their ranking using a
distance to an ideal alternative. Chen et al. [20, 21] propose a sorting model
using a case-based distance procedure using the weighted Euclidean distance
in order to relax the assumption of preference monotony. These distance-based
approaches are the closest to the model that we develop here, but they are
applied for a specific decision problem (ranking or sorting). They suppose that
the ideal alternative is known, which is not the case of our work.

As we will see, another advantage of our proposal is that it does not require
that the preference directions of the criteria be specified by the decision maker,
nor that they be assumed to be monotonic. In multi-criteria decision aiding,
several preference models require to identify whether the criteria are to be
maximized or to be minimized. Usually it is also supposed that the preferences
on the criteria are monotonic. Different contributions propose to handle the
case of non-monotonic preferences on criteria. For the Multi-Attribute Value
Theory (MAVT) approach, Despotis et al. [22], Kliegr [23], Liu et al. [24],
Ghaderi et al. [25], Kadziński et al.[26] or Guo et al. [27] propose various models
and elicitation techniques for models with non-monotonic or single-peaked
criteria. For the outranking approach, these non-monotonic assumptions are
more rarely encountered, except in the work of Minoungou et al. [28, 29].

In social choice theory, and more specifically the spatial theory of voting,
these non-monotonicity and single peaked criteria issues have also been dealt
with. We can cite for example the work of Conitzer [30] who deals with eliciting
single-peaked preferences using comparison queries. More recently, Escoffier
et al. [31] undertake a comparison of popular distance measures for single-
peakedness.

1.3 Contribution

In this work, we propose to represent the preferences of decision makers with
respect to alternatives through the distance of these decision makers to these
alternatives in the attribute space. This model is user-oriented and preferences
are fully explainable directly from the available data.

We also propose several algorithms to identify the parameters of the model
under various hypotheses. The consequences of this proposal are also discussed,
first concerning the ability to provide a position of the decision makers in the
attributes space; and second concerning the comparison of several decision
makers to each overs and to make relevant decision recommendations. We also
show that the model allows to deal with single-peaked preferences, and we
apply the proposal to a real case study.
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This article is structured as follows. First, in Section 2 we introduce the
distance-based decision model and study some of its properties and conse-
quences. Section 3 details how the parameters of the model can be determined
through a holistic approach, where the decision makers provide preferential
statements regarding pairs of alternatives. In Section 4 we detail a real-world
case study which has been solved using the proposed model, before drawing
some conclusions and mentioning some perspectives in Section 5.

2 Multidimensional spatial model

2.1 Spatial decision model

Let us consider a set of alternatives denoted A. Each alternative a ∈ A is
evaluated on a set of m attributes denoted M = {1, . . . ,m}. Let aj be the
quantitative evaluation of a on attribute j ∈ M, with aj ∈ R. a can be
identified with its performance vector, i.e., a ≡ (a1, . . . , am). As a consequence,
an alternative a ∈ A can be represented by a point in a multidimensional space
E = Rm, in which each dimension corresponds to one attribute of M. We do
not suppose in this work any preference direction given by the decision maker
on the attribute scales. Following Roy [10], we therefore do not use the word
“criteria” here, and rather speak of “attributes”.

The proposed decision model is based on the relative positions of the
decision maker and the alternatives in the same multidimensional space.Let
X = {1, . . . , n} be the set of n decision makers.

Let %i⊆ A ×A be the preference relation of ith decision maker i ∈ X on
the alternatives of A. The symmetric part of %i, which models indifferences,
is denoted ∼i , whereas the asymmetric part is denoted �i and models strict
preferences.

We define the spatial preference model (SP-model) as follows:

Definition 1. (Spatial preference model) Let i ∈ X . A preference relation %i
on A follows a spatial preference model if and only if

• there exists a representation (xi1, . . . , x
i
m) of Xi in E

• there exists a distance δ on E×E
such that ∀(a, b) ∈ A×A:{

a �i b ⇐⇒ δ(a,Xi) < δ(b,Xi)
a ∼i b ⇐⇒ δ(a,Xi) = δ(b,Xi).

2.2 Properties

The spatial preference model defined in Definition 1 is obviously a utility-based
model, and it therefore models total pre-orders on the set of alternatives. The
hypothesis of single-peakedness on each attribute is the second characteristic
of spatial preference models. We develop these properties in the following.

Utility-based models are described as follows:
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Prop. 1. The preference relation % follows an utility-based model if there
exists a function F : Rm → R and m function u1, . . . , um from R to R such
that ∀a, b ∈ A,

a % b ⇐⇒ F (u1(a1), . . . , um(am)) ≥ F (u1(b1), . . . , um(bm))

Moreover the preference relation % is said to follow an additive utility-based
model iff

a % b ⇐⇒
∑
j∈M

uj(aj) ≥
∑
j∈M

uj(bj)

A complete characterization of preference relations that can be represented
by a spatial model using a Minkowski metric as distance has been proposed
in [7] in the framework of political issues. This characterization is based on
both utility functions and single-peakedness property. Following [7], and denot-
ing (aj , b−j) the alternative that takes the value aj on attribute j and bi on
attributes i ∈M, i 6= j, we define multi-attribute single-peakedness as follows.

Prop. 2. (Multi-attribute single-peakedness) ∀i ∈ X , there exists an ideal
alternative x∗ = (x∗1, . . . , x

∗
m) ∈ E such that for each attribute j ∈M and any

values ak, bk, ck, dk ∈ R,

ak < bk < x∗k < ck < dk ⇒ (bk, x
∗
−k) �i (ak, x

∗
−k) and (ck, x

∗
−k) �i (dk, x

∗
−k)

Eguia therefore propose a characterization theorem, which we adapt in our
framework with the following proposition:

Proposition 1. For any positive real number α, there exists a spatial repre-
sentation fα = (fα1 , . . . , f

α
m) such that the utility function u(a)x = −

∑m
j=1 |

fαj (aj)− fαj (xj) |α represents the preference order %i if and only if %i follows
an additive utility model satisfying the multiple single-peakedness properties.

