
HAL Id: hal-03782791
https://hal.science/hal-03782791

Submitted on 16 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling multi-provider cloud network service bundling
Imen Jerbi, Nour Assy, Mohamed Sellami, Sami Bhiri, Olivier Tirat, Hayet

Brabra, Walid Gaaloul, Djamal Zeghlache

To cite this version:
Imen Jerbi, Nour Assy, Mohamed Sellami, Sami Bhiri, Olivier Tirat, et al.. Enabling multi-provider
cloud network service bundling. 2022 IEEE International Conference on Web Services (ICWS), Jul
2022, Barcelona, Spain. pp.405-414, �10.1109/ICWS55610.2022.00067�. �hal-03782791�

https://hal.science/hal-03782791
https://hal.archives-ouvertes.fr

Enabling Multi-Provider Cloud Network Service
Bundling

Imen Jerbi∗
x‡‡, Nour Assy∗, Mohamed Sellami∗, Hayet Brabra∗, Walid Gaaloul∗, Sami Bhiri¶

x
,

Olivier Tirat† and Djamal Zeghlache∗

∗ SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, France
†BYO NETWORKS, France, ¶University of Monastir, Tunisia,
‡‡ISITCom Hammam Sousse, University of Sousse, Tunisia,

x
OASIS, National Engineering School of Tunis, University of Tunis El Manar, Tunisia

Abstract—Network as a Service (NaaS) enables tenants and
cloud users to connect their distributed services across multiple
clouds without relying on their own networking services and re-
sources. Cloud service providers (CSPs) offer networking services
as bundles delivered on a pay-per-use basis. Although service
bundling is a common practice in the cloud providing multiple
components as a single service, forcing the packaging of network
resources in a pure bundle can severely limit visibility and control
over network services. We argue that current descriptions of
NaaS services lack transparency making cloud users unable to
efficiently discover and consume these services from different
providers. To address this issue, we propose to describe network
services based on their functionality and according to the OSI
model. Our approach explicitly describes bundling between
network services that promotes discovery and enables users to
create their own network services bundles from different CSPs.

Index Terms—Network-as-a-Service, pure bundling, capability
model, service discovery, service composition

I. INTRODUCTION

Network as a Service (NaaS) [1], [2] is becoming a more
attractive cloud model to enable flexible use and consumption
of network resources. In NaaS paradigm, a network service
may represent any type of network component at different lay-
ers. Many Cloud Service Providers (CSPs) including Amazon
Web Services (AWS), Microsoft Azure, etc., adopt the NaaS
model to deliver their network components as services on a
pay-per-use basis.

While reviewing Network Services (NS) offered by NaaS
providers, we first noticed that each of them represents a
logical network component, that is however always linked-
to/delivered-with other network resources called ”associated
resources” (in AWS vocabulary) or ”attached resources” (in
other cloud providers vocabulary such Microsoft Azure). In
other words, there is a pure bundling between the network
components represented by the NS and their associated net-
work resources. Pure bundling is a strategy in which only a
bundle of items or components is available for purchase [3].
As a consequence, cloud users must purchase the bundle as
is, even if they are only interested in one of the components.

Disadvantages of pure bundling can be observed from sev-
eral perspectives. From an economic perspective [4], a cloud
user will be indirectly forced to pay for a service/component

that was not requested [5]. The user pays per-use, but is
unaware of using a not requested associated component that
is implicitly bundled with the user requested and desired
component.

From a service discovery perspective, pure bundling compli-
cates the analysis of the offering [6]. A transparent description
of the offer must be provided to cloud users so as to be able
to observe all the resources that are represented/accessible by
each offered service, to identify additional resources bundled
with the requested ones and to predict the consequences of this
bundling at the design phase. In fact, pure bundling details
are currently embedded or concealed in textual descriptions
published by existing CSPs. Therefore, a cloud user will not be
aware of the consequences of existing bundling until after the
deployment of a networking infrastructure. Moreover, a user
who already consumes a cloud NS, will be unable to replace
it by another giving access to similar resources. The reason is
simply because the user does not know which resources are
accessible by the service to be replaced and how these are
coupled.

From a service composition perspective, pure bundling of
network resources prevents taking full advantage of multi-
clouds. Indeed, cloud users are not in a position to identify all
the resources that can be accessible via each NS and unaware
of their bundling. The consequence is combining services from
different CSPs is restricted to great extent by the underlying
NS bundling structure.

In addition, we further noticed that associated resources
are often components related to the data link layer, i.e. layer
two (L2) of the OSI model. From a network architecture
perspective [7], coupling network layer-specific resources with
ones related to the data link layer so that they are accessi-
ble/represented by a same network service, (a) reduces the use
of each layer’s resources, (b) creates a functional dependency
between the second and the third OSI layers and (b) breaks
the main advantage of the OSI model in separating layers.

For a better explanation of our findings, let us consider
the virtual Network Interface Card (NIC)-one of the network
components provided by AWS. In on-premise solutions, a
network card is provided with a Media Access Control (MAC)
address. Once this card is installed on the motherboard of a

machine, this MAC address becomes its physical identifier
allowing it to communicate with other machines within the
same Local Area Network (LAN). Compared to on-premise
solutions, AWS NIC comes not only with a MAC address, but
also with two other ”associated resources”: an IP address and
a subnet ID. Thus, by consuming such AWS NIC , a cloud
user implicitly consumes a pure bundle of MAC address, IP
address and Subnet ID. The user does not only pay for the
requested NIC network component, but also for its associated
components: ie., IP address and Subnet ID (an economic loss).
Moreover, associating a MAC address (L2 resource) with an
IP address and a Subnet ID (which are two L3 resources)
reduces the use of the resources of each layer and creates a
functional dependency between L2 and L3 layers (side effects
on the network system architecture).