Using both utility functions and specific α distance, Proposition 1 leads to
over-parametric models facing an observed preference situation. We propose in
our specific model to restrict the number of parameters in two different ways.
First, we consider that the model should be user-oriented, and fully explainable
for the user directly from the available data. Therefore, we do not encourage
the use of utility functions as all the attributes are described with values on
R. The issue of using different scales for the different attributes can be fixed
by two other means: standardisation of the attributes (for example using the
same 0-1 or 0-100 scale for each attribute) and/or weighted distance, which is
developed below.

Proposition 1 proposes a large (infinite) possibility of distance to model
spatial preferences. Keeping in mind the aim that the model should be easily
understandable by the decision-maker, we focus on the main three different
α-distances, with α = 1 (also known as L1 distance or Manhattan distance),
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Fig. 2: Unit balls with L1, L2 and L∞ distances

α = 2 (usual Euclidean distance) and α = ∞ (also known as L∞ distance or
max distance). An example of the units balls for each distance is shown on
Figure 2.

• L1 distance δ1 is defined as δ1(a, b) =
∑

j∈M | aj − bj |
• L2 distance δ2 is defined as δ2(a, b) =

√∑
j∈M(aj − bj)2

• L∞ distance δ∞ is defined as δ∞(a, b) = maxj∈M | aj − bj |
We propose in the following to focus on the Euclidean distance as it is

more simple to represent for the decision maker. However, with a fixed distance
and without any utility functions, the model should sometimes be under-
parameterised. Therefore, in order to capture the importance given by different
decision makers to the same attributes, we propose to use an extension of the
Euclidean distance, which weighs the various attributes differently, and gives
further flexibility to the model. The weighted Euclidean distance is defined as
follows for an alternative a ∈ A and i ∈ X :

δ(a,Xi) =

√∑
j∈M

wij · (xij − aj)2, (1)

where wij ≥ 0 and
∑m

j=1 w
i
j = 1.

The model defined in Eq.1 is specified by the one defined in Definition 2
in the following.

Definition 2. (Spatial weighted Euclidean preference model)
Let i ∈ X . A preference relation %i on A follows a spatial weighted

Euclidean preference model if and only if
• there exist a representation (xi1, . . . , x

i
m) of Xi in E

• a set of weights wij ≥ 0, j = 1, . . . ,m and
∑m

j=1 w
i
j = 1

such that ∀(a, b) ∈ A×A:

a %i b ⇐⇒
√∑
j∈M

wij · (xij − aj)2 ≤
√∑
j∈M

wij · (xij − bj)2
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Fig. 3: Two decision makers posi-
tioned in X1 ≡ (0.63, 0.51) and X2 ≡
(0.63, 0.30).

A
M

1 2

a 0.73 0.48
b 0.45 0.75
c 0.30 0.30
d 0.90 0.90

Table 1: 4 alterna-
tives on two quantitative
attributes

The advantage of this weighted Euclidean distance compared to the classi-
cal Euclidean distance, is that it to a great flexibility of the model, by allowing
for differences on the attributes to be more or less important in the distance
calculation for each decision maker. Using different weights if needed, We
therefore keep the main interest of the SP-model, that is to capture in a single
explainable model preferences that are different for different decision makers.

2.3 Use cases of the model

Let us now discuss a few intuitive consequences of the proposed preference
model combined with a weighted Euclidean distance. Remind that the parame-
ters of a spatial weighted Euclidean preference model are 1) the position of the
decision maker representation Xi in the space E 2) the set of weight (wij)j∈M

A first important observation is that, for a given position of the deci-
sion maker, different weights in the weighted Euclidean distance can lead to
different preference orders of the alternatives.

To illustrate this, consider the two-dimensional example of Figure 3. A first
decision maker is represented as point X1 which is positioned in (0.63, 0.51).
We consider four alternatives a, b, c and d whose performances can be found
in Table 1.

If we consider for this decision maker equal weights in the distance (w1
1 =

w1
2 = 0.5) the preference order on a, b, c and d is a �1 b �1 c �1 d. If we

consider non-equal weights for this same decision maker (w1
1 = 0.9, w1

2 = 0.1)
the preference order is however a �1 b �1 d �1 c.

This shows that these weights allow to modify how differences on the
attributes influence the distance calculation in the preference model, and thus
the final pre-order. To illustrate this, for the second example with non-equal



2.3 Use cases of the model 9

weights, very small difference on the first attribute have a high impact on the
distance calculation, whereas the differences on the second attribute must be
very large in order to influence the distance significantly. This allows to mod-
ify the preference order between c and d, without changing the position of the
decision maker.

Second, we can observe that the weighted Euclidean distance also allows to
obtain the same preference orders on the alternatives for very different decision
maker positions and their associated weights, i.e. for very different decision
maker profiles.

To illustrate this, reconsider the same example as in Table 1. The first
decision maker considered here is again positioned in X1 ≡ (0.63, 0.51) and
we consider equal weights. As before this leads to a �1 b �1 c �1 d. A
second decision maker whose optimal alternative is in X2 = (0.63, 0.30) with
(w2

1 = 0.75, w2
2 = 0.25) leads to the same preference order.

Third, if we fix the weights, it is also quite straightforward to determine
the positions of all the decision makers which are compatible with a given
preference order of the alternatives. As it can be deduced from Definition 1,
these positions are located in a polyhedron defined by a set of inequalities,
which can be deduced from the preference model. The way of obtaining this
set of possible positions will be further explored in Section 3, where we show
how to determine the parameters of the model.

A fourth observation is regarding the preference directions of the various
attributes. As already said, they are not specified beforehand in the proposed
decision model. This removes a burden of the decision maker, as s/he does
not have to specify whether the attributes are to be maximized or minimized.
Next to that, in the examples, we can also see that the representation of the
decision maker in the attributes space does not necessarily have to be in an
extreme position, i.e., in one of the “corners”. This means that his or her
“ideal” alternative can have intermediate evaluations on the attributes. This
is directly linked to the single-peakedness of the attributes, as mentionned in
Section 2.2.

Fifth, the proposed model can be also applied for the classical situation with
known criteria preference directions and monotone preferences. In this situa-
tion the decision maker will be located at the position of the classically called
“zenith” alternative, which is the ideal solution (maximizing or minimizing the
performances on all the criteria)[17].

Next to that, our model allows to represent multiple decision makers, poten-
tially with very different preferences, in the same multidimensional space, next
to the set of alternatives. Obviously, depending on the positions of the deci-
sion makers and the weights used in the weighted Euclidean distance, the
pre-orders of the alternatives may potentially be very different. Determin-
ing a compromise alternative (for the choice problem) for the set of decision
makers is therefore a hard task, if it is solely based on these rankings. The
proposed model allows to determine a compromise alternative by searching for
the alternative which is “closest” to all the decision makers, in E.
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This notion of proximity can be interpreted and defined in various ways.
Here we propose to use the “average” distance between the decision makers
and the alternatives, and select the alternative, which on average, is the closest
to the positions of the decision makers in E. More formally this comes down
to searching for alternative c ∈ A such that:

c = arg min
a∈A

∑
i∈X

δ(a,Xi)

As mentioned in the introduction, if we apply this rule to the restaurant
choice, this leads to recommending c to the two decision makers.

Another interesting use of the proposed model is to group together decision
makers who are close to each other, in order to be able to describe them in a
synthetic way. However, this supposes that they share the same definition of
the distance, i.e., in our case the same weights in the Euclidean distance. In
that case, any distance-based clustering method can be used, as for example
k-means or hierarchical clustering [32].

3 Parameters inference

Usually in the spatial voting models, the unknown parameters are both the
positions of the candidates (the decision makers for us) and the voters (the
alternatives). The methods used in this case, as shown by Armstrong et al.
[8], are not suitable for our paradigm where the positions of the alternatives
are known, and where mainly two types of parameters have to be determined:
the positions of the decision makers in E and the weights used in the weighted
Euclidean distance. As classically done in Multi-Criteria Decision Aiding, they
could be elicited in a direct way [33], by questioning the decision makers.
However, as one or both of these elements are not necessarily known by the
decision makers, we propose to use an indirect elicitation approach to learn the
parameters of the model through a holistic approach [34]. In this section we first
present various mathematical models to learn the preference parameters of the
proposed model from preference judgements. Then we detail an experimental
study on artificial data to estimate the calculation times for this parameter
identification and the generalization power of the model on unseen data.

3.1 Mathematical modeling and resolution

Let us now present how the preference parameters of the proposed model can
be determined by using mathematical programming techniques. The unknowns
to be determined are the values of the parameters of the proposed model, i.e.:

1. the positions of the decision makers in the multidimensional space E,
Xi ≡ (xi1, x

i
2, . . . , x

i
m), ∀i ∈ X ,

2. the weights of the different attributes wij , for j ∈M used in the distance,
∀i ∈ X (see Equation 1).
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3.1.1 Independent decision makers compatible with the model

In this first formulation we consider that all the decision makers are inde-
pendent of each other and thus do not share any preferential parameters
(neither the weights nor their positions). This means that there is no connec-
tion between them, and each of them has an independent preference model.
Next to that, we assume here that the preference statements expressed by
these decision makers are all compatible with the proposed model.

To determine the values of these preference parameters in this first case,
we model the problem as a non-linear mathematical program. The formulation
of this program is presented in Table 4 and its parameters and variables are
respectively given in Tables 2 and 3.

A the set of alternatives
M the set of m attributes
LiP a set of pairs (a, b) ∈ A×A where a is

preferred to b by i,∀i ∈ X
LiI a set of pairs (a, b) ∈ A×A where a

and b are considered as indifferent by
i,∀i ∈ X

γ a small constant used to model strict
inequalities

Table 2: Parameters of the first mathematical model

wij continuous : the weights of the attributes, ∀j ∈M for
i,∀i ∈ X

xij continuous : the position of i on dimension j,
∀j ∈M,∀i ∈ X

δia continuous : the distance between Xi and a,
∀a ∈ A,∀i ∈ X (auxiliary variables)

Table 3: Variables of the first mathematical model

In the model of Table 4, no objective function is considered here, which
comes down to simply looking for a feasible solution. However, it is possible to
avoid extreme values for the weights by minimizing the standard deviation of
the different criteria weights. The constraints (i) specify that all the weights
have to be strictly positive and sum up to 1 and that the positions of the
decision makers are bounded in the unit interval, while constraints (ii) model
the distance between an alternative a ∈ A and the ith decision maker’s position
Xi ≡ (xi1, x

i
2, . . . , x

i
m). Constraints (iii) (resp. (iv)) are used to represent strict

preference (resp. indifference) judgments of each decision maker.
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min 0
s.t.
wij > γ ∀j ∈M, ∀i ∈ X
m∑
j=1

wij = 1 (i)

0 ≤ xij ≤ 1 ∀j ∈M,∀i ∈ X

δia =

√√√√ m∑
j=1

wij(aj − xij)2 ∀a ∈ A,∀i ∈ X (ii)

δia + γ 6 δib ∀(a, b) ∈ LiP ,∀i ∈ X (iii)

δib = δia ∀(a, b) ∈ LI ,∀i ∈ X (iv)