It is worth mentioning that it is more beneficial for NaaS
providers to keep pure bundling their network services. Indeed,
this allows them to raise the consumption of their products
[8]. However, offering bundling details concealed in textual
descriptions, large documentations or unstructured formats and
hiding the consequences of existing bundling can significantly
affect not only cloud users but also competing providers. As
for users, pure bundling of network components locks them
at L2 and L3 layers, making them dependent on provider
choices [9]. Locking users at lower layers (L2 and L3) leads
indirectly and necessarily to locking them in the upper layers:
Transport Layer (L4), Session Layer (L5), Presentation Layer
(L6), and Application Layer (L7). As for providers, while top
cloud providers (such as AWS, Microsoft Azure and Google
Cloud Platform) keep bundling their network components with
associated resources, there exists other CSPs (such as VMware
[10]) that try to conceive their network services without
creating a functional dependency between layers. However,
those are ranked in a lower position in the market compared
to the mentioned top ones. This phenomenon is caused by the
lack of transparent and well structured descriptions that reveal
fairly differences between multiple CSPs.

To address this problem, we propose an approach for
describing network services based on their functionality and
according to the OSI model. The proposed approach takes
into account the bundling between network services, and
makes it transparent for users to promote their discovery
and enable cloud users to create their own network services
bundles from different cloud providers. The remainder of this
paper is structured as follows. Section II introduces a model
that we proposed in a previous work [11] for describing
web services based on their functionalities (i.e. capabilities).
Section III introduces a motivating example and then gives
a brief overview of our approach towards a multi-provider
cloud network service bundling and discovery. Section IV
details how we extended our model [11] to describe NaaS
services capabilities. In section V, we propose an algorithm to
generate the proposed capability-based NaaS services descrip-
tion. Section VIII looks into efforts related to our work. Prior
to concluding in Section IX, implementation and evaluation
details are given in Section VI and Section VII, respectively.

II. CAPABILITY-BASED SERVICE DESCRIPTION

A capability describes what a service, process, computer ap-
plication, etc. achieve/does from a functional perspective [12].
The concept of capability plays a key role in Service-Oriented
Computing (SOC) and enterprise information systems [13],
[14]. In our previous work [11], we proposed a capability
model that defines the high-level concepts required for defin-
ing domain-specific capabilities. This section introduces this
capability model on which we will rely later to define the
capabilities of network services. Figure 1 gives an object-
oriented conceptual view of the capability model. Its main
concepts are:

Action

Capability

Property
Declaration

property: String
specRelation: set<String>

definedW.R.T Property Entry

property: String

Value

achieves

1..*

properties0..*

0..*1

 Let A and B two capabilities.
 A variantOf B if A specifies
 and/or extends B

0..*

variantOf

value 1

Fig. 1. Capability model [12]

• Capability, described by an Action category and
zero or many functional or non-functional properties called
Property Entry.

• Action is a property whose value indicates the action that
the capability describes.

• The Value of a Property Entry may be of different
types as illustrated in Figure 2.

Value

hasElements
EnumerationValue

hasValue

hasCondition

ConditionalValue

hasFunction

FunctionalValue

hasConstraint ConstrainedValue

SingleValue

MGV2MGV

Expression
MGV

Fig. 2. Overview of the Property Entries Values Type [11].

– MGV (Most General Value) refers to the instances of the
MGV class.

– 2MGV refers to MGV sub-classes.
– ConstrainedValueMGV allows to define a constraint

as a value of a property.
– FunctionalValueMGV allows to define a function as

a value of a property.
– ConditionalValueMGV enables assigning a value to

a given property if a certain condition holds.
– EnumerationValueMGV defines a property value as a

finite set of values.
A more detailed description of theses types is given in [11].

• Property Entry (PE) gives more details about the car-
ried action. It has a property and a Value. It is defined w.r.t
a Property Declaration (having the same property).

• Property Declaration (PD) represents the declara-
tion of the Property Entry. It has a property, a Most General
Value (MGV) (Figure 2) and a set of specification relations
(specRelation).
– property is the identifier of a relevant functional or non-

functional domain-specific feature,
– MGV is the most general value/class that the PEs, defined

according to PD, may have
– specRelation is a specification relation related to MGV

and reflecting the semantic meaning of the relevant fea-
ture. If defined, this relation identifies when an instance
of the MGV class specifies another w.r.t the semantics of
the relevant property.

Capability may be variantOf one or many other capa-
bilities. Given two capabilities A and B, B variantOf A
in three cases as illustrated in Figure 3:

1) B inherits all the PEs of A with at least one additional PE.
In such case, B variantOf A because B extends A. For
instance, in Figure 3, B inherits the PEs < p1 = v1 >,
< p2 = v2 > and < p3 = v3 > of A and defines < p4 =
v4 > as an additional PE.

2) B shares the properties of A and for each shared property p,
the value of p in B is equal or is more specific than its value
in A. In such case, B variantOf A because B specifies A.
For instance, in Figure 3, B inherits properties p1, p2 and
p3 of A. p1 and p2 have the same values in A and B, while
the value of p3 in B is more specific than its value in A.

3) B specifies and extends A at the same time.

p1 = v1

p2 = v2

p3 = v3

A

B
p1

p2

p3

= v1

= v2

= v

B extends A B specifies A

p1

p2

p3

= v1

= v2

= v

p4 = v4

specifies & extends

p1 = v1

p2 = v2

p3 = v3
p4 = v4

BB

B
variantOf

specifies

(1) (2) (3)

Fig. 3. Relation variantOf between two Capabilities A and B [11]

For the rest of the paper, given a capability C, we denote
by properties(C) the set of the properties of the PEs of C
and by vpC the value of a property p in a property entry PE
in C.

III. MOTIVATING EXAMPLE AND APPROACH OVERVIEW

A. Motivating Example

Let us consider the following example: John, a cloud user,
wants to connect his on-premise machine, which is already
integrated by a network interface card (and therefore identified
by a MAC address), through a Virtual Private Network (VPN)
on the L2 cloud layer. Doing so, John seeks to attach his on-
premise machine to a sub-network offered by a NaaS provider

in order to assign, to this provider, the task of bridging packets
coming from his machine.

This simple running example raises the following research
questions:

• Are cloud networks, in their current design, able to meet
John’s needs and therefore bridge packets coming from
an external MAC address?

• If not, what makes them unable to satisfy such a need?
How to make users, like John, aware of that at the design
phase of an on-premise/cloud connection project? and
how to make these causes explicitly transparent to them?

• If yes, how can John locate the network services that
satisfy his need? How to make the discovery of the
requested network service efficient?

• Suppose that after locating the required service and
realizing his need, John wants to replace the service in-
use by another service that offer the same functionality
but located within another provider (region or even avail-
ability zone). How could he efficiently locate this service
without repeating the discovery process from scratch?

B. Approach Overview

Figure 4 illustrates our approach for enabling multi-provider
cloud network service bundling and discovery. To this end we
extend the capability model introduced in Section II to allow
a capability-based description of NaaS services and we
consider two stopovers: NaaS services description and NaaS
services discovery. The extended model, NaaS capability
model, defines high-level concepts required for defining capa-
bilities of network services, and is presented in Section IV.
During the first stopover of our approach, NaaS services
description, we rely on a catalog of network services defined
by a network expert1 and unstructured textual NaaS services
descriptions extracted from CSP documentations. During the
NaaS services description stopover, we create a catalog of
capability-based NaaS services descriptions according to our
NaaS capability model. Specifically, the Capability extraction
module extracts the NaaS services’ capabilities: based on the
Network services catalog using the OSI specific module
and based on the Unstructured NaaS services descriptions
using the provider specific module. The so extracted non-
hierarchical capabilities are then passed to the Description
generation module. This module, first generates “missing”
capabilities linking provider specific capabilities to OSI spe-
cific ones. Then, the Relations generation module uses a
rule-based inference method for determining the relations
linking the generated and the extracted capabilities together.
The so created hierarchical descriptions are then stored in
the Capability-based NaaS services catalog. Based on this
catalog and a cloud customer provider-independent request,
the NaaS services discovery module returns a custom-made
NaaS service bundle. In the following we detail the proposed
capability-based model for NaaS services and the NaaS

1In this work, this catalog was defined by a network expert from the ISChyO
partnership project considering L2 and L3 network services.

Capability-based
NaaS services

defines

Network expert
Network services

Unstructured NaaS services
(textual descriptions)

NaaS services description

Capability extraction

OSI specific

Provider specific

Description generation

Capabilities generation

Relations generation

NaaS services discovery

Cloud customer with specific
networking requirements

Request cloud provider
independent service

Custom made service bundle

CrawlStore

Return

NaaS capability meta-model

import

get

get

non-hierarchical

capabilities

Fig. 4. Approach for multi-provider cloud network service bundling and discovery

Action

CapabilityProperty
Declaration

property: String
specRelation: set<String>

definedW.R.T

Property Entry

property: String
 Value

achieves

1..*

properties

0..*

value 1

1

0..*

bundles

specifiesResource

Concrete Capability

Abstract Capability

localizedIn

NetworkProperty

LocalizationProperty

ResourceProperty

0..*

Fig. 5. Capability model for NaaS services description

services description stopover. The NaaS services discovery
stopover is not presented in this paper.

IV. NAAS CAPABILITY MODEL

In this section, we present the extended capability model for
NaaS services description. This model allows NaaS services
description based on their capabilities, and hence offers the
means for their capability-based discovery.

Figure 5 shows the structure of the extended model.
Extended concepts are in grey and new relations are in bold.
Compared to the capability model presented in Section II,
we specialize a Capability as AbstractCapability
and ConcreteCapability. Abstract capabilities allow to
describe NaaS services independently of the technical details
of specific CSPs while concrete capabilities describe NaaS
services offers. We also specialize capabilities’ properties,
i.e., PropertyDeclaration, as ResourceProperty,
NetworkProperty, and LocalizationProperty.
In addition, we introduce three types of relations
between capabilities: bundles, localizedIn, and
specifiesResource. These relations create a hierarchical
description of NaaS services capabilities given then means for
an efficient discovery. In the following, we introduce these
capability types (Section IV-A) and relations (Section IV-B).

A. NaaS Service Capability

A NaaS service can be seen as an access mechanism to net-
work resources that can be provided by an entity other than the

requester [15]. In fact, a cloud network service makes a net-
work resource accessible, i.e. exploitable. Therefore, we define
the Action of a NaaS capability as ExposingResource.
In order to discover and invoke a NaaS service, the user needs
to localize the resources by specifying, in addition to the
resource types, the provider, area, region and availability zones
in which the resources are offered. Hence, NaaS capabilities
need to include details related to resource localization. For
a better description of service capabilities, and for more
efficient discoverability, we propose in this work to decouple
the description of the service functionality from the technical
access details related to resource localization. To this end,
we distinguish between two types of NaaS services: non-
localized and localized. Non-localized services are defined
independently of any CSP provider. They describe high level
functionalities of network services. We refer to their capa-
bilities as abstract capabilities. Localized NaaS services on
the other hand are concrete services offered by CSPs and can
be consumed by end users. We refer to their capabilities as
concrete capabilities.

1) Abstract Capabilities: As already mentioned, abstract
capabilities are defined for non localized NaaS services.
They describe high level functionalities of network ser-
vices independently of technical details and specific im-
plementations of CSPs. These capabilities are usually de-
fined by domain experts. They have two types of prop-
erties: ResourceProperty and NetworkProperty.
ResourceProperty declaration indicates the type of ex-
posed resources. Its property name is resourceType
and its value is an element of 2NetworkResource 2, where
NetworkResource is an MGV and is defined as fol-
lows (Figure 6):

• An L2 address is the physical identifier of a machine. It
is equivalent to the MAC address if the protocol used at
the linked data layer is Ethernet;

• An L3 address is the network identifier of a machine. It
is equivalent to the IP (Internet Protocol) address if the

22NetworkResource is the powerset of NetworkResource

protocol used at the network layer is the Transmission
Control Protocol (TCP);

• A virtual L3 address is a virtual L3 address associated
with a virtual router;

• A subnet is a range of L3 addresses;
• A route refers to the path a packet travels on a network.

It refers to each device that handles the packet between
its source and destination (as routers, switches, firewalls).

Value SingleValue

MGV2MGV

MGV

NetworkResource

VirtualL3Address

SubnetL2Address L3Address

macAddress ipAddress

2NetworkResource

Route

typeOf

Fig. 6. NetworkResource: most general value of the property resourceType

Besides ResourceProperty, additional functional or
non functional properties can be described using the property
declaration NetworkProperty. Table I shows some of
the network properties we identified. These properties were
defined based on a domain expertise in the area of net-
working systems. For instance, the requiresCapability
property indicates whether the capability is dependent on
another capability. Its MGV is of type Capability. The
requiresResource property indicates which specific re-
source types are needed from the required capability. Its MGV
is of type NetworkResource 3.