Table 4: First mathematical model

Let us illustrate the use of this mathematical program on a small example
in which we consider a problem with 2 attributes and 6 alternatives a, b, c, d, e
and f of A. The performances of the 6 alternatives on the 2 attributes are
given in Table 5. Let us also suppose that we have only 1 decision maker
here, i.e. X = {1}. This decision maker considers that a �1 b, c �1 d and
e �1 f . Solving the first mathematical model with these preferential statements
leads to a feasible solution given by X1 = (0.2, 0.1), w1

1 = 0.75 and w1
2 =

0.25. It is possible to represent this problem in a plane, which is shown on

A \M 1 2
a 0.1 0.1
b 0.3 0.3
c 0.5 0.2
d 0.6 0.5
e 0.3 0.4
f 0.2 0.5

Table 5: Performances of the alternatives for the preference elicitation

Figure 4. The axes represent the attributes and the alternatives are represented
as points. When two alternatives are linked by a dotted segment, the decision
maker has expressed a preferential judgement on this pair. The line passing
through the center of this segment delimits two half-planes. In each of these
half-planes, either one of the two considered alternatives is strictly preferred
to the other one, or vice versa. On the line delimiting these two half-planes,
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both alternatives are considered as indifferent. Each gray half-plane correspond
to the area in which the decision maker has to be located to respect the
corresponding strict preference constraint. The intersection of the 3 half-planes
corresponding to the 3 strict preferential statements is the dark grey triangle-
shaped area on the bottom left (the darker an area, the more half-planes are
intersecting in this area). All the points in this triangle area are closer to a
than they are to b, while being closer to c than to d and closer to e than to f .
X1, determined by the previous mathematical program, is obviously located
in this triangle. The angles of the indifference lines with the dotted segment
depend on the values of the weights in the weighted Euclidean distance.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

  a

  b

  c

  d

  e

  f

  X1

Fig. 4: 3 pairs: a �1 b, c �1 d, e �1 f

As already said, using this first model assumes that all the preferences
expressed by all the decision makers are compatible with the proposed distance
model. If this is the case, this program will have a feasible solution. However,
in real-world cases this might not always be the case, and some of the strict
preference and indifference judgements expressed by the decision makers might
not be compatible with the proposed model. To solve this issue, we propose
an extension of this initial mathematical program hereafter.

3.1.2 Independent decision makers partially incompatible
with the model

The idea behind this first extension is that if there is no feasible solution
compatible with the decision maker i’s preferences, then we try to position
Xi in such a way as to minimize an error measure. Intuitively, for each strict
preference and indifference statement, we allow the distance condition to be
violated by a certain amount. The goal of the mathematical program is then
to minimize the total error, throughout all the decision makers. In case all the
preference and indifference statements of all the decision makers are compatible
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with the proposed model, then there are no such errors, and the program
comes down to that of the initial mathematical program. More precisely, for a
strict preference constraint (iii), a positive continuous auxiliary variable σP,i(a,b)

is added to the right hand side, so that in case δia cannot be strictly smaller

than δib, then σP,i(a,b) will be chosen positive by the solver. For an indifference

constraint (iv), a continuous (positive or negative) auxiliary variable σI,i(a,b) is

added to the right hand side in order to allow for the distance from Xi to a
to be larger or smaller than that from Xi to b. The objective function is the
sum over all decision makers of the sum of two terms: first the sum of the
(positive) errors from the preference constraints, and second the sum of the
absolute values of the errors from the indifference constraints. To model the
absolute values τ I,i(a,b) of σI,i(a,b), we use constraints (v), where ρI,i(a,b) is a binary

variable, and N a positive parameter, larger than the largest possible distance
which may be encountered. The extra variables and parameters needed for this
program are given in Tables 6 and 7.

σP,i(a,b) continuous auxiliary variables that allow to violate the
preference condition on (a, b), σP,i(a,b) ≥ 0,

∀(a, b) ∈ LiP ,∀i ∈ X
σI,i(a,b), continuous auxiliary variables that allow to violate

the preference condition on (ab) ∀(a, b) ∈
L,iI ,∀i ∈ X

τ I,i(a,b) continuous variable representing the absolute value of
σI,i, τ I,i(a,b) ≥ 0, ∀(a, b) ∈ LiP ,∀i ∈ X

ρI,i(a,b) binary variable for the modelling of the absolute value
of σI,i(a,b), ∀(a, b) ∈ L

i
P ,∀i ∈ X

Table 6: Extra variables for the extended mathematical model

N a sufficiently large positive constant,
larger than the largest possible distance

Table 7: Extra parameter for the extended mathematical model

This elicitation model supposes again that all the decision makers are
independent and do not share any common preference parameters.

Figure 5 shows the example from Table 1 in which the decision maker has
expressed the following holistic preferences : a �1 b, c �1 d, e �1 f , f ∼1 d
and e ∼1 d. The 2 dashed lines correspond to the 2 indifference statements.
The first mathematical program is not able to find a feasible solution for this
problem. However the second program finds a solution in which the decision
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min
∑
i∈X

(
∑

(a,b)∈Li
P

σP,i(a,b) +
∑

(a,b)∈Li
I

τ I,i(a,b))

s.t.
wij > γ ∀j ∈M,∀i ∈ X
m∑
j=1

wij = 1 (i)

0 ≤ xij ≤ 1 ∀j ∈M,∀i ∈ X

δia =

√√√√ m∑
j=1

wij(aj − xij)2 ∀a ∈ A,∀i ∈ X (ii)

δia + γ 6 δib + σP,i(a,b) ∀(a, b) ∈ LiP ,∀i ∈ X (iii)

δib = δia + σI,i(a,b) ∀(a, b) ∈ LiI ,∀i ∈ X (iv)

σI,i(a,b) +NρI,i(a,b) ≥ τ
I,i
(a,b) ∀(a, b) ∈ LiI ,∀i ∈ X

−σI,i(a,b) +N(1− ρI,i(a,b)) ≥ τ
I,i
(a,b) ∀(a, b) ∈ L

i
I ,∀i ∈ X (v)

σI,i(a,b) ≤ τ
I,i
(a,b) ∀(a, b) ∈ LiI ,∀i ∈ X

−σI,i(a,b) ≤ τ
I,i
(a,b) ∀(a, b) ∈ LiI ,∀i ∈ X

Table 8: Extended mathematical model coping with incompatible preference
and indifference judgements

maker is positioned in (0.40, 14) and w1 = (0.2, 0.8). This position violates the
indifference statement between e and d, but the other statements are respected.
The weighted distance between X and e is lower than that between X and d,
which means that according to this solution e �1 d.

3.1.3 Dependent decision makers partially incompatible with
the model

In a group decision maker context, it could makes sense to create a link between
decision makers and to determine a dependent preference model where the
goal is to create groups of similar decision makers. In the proposed model,
this interdependence can concern either the parameters of the distance or the
positions of the decision makers.

If the goal is to create clusters of similarly behaving decision makers, this
link between the decision makers has to be established in the distance mea-
sure, so that a common definition of the distance allows to model a common
behaviour regarding the attributes. To learn such a common model, we propose
to impose that all the decision makers share common weights in constraints
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Fig. 5: Example with a �1 b, c �1 d, e �1 f , f ∼1 d and e ∼1 d. The dashed
lines correspond to indifference statements.

(i) and (ii) of the extended mathematical program. To do so, it is enough to
add a set of constraints which say that:

wij = wkj ∀j ∈M,∀i, k ∈ X .

These constraints will generate the same distance measure for each decision
maker. This limits the search for the model parameters much more, and it
is obvious that some preferential statements of some decision makers may no
longer be representable by this common model. In that case, the error vari-
ables will allow to find a feasible solution, by violating some of the preference
judgements. However, with this common distance measure, it is possible to use
distance-based clustering algorithms to determine similar behaviours among
the decision makers, in terms of their positions in the attributes space.

We present an illustrative example in which we use the the same alter-
natives as in example from Table 1. This time we have two decision makers
X = {1, 2}. The first decision maker has expressed the following holistic pref-
erences: a �1 b, c �1 d, e �1 f and f ∼1 d while the second one has expressed
the following holistic preferences: b �1 a, c �1 d and f �1 e. The solution
found by the elicitation model with common weights for the two decision mak-
ers places the first decision maker at X1 = (0.39, 0.10) and the second at
X2 = (0.10, 0.40), with the weights w = (0.3, 0.7). Figure 6 illustrates this
problem: on the left the constraints for decision maker 1, and on the right the
constraints for decision maker 2. We have chosen to represent both decision
makers in both Figures for illustrative purposes.

Another possibility is to link the decision makers by their position in the
attributes space. This comes down to allowing the weights to take independent
values among the decision makers, while imposing that the decision makers are
located in the same point in the attributes space. Similarly as to the previous
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Fig. 6: Group decision problem with common weights (decision maker 1’s
constraints on the left, 2’s constraints on the right)

model, in constraint (ii) it is necessary to impose that the xij are common to
all the decision makers i ∈ X . To allow for some flexibility in the determination
of the preference parameters, we could however impose some tolerance on this
common location, by imposing that all the positions of the decision makers are
located in a small hypercube (of length 0 ≤ µ ≤ 1, which becomes a parameter
of the model). Thus, to locate the decision makers in this small hypercube, we
have to ensure that:

xˆi j - xˆk j ≤ µ ∀j ∈M,∀i, k ∈ X .

To linearize this absolute value of the differences, we add these constraints to
the extended mathematical model:

xij − xkj ≤ µ ∀j ∈M,∀i, k ∈ X

−xij + xkj ≤ µ ∀j ∈M,∀i, k ∈ X
To illustrate this, we consider the same example with the same holistic

preferences expressed by the two decisions makers as above (1 : a �1 b, c �1 d,
e �1 f and f ∼1 d, 2 : b �1 a, c �1 d and f �1 e). With µ = 0.05, we obtain a
solution that places decision maker 1 at X1 = (0.29, 0.15) with a weights vector
w1 = (0.001, 0.999) and the second one at X2 = (0.24, 0.20) with a weights
vector of w2 = (0.999, 0.001). This solution violates the indifference between d
and f expressed by decision maker 1. On the left of Figure 7, it looks as if X1

could be moved further to the right to be positioned on the indifference line
separating f and d. However this is not possible, as the positions of X2 and
X1 are very constrained by µ. Consequently, for decision maker 1 f �1 d.

The third possibility to link the decision makers is through the weights and
their positions simultaneously. This constraints the elicitation problem even
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Fig. 7: Group decision problem with close positions (decision maker 1 on the
left, 2 on the right)

more than in the two previous variants. However, it allows to determine a com-
mon preference model for all the decision makers, which allows to rank the
alternatives through that unique model. It is obvious that a lot of incompatibil-
ities may arise in the individual preference judgements through this elicitation
model.

In any case, it is obvious that if either the positions of the decision makers,
or their weights are known in advance, all these mathematical programs can
easily be adapted by transforming the variables related to the know preferences
into parameters.

3.2 Resolution and experimental study

Due to the square root in the definition of the weighted Euclidean distance,
and the product between the weights and the position of the decision maker,
the above mathematical programs are non-linear mixed integer programs.

It can be easily understood that dropping the square root from constraints
(ii) does not modify the resolution of these programs, as the square root is
a strictly monotonic function, and we only compare distances here. Dropping
the square root therefore leads to simpler non-linear programs, which we solve
using the non-linear solver in Gurobi[35].