TABLE I
NETWORKPROPERTY DECLARATION

NetworkProperty
PropertyName MGV SR

requiresCapability Capability none
requiresResource NetworkResource none

attachedTo Network none
hostedOn ServiceHost none
protocol String none
subnetId String none

Figure 7 shows an excerpt of a NaaS capability-
based description of the Network Interface services of-
fered by AWS and Microsoft Azure. Examples of ab-
stract capabilities are shown in the top layer of this de-
scription sample. For better readability, we include only
Action and ResourceProperty, properties related to
NetworkProperty are not shown. These capabilities are
defined based on the OSI model. For instance, the capability
CL2endPoint describes the functionality of a networking service

3Due to space constraints, additional details about the network properties
and their MGVs can be found at Supplementary-material-1

Abstract Capabilities

action 	 	 = ExposingResource
resourceType = L2Address

action = ExposingResource
resourceType = L3Address

CL3endPointbundlesbundles

action 	 = ExposingResource
resourceType = [L2Address, Subnet]

action 	 	 = ExposingResource
resourceType = Subnet

Concrete Capabilities

localizedIn

 action = ExposingResource

 resourceType = [macAddress, ipAddress, subnet]

 geoArea 	 	= [United states, Europe]
 provider = AWS

localizedIn

 action = ExposingResource

 resourceType = [macAddress, ipAddress, subnet]

 geoArea 	 	= Europe

 provider = Microsoft-Azure

localizedIn localizedIn

 action = ExposingResource

 resourceType = [macAddress , ipAddress , subnet]

 geoArea = United States

 provider = AWS

 region 	 = [us-east-1(N.Virginia), us-west-2(Oregon)]

 action = ExposingResource

 resourceType = [macAddress, ipAddress, subnet]

 geoArea	 = Europe

 provider = AWS

 region 	 	 = eu-central-1 (Frankfurt)

 action = ExposingResource

 resourceType = [macAddress, ipAddress, subnet]

 geoArea = United States

 provider = AWS

 region = us-west-2 (Oregon)

 availabilityZone = [usw2-az1, usw2-az2]

 action = ExposingResource

 resourceType = [macAddress, ipAddress, subnet]

 geoArea = United States

 provider = AWS

 region = us-east-1 (N.Virginia)

 availabilityZone = [use2-az1, use2-az2]

bundles bundles

localizedIn localizedIn

 action 	 = ExposingResource

 resourceType = [macAddress, ipAddress, subnet]

 geoArea = [United States, Europe]

 action 	 = ExposingResource

 resourceType = [macAddress, ipAddress, subnet]

CL2endPoint CL2Bridging

CL2Connectivity

localizedIn

GeographicalArea

Provider

Region

AvailabilityZone

specifiesResource

 action 	 = ExposingResource

 resourceType = [macAddress, subnet]

specifiesResource

 action 	 = ExposingResource

 resourceType = ipAddress

 action = ExposingResource

 resourceType = [macAddress, ipAddress, subnet]

 geoArea = United States

 provider = AWS

 region = us-west-2 (Oregon)

 availabilityZone = usw2-az1

 action = ExposingResource

 resourceType = [macAddress, ipAddress, subnet]

 geoArea = United States

 provider = AWS

 region = us-west-2 (Oregon)

 availabilityZone = usw2-az2

localizedIn localizedIn

C1

C2 C3

C4

C5 C6

C7 C8

C10

C12

C9

C11

Fig. 7. An excerpt of NaaS services description using the NaaS capability
model

that gives access to the L2 address of a machine; CL2Bridging
describes the functionality of a service that makes the subnet
of a local network accessible; CL2Connectivity describes the func-
tionality of a service that allows to create an L2 connectivity.
CL2Connectivity exposes two types of resources: the machine’s
L2 address and the local network subnet.

2) Concrete Capabilities: Concrete capabilities describe
concrete NaaS services offered by CSPs. Similarly to abstract
capabilities, concrete ones are described in terms of the
action ExposingResource and the property declarations
ResourceProperty and NetworkProperty. In addi-
tion, they include localization related properties under the
property declaration LocalizationProperty. To localize
resources, we define four properties: GeographicalArea,
Provider, Region and AvailabilityZone. The
MGVs of these properties are defined as shown in Fig. 8.
Examples of concrete capabilities are shown in the gray layers
of the sample description of Figure 7. These capabilities
describe the NetworkInterface service offered by Amazon
AWS and Microsoft Azure. As shown in the example, each

https://travailderecherche.wixsite.com/monsite/capability-meta-model-use-cases

localization property creates a localization layer making the
model hierarchical. This hierarchy helps in localizing NaaS
services at different levels of abstraction during discovery,
e.g. discovering all NaaS services that allow to create a local
network connectivity (i.e. L2 connectivity) and that are offered
in a specific geographical area corresponds to the subtree
rooted at C4.

Value SingleValue

MGV2MGV

MGV

typeOf

Localization

Region ProviderAvailabilityZone

2Localization

GeographicalArea

N.Virginia...
Oregon

UnitedStates...
Europ

MS Azure...
AWS

Fig. 8. Localization: most general value that may be defined in a Localiza-
tionProperty

B. NaaS Capability Relations

NaaS capabilities are connected through three
types of relations: bundles, localizedIn and
specifiesResource. All the three relations are derived
from the variantOf relation of the capability model
introduced in Section II. The relation bundles allows
to explicitly model the packaging of NaaS services. It is
defined between a parent capability and at least two children
capabilities where the parent capability is a bundle of the
children capabilities.

Definition 4.1 (bundles): Let C1, . . . , Cn, n ≥ 3
be a set of capabilities achieving the same action.
C1 bundles {C2, . . . , Cn} iff ∀i ≥ 2, Ci variantOf C1 and
vresourceType
C1

= ∪ni=2 vresourceType
Ci

.
The relation localizedIn is defined between an abstract
or concrete capability and a concrete one. It allows to localize
NaaS services by describing their capabilities at different lev-
els of localization, i.e. in terms of geographical area, provider,
region, and/or availability zones.