In this section we propose to study experimentally the behaviour of the
proposed elicitation model when facing artificially generated random data, for
a single decision maker. The goal is to answer the following questions:

• How do resolution times vary with the number of input preference
statements?

• How does the model generalize when confronted with unseen data?
• What is the influence of noise in the input preference judgements on the

model?
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In the experiments, the decision maker is replaced by a randomly generated
model (denoted by MDM), which is used to compare pairs of alternatives (and
which generates the preferential statements).

We use two different sets of alternatives:
• a training dataset D of 100 alternatives, from which we will extract pair-

wise comparisons that will be used for the identification of the model
parameters through the second mathematical program (Table 8), without
the square root,

• and a test dataset Dtest composed of 1000 alternatives, which is used to
evaluate the performance of the elicited model on unseen data.

The performance vectors attached to alternatives are randomly drawn as
floats (with 2 digits after the decimal point) within the interval [0, 1] using a
uniform distribution. We test different sizes of problems in terms of number
of attributes (3, 5, 7 and 9 attributes).

In a first step, we generate all possible (unordered) pairs of alternatives
from D. Here we obtain 4950 pairs with 100 alternatives. They correspond
to all the preference queries which could be presented to the decision maker
regarding the alternatives of D. Let Q denote the set of all (unordered) pairs
of alternatives in set D.

To answer the questions related to resolution time and generalization, dif-
ferent sizes of learning sets (5, 20, 40, 60, 80 and 100 pairs) are generated. For
each size we select randomly pairs from Q and we obtain LP ∪ LI by apply-
ing MDM on the selected pairs. Using this information, we generate a model
(denoted by Mcur) using the second mathematical program from the previous
section (without the square root). Two rankings of the alternatives in Dtest
are then computed using both MDM and Mcur models and the Kendall ’s rank
correlation (τ) [36] is used to compare them. This measure is used as a sim-
ilarity indicator for the two rankings, and varies between -1 and 1. If both
rankings are identical then τ = 1, while if they are completely reversed then
τ = −1. We repeat this process 100 times (using different sets of alternatives
and generated models (MDM) and report the averaged results below.

To determine the influence of noise on the model, similar tests are per-
formed. However, we limit ourselves to 100 pairs in the learning set, and insert
different levels of noise. More precisely, a certain amount (5%, 10% 15% and
20%) of preference pairs are reversed (compared to those generated with Dtest),
which could lead to preference statements incompatible with the proposed
model. The goal here is to study the influence of this noise on both the quality
of the learnt model w.r.t. the learning set, and the test set.

All the experiments are performed on a computing server using 20 cores
and 100 GB of RAM.

Figure 8 shows execution times for the various problem sizes (in terms of
number of attributes). The abscissa represents the numbers of pairs in the
learning set, whereas the ordinate shows execution time in seconds. We can
observe that for a given problem size, execution time increases with the size
of the learning set. For example, for a learning set containing 100 pairs for
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problems of 9 attributes, the solver requires about 500 seconds on average
to obtain the parameters of the model. Next to that, we can also see that
computation times increase with the number of attributes, for a given size of
the learning set.
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Fig. 8: Mean execution time in seconds for all problem sizes

The performance of the parameters inference algorithm for various problem
sizes is shown on Figure 9. It shows the average Kendall’s tau of 100 execu-
tions on the test datasets between the ranking obtained through MDM and
the one obtained through Mcur, for different sizes of the learning set (and dif-
ferent problem sizes). As we can see, Kendall’s Tau increases with the size of
the learning set. This was expected, since adding preference and indifference
constraints to the mathematical program reduces the uncertainty on the vari-
ables, and therefore allows to find a model which ranks similarly as MDM. For
example, for a problem with 5 attributes, this rank correlation index equals
on average about 0.9 when using 100 pairs. We can also see that Kendall’s
Tau decreases when the number of attributes increases, for a given size of the
learning set. This was also expected, as a higher complexity of the problem (in
terms of number of attributes) requires more learning examples.

Regarding noise in the preference statements, Figure 10 shows, for learning
sets of size 100, Kendall’s tau between the ranking obtained through the sought
model MDM and Mcur, for various levels of noise, and various numbers of
attributes, both on the learning set and the test set. It can be observed that
adding noise to the input statements decreases the quality of the model, both
on the learning and the test datasets. Obviously, for 0% of noise, Kendall’s
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Fig. 9: Mean Kendall tau for all problems

tau on the learning set equals 1. Similarly, still for 0% of noise, Kendall’s tau
on the test set equals the highest value achieved in Figure 9. Due to higher
computational times in this noisy situation, tests were only performed on 3
attributes.
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Fig. 10: Mean Kendall tau for the different error percentage and both learning
and test dataset
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4 Real world application: Obso’Lab

Obso’Lab is a set of tools which aims at facilitating the dialogue between
various stakeholders concerning urban and industrial territories. It has been
developed in the context of the TIGA project [37], whose objective is to
reconnect industries with the territories and their inhabitants.

Among the different tasks of the laboratory, here we focus on the task that
aims at extracting the priorities of the various stakeholders with regards to
the future of their territory. These stakeholders are the industrial companies,
the public authorities and the inhabitants of the territory.

These priorities, which might differ from one stakeholder to another, are
expressed along different themes (“getting around”, “finding a place to live
or set up a business”, “resourcing (nature, culture, sports)”, “eating and
drinking”, “protecting yourself”, “work and training”). Inside each of these
themes, various features or attributes are contributing to the evaluation of the
territories according to each theme.

In the TIGA project, we have observed that, when the various stakeholders
were interviewed, they often had difficulties for expressing preferences related
to some of these attributes. Either they were unable to indicate clear preference
directions, or their preferences seemed to be non monotonically increasing
or decreasing with the attribute scales. Next to that, these stakeholders also
expressed the need to understand the differences of their priorities with those
of the other stakeholders.

This lead us to develop the approach proposed in this paper, which allows
us to position the stakeholders (the decision makers of this proposal) with the
territories (the alternatives of this proposal) in a common space. Moreover,
it simplifies the comparison of the preferences of the various stakeholders and
allows us to find compromise territories for all the stakeholders, according to
each theme.

To show the interest of the approach in such a real world problem, we now
detail the output of the method on one specific theme, namely “finding a place
to live or set up a business”. It is composed of the following five attributes :
“population density”, “access to housing”, “security”, “industrial activities”
and “available space”. These attributes are the result of the aggregation of
several indicators, and their evaluation scales are therefore normalized between
0 and 1.

For reasons of confidentiality, we will not detail the characteristics of each
of the stakeholders interviewed. We will simply call them stakeholder1 and
stakeholder2.

Each of these stakeholder was submitted to a questionnaire, in which s/he
was presented with 4 territories, described according to the attributes of the
theme “finding a place to live or set up a business”. S/he was then asked to
rank those territories according to his priorities or preferences. To avoid any
kind of bias related to the name of the territory we decided to make them
anonymous and call them t1, t2, t3 and t4 in the questionnaire.
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The 4 territories are summarized in Table 9. The holistic preference
expressed by the stakeholders are summarized in Table 10.

territory popula-
tion
density
(1)

access
to
housing
(2)

security
(3)

indus-
trial
activ-
ities
(4)

available
space
(5)

t1 0.29 0.40 0.46 0.19 0.76
t2 0.31 0.42 0.52 0.09 0.00
t3 0.64 0.65 0.53 0.46 0.23
t4 0.33 0.34 0.68 0.11 0.01

Table 9: Performance table of the territories

stakeholder ranking
stakeholder1 t2 � t4 � t3 � t1
stakeholder2 t3 � t1 � t2 � t4

Table 10: Holistic preferences of the 2 stakeholders

The preference elicitation model with independent decision makers (see
Section 3.1.2) has been run, which has led to the parameters of Table 11.

After that, we use the different learnt parameters of the two decision makers
to rank the 64 territories presented in Table A1. We show in Table 12 the
ranking of the top 20 territories only.

stakeholder position attributes weights
stakeholder1 (0.60, 0.32, 0.41, 0.23, 0.01) (0.015, 0.001, 0.001, 0.005, 0.978)
stakeholder2 (0.80, 0.80, 0.22, 0.75, 0.57) (0.159, 0.164, 0.190, 0.256, 0.231)

Table 11: The model parameters for the different stakeholders, considered as
totally independent

One can observe that the rankings are quite different from one stakeholder
to another. Using the rule from Section 2.3 it is possible to determine a good
compromise territory, according to the proposed model. In this case, it is t57,
which on average is the closest to each of the stakeholders.

We consider now that the two stakeholders (or decision makers) use
the same weights when comparing the territories. We execute the program
presented in Section 3.1.3 and we have a solution presented in Table 13.
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stakeholder Total pre-order of the 64 territories
stakeholder1 t57 � t60 � t58 � t62 � t2 � t61 � t33 � t4 � t55 � t10 � t18 �

t17 � t52 � t32 � t59 � t7 � t35 � t43 � t31 � t14 � . . .
stakeholder2 t44 � t42 � t54 � t3 � t64 � t59 � t47 � t34 � t62 � t41 �

t63 � t45 � t53 � t58 � t50 � t57 � t1 � t6 � t29 � t60 � . . .

Table 12: Total pre-order of 64 territories for each of the 2 stakeholders,
considered as totally independent

stakeholder position in [0, 1]5 attributes weights
stakeholder1 (0.78, 0.79, 0.46, 0.71, 0.06)

(0.028, 0.026, 0.030, 0.022, 0.893)
stakeholder2 (0.80, 0.80, 0.23, 0.73, 0.46)

Table 13: The model parameters for the 2 stakeholders, with linked weights

Next we try to position the decision makers close in the attributes space.
We execute the program presented in Section 3.1.3 with µ = 0.05 and we have
a solution presented in Table 14.

stakeholder position attributes weights
stakeholder1 (0.59, 0.59, 0.52, 0.0, 0.33) (0.756, 0.001, 0.001, 0.241, 0.001)
stakeholder2 (0.65, 0.65, 0.47, 0.0, 0.33) (0.001, 0.798, 0.001, 0.199, 0.001)

Table 14: The model parameters for 2 stakeholders, with linked positions

The 3 elicitation techniques lead to different preference models. However,
in all 3 cases, the preferences of the 2 decision makers are respected and they
are compatible with the learnt model.

In the Obso’Lab project, this approach is used as a discussion tool to better
understand the preferences of different stakeholders. In the real problem, the
number of stakeholders is of course much higher, and the method of elicitation
and preference modeling is applied for all themes.

5 Conclusion and perspectives

In this article we have presented how to use techniques inspired from the
spatial theory of voting in multi-criteria decision aiding. We also have illus-
trated how such a spatial preference model allows to identify ideal alternatives
representing the decision makers alongside the alternatives, while taking into
account non-monotonic preferences. We have also shown how it can be used
in a multi-decision maker context, and we have presented various preference
elicitation techniques.

Such a preference model can be used as a basis for discussions with various
stakeholders, to understand their preferences, and how their various behaviours
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can (or cannot) lead to some consensus. The experiments show also that
the proposed model, and the various elicitation techniques, have a good gen-
eralization power on unseen data, which allows to use them in real world
applications.