Definition 4.2 (localizedIn): Let C1, C2 be two ca-
pabilities achieving the same action. C1 localizedIn C2

iff C2 variantOf C1 and ∀p ∈ properties(C2) \
properties(C1), < p,MGV, specRelation > is a Local-
izationProperty

Finally, the specifiesResource relation describes a
relation of specification between the exposed resources of two
capabilities. The specification of network resources are defined
based on the model in Figure 6.

Definition 4.3 (specifiesResource): Let C1, C2 be two ca-
pabilities achieving the same action. C1 specifiesResource C2

iff properties(C1) = properties(C2) and vresourceType
C1

specifies vresourceType
C2

and ∀p ∈ properties(C1) such that
p ̸= resourceType), vpC1

= vpC2

Examples of these relations are shown in the sample
NaaS capability-based description of Figure 7. For instance,
CL2Connectivity bundles the two capabilities CL2Endpoint and
CL2Bridging. It exposes the set of resources exposed by its
children. The concrete capabilities are interconnected through
the localizedIn relation, e.g. capabilities C4 to C12.
The specifiesResource relation is between C2 and
CL2Connectivity, and C3 and CCL3Endpoint.

V. NAAS SERVICES DESCRIPTION

In this section, we detail our approach for describing NaaS
services based on the NaaS capability model presented in
Section IV. NaaS services description consists of two steps
as shown in Figure 4: capability extraction (detailed in Sec-
tion V-A) and description generation (detailed in Section V-B).

A. Capability Extraction

The capability extraction component takes two inputs. The
first is a catalog of network services defined by network
experts. These services are defined independently of the
specific vocabulary and implementation of CSPs. Therefore,
their corresponding capabilities, modeled with reference to
the OSI model, are abstract. In this work, network services
were defined by our industrial partner. The corresponding
capabilities were modeled manually and validated by network
experts. The result of this step is a set of abstract capabilities,
as shown in the first layer of Figure 7 (e.g., CL2endPoint and
CL2Connectivity).

The second input is the set of NaaS services descriptions
offered by different CSPs. Different sources, such as textual
descriptions and APIs documentations, can be used to extract
the information required to model provider specific capabil-
ities. For each NaaS service, we assume that the following
minimal information can be extracted from the available
descriptions: type of exposed resources, geographical area,
provider, regions, and availability zones in which the service
is available. For each NaaS service, a capability is created
per each georgraphical area, region, provider, and availability
zone. A sample description of these concrete capabilities is
shown in the bottom layer of Figure 7 (e.g., C11 and C12).

B. Description Generation

This component takes as input the output of the previous
component: the abstract capabilities and the concrete provider
specific capabilities. It then infers the set of capabilities and
relations allowing to construct a hierarchical model through
the following steps.

1) Capabilities Generation: The capabilities that need to
be generated are concrete capabilities belonging to different
localization layers. Indeed, these capabilities create the hier-
archical structure of the NaaS capability model and therefore,
during service discovery, they allow to navigate from the top
abstract capabilities to the bottom concrete provider specific
capabilities. For instance, given the capabilities C11 and C12

in Figure 7, the capability generation sub-component generates
the capabilities C4 to C10. The pseudo-code of the capability

generation sub-component is shown in Algorithm 1. The input
is the set of the provider specific capabilities and the output
is the set of the generated capabilities. Two main operations
are performed: split and merge.

Algorithm 1 Generating capabilities from provider specific
concrete capabilities
Input C = {C1, . . . , Cn} : provider specific capabilities
Output Cg: set of generated capabili-
ties

1: for each C in C do
2: recursive split(C, Cg)
3: end for
4: Cg.remove duplicates()
5: for each localization property pl do
6: Cf ← get factorizable(C ∪ Cg, pl)
7: Cm ← merge(Cf)
8: Cg ← Cg ∪ {Cm}
9: end for

10: return Cg =0

The split operation decomposes the concrete capabilities
outputted by the capability extraction component into different
capabilities belonging to different localization layers. This
is done recursively by removing each time one localization
property (Lines 1-3). The split operation is defined as follows.

Definition 5.1 (Split operation): Given a concrete capability
C and a localization property pl, the split operation generates a
capability Cs such that Cs = C.remove(pl) where remove(pl)
removes the property pl and its value from C.
For instance, given the capability C11 in Figure 7, the split
operation generates recursively three capabilities by removing
each time one localization property (and its corresponding
value), i.e. it generates a capability without the region
property, a capability without the region and provider
properties, and a capability without the region, provider,
and geographical area properties. This step may gener-
ate duplicate capabilities that are removed in a postprocessing
step (Line 4).

The merge operation aggregates capabilities belonging to
the same localization layer that are factorizable (Lines (5-9).
Factorizable capabilities are those that, in a given localization
layer, are identical, excluding the localization property of
that layer. For instance, in the description of Figure 7, the
capabilities C11 and C12 can be factorized since they belong
to the same localization layer (i.e. availability zone layer) and
they are identical except for the availabilityZone property.

Definition 5.2 (Factorizable capabilities): Given a set of
capabilities C1, . . . , Cn, n ≥ 2 that have the same localization
property pl. C1, . . . , Cn are factorizable iff C1.remove(pl) =
· · · = Cn.remove(pl)

Factorizable capabilities are merge into one capability
whose variable property has as value the union of the proper-
ties values of its variants. The formal definition of the merge
operation is given below.

Definition 5.3 (Merge operation): Given a set of factor-
izable capabilities C1, . . . , Cn, n ≥ 2. The merge operation
generates a capability Cm such that Cm = ∪i=n

i=1Ci

In our example, C11 and C12 are aggregated into C9. The
availabiltyZone property of C9 is equal to the union
of the availabilityZone values of C11 and C12, i.e.,
usw2-az1 and usw2-az2. It is worth noting that factoriz-
able capabilities are not removed from the set of capabilities
and the resulting aggregated capability is simply added.

2) Relations Generation: Once the capabilities are gener-
ated, the last step consists of inferring the relations bundles,
localizedIn, and specifiesResource between capa-
bilities. As shown in Definition 4.1 and Definition 4.2, the
relations bundles and localizedIn are defined based
on the relation variantOf which is itself defined based
on two sub-relations specifies and extends (as mentioned
in section II). In [11], we explained that the relation ex-
tends is a special case of the relation specifies. The relation
specifiesResource, introduced in Definition 4.3, could
also be seen as a special case of the relation specifies. In
fact, a capability C1 specifiesResource C2 if (1) C1

inherits all the properties of C2, (2) for each shared property
p different from the resourceType property, the value of
p in C1 is equal to its value in C2, and (3) the value of
the property resourceType in C1 specifies the one in C2.
Thus, inferring the relations bundles, localizedIn and
specifiesResource between capabilities consists mainly
in inferring the specifies relations as described in Algorithm 2.