However, a certain number of limitations remain to be studied. In partic-
ular the important question regarding an incremental preference elicitation of
the decision makers’ preferences, which should lead to models with a higher
generalization power, while requiring fewer preference queries. Next to that,
it could be interesting to work on graphical representations of the attributes
space, which allow to interpret the preferences contained in the position of the
decision maker and the corresponding weights.
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Appendix A Performance Table of 64
territories

Territory Population
density

Access to
housing

Security Industrial
activities

Available
space

t1 0.29 0.40 0.46 0.19 0.76
t2 0.44 0.45 0.83 0.34 0.02
t3 0.64 0.65 0.53 0.46 0.23
t4 0.33 0.34 0.68 0.11 0
t5 0.24 0.44 0.9616 0.20 0.01
t6 0.37 0.47 0.53 0.30 0.11
t7 0.27 0.42 0.82 0.20 0
t8 0.35 0.51 0.64 0.29 0.06
t9 0.32 0.47 0.91 0.34 0.18
t10 0.33 0.44 0.49 0.19 0.03
t11 0.26 0.42 0.64 0.19 0.06
t12 0.17 0.38 0.58 0.15 0.03
t13 0.36 0.46 0.771 0.21 0.10
t14 0.25 0.26 0.63 0.15 0
t15 0.25 0.47 0.61 0.29 0.11
t16 0.29 0.53 0.65 0.20 0.10
t17 0.31 0.41 0.70 0.38 0
t18 0.32 0.45 0.87 0.20 0
t19 0.33 0.47 0.84 0.16 0.04
t20 0.29 0.39 0.45 0.20 0.11
t21 0.29 0.36 0.64 0.28 0.21
t22 0.29 0.45 0.89 0.26 0.09
t23 0.38 0.51 0.66 0.27 0.10

Continued on next page
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Table A1 – continued from previous page

Territory population
density

access to
housing

security industrial
activities

available
space

t24 0.26 0.37 0.31 0.32 0.06
t25 0.28 0.41 0.65 0.13 0.21
t26 0.34 0.43 0.66 0.33 0.14
t27 0.30 0.42 0.75 0.16 0.63
t28 0.36 0.43 0.56 0.26 0.05
t29 0.36 0.43 0.56 0.20 0.35
t30 0.29 0.29 0.49 0.19 0.05
t31 0.26 0.43 0.10 0.20 0
t32 0.27 0.48 0.54 0.34 0.01
t33 0.33 0.42 0.69 0.25 0
t34 0.38 0.46 0.46 0.41 0.86
t35 0.28 0.44 0.65 0.23 0.03
t36 0.25 0.43 0.68 0.17 0.18
t37 0.26 0.41 0.86 0.33 0.05
t38 0.27 0.42 0.87 0.18 0.03
t39 0.33 0.47 0.76 0.30 0.06
t40 0.34 0.43 0.44 0.20 0.06
t41 0.40 0.47 0.44 0.43 0.14
t42 0.39 0.49 0.37 0.50 0.54
t43 0.34 0.40 0.54 0.29 0.04
t44 0.52 0.61 0.48 0.66 0.26
t45 0.36 0.48 0.61 0.28 0.65
t46 0.34 0.44 0.58 0.29 0.16
t47 0.32 0.41 0.29 0.34 0.52
t48 0.27 0.42 0.70 0.21 0.27
t49 0.26 0.26 0.62 0.26 0.23
t50 0.32 0.44 0.55 0.38 0.13
t51 0.34 0.46 0.63 0.27 0.20
t52 0.32 0.40 0.50 0.23 0.02
t53 0.28 0.48 0.55 0.36 0.26
t54 0.38 0.44 0.51 0.58 0.56
t55 0.31 0.42 0.52 0.09 0
t56 0.27 0.38 0.27 0.19 0.25
t57 0.68 0.78 0.53 0.25 0
t58 0.65 0.83 0.53 0.32 0
t59 0.55 0.66 0.53 0.60 0.04
t60 0.46 0.74 0.53 0.26 0
t61 0.40 0.55 0.53 0.24 0
t62 0.66 0.77 0.53 0.50 0
t63 0.47 0.64 0.53 0.36 0.13
t64 0.42 0.70 0.53 0.42 0.21

Continued on next page
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Table A1 – continued from previous page

Territory population
density

access to
housing

security industrial
activities

available
space

Table A1: Performance table of the 64 territories
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Piringer, H.: Weightlifter: Visual weight space exploration for multi-
criteria decision making. IEEE Transactions on Visualization and Com-
puter Graphics 23(1), 611–620 (2017). https://doi.org/10.1109/TVCG.
2016.2598589

[17] Hwang, C.-L., Yoon, K.: Methods for multiple attribute decision making.
In: Multiple Attribute Decision Making, pp. 58–191. Springer, ??? (1981)

[18] Lai, Y.-J., Liu, T.-Y., Hwang, C.-L.: Topsis for modm. European journal
of operational research 76(3), 486–500 (1994)

[19] Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J.: A state-of
the-art survey of topsis applications. Expert Systems with applications
39(17), 13051–13069 (2012)

[20] Chen, Y., Hipel, K.W., Kilgour, D.M.: Multiple-criteria sorting using
case-based distance models with an application in water resources man-
agement. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans 37(5), 680–691 (2007)

[21] Chen, Y., Li, K.W., Kilgour, D.M., Hipel, K.W.: A case-based dis-
tance model for multiple criteria abc analysis. Computers & Operations
Research 35(3), 776–796 (2008)

[22] Despotis, D.K., Zopounidis, C.: In: Pardalos, P.M., Siskos, Y., Zopounidis,
C. (eds.) Building Additive Utilities in the Presence of Non-Monotonic
Preferences, pp. 101–114. Springer, Boston, MA (1995)

[23] Kliegr, T.: Uta-nm: Explaining stated preferences with additive non-
monotonic utility functions. Preference Learning, 56 (2009)
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