Algorithm 2 Inferring specifies between capabilities
Require: Ci , Cj : two capabilities
Ensure: true if Ci specifies Cj ; false else.

1: countS ← 0 {Number of inferred specifies relations}
2: if ! Properties(Ci).contains(Properties(Cj)) then
3: return false
4: else
5: for each p in Properties(Ci) do
6: vi ← Properties(Ci).get(p)
7: vj ← Properties(Cj).get(p)
8: if ! vi.equals(vj) then
9: if specifies(vi, vj) then

10: countS ← countS + 1
11: else
12: return false
13: end if
14: end if
15: end for
16: end if
17: return countS ! =0

Algorithm2 takes as input two capabilities Ci and Cj and
returns true if Ci specifies Cj or false if not. First, the
algorithm checks if Ci inherits all the properties of Cj (line
2-3). If so, for each property p in Ci, the algorithm gets vpCi

(resp. vpCj
) and assigns it to a variable vi (resp. vj) (line 6-7). If

vpCi
is equal to vpCj

(line 8), the algorithm selects the next p in

properties(Ci) and repeats the same steps as for the previous
p (i.e. go back to line 5). If not, it checks if vpCi

specifies vpCj

(line 9). If so, it increments the number of the inferred specifies
relations (line 10) then go back to line 5. The algorithm returns
false if it finds a property p in properties(Ci) such that vpCj

is neither equal nor more specific than vpCj
.

Line 9 in Algorithm2 shows that the specifies relation
between the capabilities Ci and Cj is based on a specifies
relation between the values vi and vj of their common
properties p. In our previous work [11], we defined a set of 21
rules that allows to infer the specifies relation between values
of PEs. Function specifies called at line 6 infer the specifies
relation between vi, the value of p in Ci, and vj , the value of
p in Cj using the proposed inference rules 4.

VI. PROOF-OF-CONCEPT

In what follows, we first detail the capability extraction
and modeling process that was carried out by domain experts,
followed by the NaaS services description generation steps.

A. Capability Extraction and Modeling

To define abstract capabilities, we collaborated with two
experts in networking system management and architecture
(P1, P2). Both are currently active in their field. One of them is
a researcher having more than 25 years of expertise, while the
other is a manager of a start-up offering networking services.
The role of these experts was to ensure the definition of
abstract capabilities according to the OSI model. Five other ex-
perts that are currently active in the field of service computing
and software engineering helped us to model provider specific
capabilities. Each of them has at least 5 years of professional
experience. The following are their profiles:
• One expert in the area of cloud computing (P3). P3 is an

AWS accredited instructor.
• One expert in the area of cloud computing (P4). P4 works

on designing and developing of cloud and cognitive ser-
vices/APIs.

• One senior software engineer and two professors (P5, P6,
P7) leading collaborative projects and having expertise in au-
tomating (cloud-)service discovery and orchestration. P7 is
the designer of the capability model presented in section II.

P3 and P4 helped us in analyzing the textual descriptions
and API documentations of some NaaS providers (such as
AWS and Microsoft Azure), as well as in extracting the
capabilities of network services localized in each provider’s
availability zones. Collaborating with these cloud computing
experts ensures the correct analysis of the offering. P5, P6,
and P7 supervised us during the modeling steps to ensure the
correct application of the capability model.

In term of realization, we model the capabilities, their
Property Declarations as well as their values in the form
of Resource Description Framework (RDF) triplets. We also
model the NaaS services capability model as an RDF ontology.

4details and implementation of these rules could be found at supplementary-
material-2

B. NaaS Services Description Generation

1) Capabilities Generation: We implemented the split
and merge operations as Java functions. Then, we imple-
mented an algorithm that takes as input RDF descriptions of
the abstract and provider-specific capabilities (modeled in sec-
tion VI-A), uses the split and merge operations to generate
new capabilities and returns as output an RDF knowledge base
(noted RDF-KB). RDF-KB contains the RDF descriptions of
the capabilities given as input and those generated. We used
JENA5 framework to get object representations of capabilities.

2) Relations Generation: We implemented an algorithm
that takes as input the generated knowledge base in sec-
tion VI-B1, infers the bundles, specifiesResource
and localizedIn relations between the capabilities that are
modeled in this base, add the inferred relations to this last and
return it as output. To infer existing relations, the algorithm
uses the inference rules that were proposed in our previous
work in [11] and implemented as SPARQL queries.

VII. PRELIMINARY EVALUATION

In this section, we evaluate our approach based on a use case
in which we consider an example of a cloud user who looks for
locating a certain network service. Our objective is twofold.
First, we aim to evaluate the usefulness of the proposed NaaS
services description in the discovery of networking services
based on their capabilities. We show that our description
allows to answer all needs of the cloud user in the use case
example. Second, we aim to measure the effectiveness of our
approach in terms of accuracy (i.e., precision and recall). In
the following subsections, we describe the use case example,
then we discuss and analyze the experiment results.

A. Use Case

Let us consider John, a cloud user who wants to connect
his on-premise machine, which has an integrated network
interface card (and therefore identified by a MAC address), to
his cloud environment through an L2 Virtual Private Network
(VPN). Doing so, John seeks to attach his on-premise machine
to a sub-network offered by a NaaS provider in order to assign,
to this provider, the task of bridging packets coming from
his machine. As a first step toward satisfying his need, John
decided to search the World Wide Web in order to (Q1) index
all cloud networking services providing a sub-network.

While analyzing existing API documentations, John realized
that NaaS providers categorize their services by regions and
availability zones. Thus, he expressed his request differently
looking rather for (Q2) indexing all cloud networking services
providing a sub-network in the United States (US) region, i.e.
where his on-premise machine is located.

By searching the Web, John is indirectly trying to manually
create an index of available networking services which is
a time-consuming and an error-prone task especially if he
is not familiar with cloud computing and network systems
concepts. In fact, John will not recognize for example that

5https://jena.apache.org/

https://travailderecherche.wixsite.com/monsite/inference-rules
https://travailderecherche.wixsite.com/monsite/inference-rules
https://jena.apache.org/

his need could not be satisfied by AWS. AWS bundles the
sub-network resource with IP and MAC addresses which,
by default, disables the bridging of packets coming from an
external machine using an AWS sub-network6.

Suppose that after recognizing that AWS could not satisfy
his need, John accepted to purchase the AWS service bundle
and abandon using his on-premise machine. He changed his
request again looking this time for (Q3) indexing all AWS
bundles of IP address, MAC address and sub-network which
are available in Oregon.

Motivated by its offered cost, the user could decide to (Q4)
replace the already selected and in-use service by another
one from Microsoft Azure realizing the same capability with
no localization requirement.

Figure 9 illustrates the description of John’s queries (Q1,
Q2, Q3 and Q4) according to the NaaS capability model.

 action 	 = ExposingResource

 resourceType = subnetID

CQ1

 action 	 = ExposingResource

 resourceType = subnetID

 geoArea = United States

CQ2

 action = ExposingResource

 resourceType = [macAddress , ipAddress , subnetID]

 geoArea = United States

 provider = AWS

 region 	 = us-west-2 (Oregon)

CQ3

 action = ExposingResource

 resourceType = [macAddress, ipAddress, subnet]

 geoArea 	 	= Europe

 provider = Microsoft-Azure

CQ4

Fig. 9. John’s queries described as requested capabilities according to the
NaaS capability model

B. Experiments

In this section, we use our NaaS services description as a
hierarchical indexing structure for answering John’s requests.
To browse our hierarchical description, we use EASY-M, an
algorithm proposed in [16] for matching a requested capability
with a number of advertised capabilities structured in a Direct
Acyclic Graph (DAG) based on their semantic similarity. We
tested the EASY-M algorithm to match the capabilities that are
requested by John (illustrated in Figure 9) with the capabilities
in our NaaS services description (illustrated in Figure 7).

C. Results

• Browsing the hierarchy using existing algorithms
The results show that our NaaS services description can be
traversed using the EASY-M algorithm. However, not all
localization layers could be reached during the description
browsing, i.e. during the service discovery process. This
is foreseeable since the EASY-M algorithm was proposed
to browse DAG of capabilities linked through subsumption
relations. Subsumption relation is equivalent to the extends
relation in our work. Thus, the algorithm will not be able to
reach all localization specific capabilities in the input DAG7.

• Effectiveness of the hierarchical NaaS services description
We evaluate the effectiveness of our NaaS services de-
scription for the discovery of NS in terms of accuracy

6This information could be checked at the following link https://docs.aws.
amazon.com/vpn/latest/s2svpn/VPC VPN.html

7Exploring model navigation with new or other existing algorithms is the
subject of future research work.

(precision and recall). To do so, we invited P7, the designer
of the capability model, to manually evaluate the hierarchy
browsing in order to identify true positive and false negative
capabilities to compute precision and recall values.
– (Q1): EASY-M returns 2 capabilities, only 1 of them is

relevant and no relevant capabilities were missing in the
returned result. Its precision is 1/2 , which tells us how
valid the results are, while its recall is 1, which tells us
how complete the results are.

– (Q2): EASY-M returns 2 relevant capabilities. No relevant
capabilities were missing in the returned result.

– (Q3): EASY-M returns 2 relevant capabilities, while fail-
ing to return 2 others relevant capabilities.

– (Q4): EASY-M returns 3 capabilities whereby, only 1/3
is relevant and 2/3 aren’t. No relevant capabilities were
missing in the returned result. Accuracy results in terms
of precision and recall are showed in Table II.

TABLE II
ACCURACY RESULTS

Query EASY-M Precision EASY-M Recall
(Q1) 50% 100%
(Q2) 100% 100%
(Q3) 100% 50%
(Q4) 30% 100%

Average 70% 87.5 %

VIII. RELATED WORKS

NS descriptions determine the information about a network
service that are required for enabling its discovery and there-
fore its consumption. This section reviews the relevant work
that focus on NS description (i) within the standardization
bodies, (ii) within cloud providers, and (iii) within academia.

Valuable standardization initiatives (e.g., ETSI NFV [17],
TOSCA-NFV [18], IETF-SFC [19]) focus only on enabling
virtual network function (VNF) provisioning capabilities such
as description, publication, and discovery mechanisms for
VNFs. They assume that the network service/resources are
already discovered and made available by the underlying vir-
tual infrastructure managers (VIMs) such as AWS, Openstack,
etc. Thus our approach can be seen complementary to this
efforts since it provides a transparent description of network
services that can be required by any VNF or needed to build
the connection between VNFs toward creating more advanced
network topologies.

As for cloud providers’ approaches, the majority of them
(e.g., AWS, Azure, to name a few) rely on the natural language
present their network services, whereby each depends on
its specific vocabulary. For instance, services with the same
functional capabilities are described with different naming
conventions and specifications [20]. Although the main de-
scription related to cloud NSs does not allow discovering
the underlying bundling structure within NS capabilities, the
accompanied description within the NS-related APIs once
analyzed by domain experts enables the discovery of such

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html

bundling structure. Our approach discovers and describes the
NS bundling structure so that users with low knowledge are
able to get transparent and detailed descriptions for their NSs
of interest.

As for academia approaches, initial efforts (such as [21])
tried to apply WSDL (Web Service Description Language), to
describe network services as Web services. However, WSDL
focuses on the description of interaction interfaces and lacks
the ability to describe NS capabilities. Other attempts [1],
[22], [23] focus on describing network service capabilities.
[22] introduced a high-level abstraction model for network
service capabilities. However, the considered capabilities in-
clude only two aspects: The “connectivity” which refers to
pairs of sources and destinations between which the network
transports data, and “capacity” of data transportation between
each pair. The author assume that the network services already
discovered, and use the capability model to support network
service orchestration. [1] adopted a component-based model-
ing to describe cloud networking services with a focus on their
QoS aspects and management/control interfaces. The model
considers a network service as black-box without detailing
its underlying capabilities, i.e., associated resources they may
expose. [23] introduced a domain-independent ontology called
VIKING that provides a generic description of the VNF
capabilities from functional and non-functional perspectives.
Functional characteristics of a VNF capability refer to the
business functionality that a given VNF supports (e.g. video
compression, data mixer), while non-functional refers to what
precisely the VNF requires for proper functioning, this in-
cludes among others QoS such as response time and operation
cost. Although the proposed model allows to describe some
network service capabilities, it does not allow compositions
over VNFs, a key important aspect required to describe
network service bundling. In addition, the model focuses only
on the description of network services designed by VNFs, and
does not consider the specificities of network services provided
by cloud NaaS providers.

IX. CONCLUSION

In this paper, we proposed a model for describing network
services based on their capabilities. We also defined a method
to generate the proposed NaaS services description. To validate
our approach, we implemented a proof-of-concept and we
conducted a use case-based preliminary evaluation. We aimed
to evaluate the usefulness as well as the effectiveness of our
approach for the discovery of network services.

The benefits gained by our NS description are promising,
albeit far from perfect. As future work, we plan to investigate
more advanced algorithms that allow an efficient model brows-
ing ensuring precision-complexity trade-off. Finally, given that
the capability extraction step may require extensive manual
efforts, it would be useful to apply crowdsourcing mechanisms
in tandem with machine learning solutions, (particularly, nat-
ural language processing techniques), to derive the capability-
related knowledge from textual service descriptions of CSPs.

X. ACKNOWLEDGMENT

This work was partially funded by a French national pro-
gram via the public private partnership project ISChyO, n°
192906122-RAPID.

REFERENCES

[1] Ines Ayadi, Noemie Simoni, and Gladys Diaz. Naas: Qos-aware cloud
networking services. In 2013 IEEE 12th International Symposium on
Network Computing and Applications, 2013.

[2] Paolo Costa, Matteo Migliavacca, Peter Pietzuch, and Alexander L Wolf.
Naas: Network-as-a-service in the cloud. In 2nd USENIX Workshop on
Hot Topics in Management of Internet, Cloud, and Enterprise Networks
and Services (Hot-ICE 12), 2012.

[3] Sergio Guidon, Michael Wicki, Thomas Bernauer, and Kay Axhausen.
Transportation service bundling–for whose benefit? consumer valuation
of pure bundling in the passenger transportation market. Transportation
Research Part A: Policy and Practice, 2020.

[4] Xiong Zhang, Wei T Yue, and Wendy Hui. Bundling cloud software to
fight piracy: an economic analysis. Internet Research, 2019.

[5] Thunyarat Amornpetchkul, Hyun-Soo Ahn, and Özge Şahin. Conditional
promotions and consumer overspending. Production and Operations
Management, 2018.

[6] Chenguang Wu, Chen Jin, and Ying-Ju Chen. Managing customer search
via bundling. Manufacturing & Service Operations Management, 2022.

[7] Riccardo Trivisonno, Xueli An, and Qing Wei. Network slicing for 5g
systems: A review from an architecture and standardization perspec-
tive. In 2017 IEEE Conference on Standards for Communications and
Networking (CSCN), 2017.

[8] John T Gourville and Dilip Soman. How packaging services can hurt
consumption: The potential downside of bundling. Cornell Hotel and
Restaurant Administration Quarterly, 2001.

[9] Mustafa Karataş and Zeynep Gürhan-Canli. When consumers prefer
bundles with noncomplementary items to bundles with complementary
items: The role of mindset abstraction. Journal of Consumer Psychology,
2020.

[10] Justin Pettit, Ben Pfaff, Joe Stringer, Cheng-Chun Tu, Brenden Blanco,
and Alex Tessmer. Bringing platform harmony to vmware nsx, 2018.

[11] Imen Jerbi and Sami Bhiri. Definition and induction of a specification
order relation between capabilities. In 2021 IEEE International Confer-
ence on Services Computing (SCC), 2021.

[12] Wassim Derguech, Sami Bhiri, and Edward Curry. Using ontologies for
business capability modelling: describing what services and processes
achieve. The Computer Journal, 2018.

[13] Jelena Zdravkovic, Janis Stirna, and Janis Grabis. Capability consider-
ation in business and enterprise architecture frameworks. In Capability
Management in Digital Enterprises. 2018.

[14] Nane Kratzke. A brief history of cloud application architectures. Applied
Sciences, 2018.

[15] Sami Bhiri, Walid Gaaloul, Mohsen Rouached, and Manfred Hauswirth.
Semantic web services for satisfying soa requirements. In Advances in
Web Semantics I. 2008.

[16] Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas, Valérie
Issarny, and Yolande Berbers. Easy: Efficient semantic service discovery
in pervasive computing environments with qos and context support.
Journal of Systems and Software, 2008.

[17] ETSI. Etsi gs nfv-man 001. Technical report, 2014.
[18] Committee Specification. Tosca simple profile for network functions

virtualization (nfv) version 1.0. Technical report, 2017.
[19] IETF. Service function chaining (sfc) operation, administration and

maintenance (oam) framework. Technical report, 2018.
[20] Mustafa M. Al-Sayed, Hesham A. Hassan, and Fatma A. Omara.

An intelligent cloud service discovery framework. Future Generation
Computer Systems, 2020.

[21] Qiang Duan. Automatic network service discovery and selection
in virtualization-based future internet. In 2011 IEEE GLOBECOM
Workshops (GC Wkshps), 2011.

[22] Qiang Duan. Network-as-a-service in software-defined networks for
end-to-end qos provisioning. In 2014 23rd Wireless and Optical
Communication Conference (WOCC), 2014.

[23] Nour el houda Nouar, Sami Yangui, Noura Faci, Khalil Drira, and Saı̈d
Tazi. A semantic virtualized network functions description and discovery
model. Computer Networks, 2021.

	Introduction
	Capability-based Service Description
	Motivating Example and Approach Overview
	Motivating Example
	Approach Overview

	NaaS Capability Model
	NaaS Service Capability
	Abstract Capabilities
	Concrete Capabilities

	NaaS Capability Relations

	NaaS Services Description
	Capability Extraction
	Description Generation
	Capabilities Generation
	Relations Generation

	Proof-of-Concept
	Capability Extraction and Modeling
	NaaS Services Description Generation
	Capabilities Generation
	Relations Generation

	Preliminary Evaluation
	Use Case
	Experiments
	Results

	Related Works
	Conclusion
	Acknowledgment
	References

