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Abstract—We introduce the concept of Intrusion Resilience
Systems (IRS) for modern vehicles. An IRS is a middleware
that enables running a vehicular application in a replicated
way, i.e., as a Replicated State Machine, over several ECUs. By
requiring the replicated processes to reach a form of Byzantine
agreement before changing their local state, the IRS ensures the
resilience of critical vehicular applications despite assumed faults
or attacks, as long as threat assumptions are met. This position
paper proposes the tentative architecture of IRS and discusses
its conceptual feasibility and underlying challenges. Our study
rides the mutation of modern vehicular environments, which are
closing the gap between simple and resource-scarce ’real-time
and embedded systems’, and complex and powerful ’information
technology’ ones. We show that current architectures are be-
coming plausible for such modular fault and intrusion tolerance
solutions—deemed too heavy in the past. Our conclusion is that
this topic deserves more attention in both academia and industry.

Index Terms—modern vehicles, intrusion resilience, cyberse-
curity, Byzantine agreement

I. INTRODUCTION

Three trends, Automation, Digitization, and Connectivity
are disrupting the ways modern vehicles are designed and
used. While these trends can bring notable features like
safety, efficiency, and convenience, they could turn into a
curse if security and resilience are left as afterthoughts. Even
“safety” [4], [15], more recently, risks being sacrificed to the
altar of ML-fueled vision recognition [25], [28]. Unfortunately,
reality shows that safety and security incidents are doubling
annually during the past three years, causing up to half Trillion
dollars by 2024 due to cyberattacks [19], and leading to
millions of car recalls [7]. Such trend, if not contradicted,
jeopardizes the sought features and puts human lives at risk.
We need novel approaches to improve vehicles’ resilience:
ensuring that an acceptable service prevails, even in uncertain
environment conditions, or in the presence of faults or attacks
that might not have been predicted.

This work is motivated by two main observations in the
automotive industry. The first is that the automation and
digitization trends increase the complexity of vehicles and
the likelihood of software faults and vulnerabilities. While
digitization suggests software-defined vehicle systems (com-
pute nodes, networks, and software) as a main enabler to
automation, these systems must be trustworthy since automa-
tion implicitly delegates the vehicle’s driver control to the
automotive system, e.g., supporting features like x-by-wire,

Advanced Driver Assistance Systems (ADAS), and Telematics.
To this end, digitization involved a considerable number of
distributed software components running on over a hundred
embedded compute devices, Electronic Control Units (ECU),
which communicate via in-vehicle digital networks, e.g., CAN
bus, Automotive Ethernet, FlexRay, etc. [20]. This results in
a complex system with an enormous number—estimated to
exceed 100 Millions—of Software Lines of Code (SLoC) in
mainstream vehicles [7], [22]. Experience shows that human
errors are positively correlated with both system’s complexity
and code footprint, and this increases the likelihood of benign
faults and intrusions.

The second observation is that since digitization is closing
the gap with the Information Technology (IT) and Internet of
Things (IoT), it is imperative to connect the vehicle to its dig-
ital counterparts in the cyberspace. Connectivity is established
in several networking forms like Vehicle to Everything (V2X),
Cellular, 5G, Bluetooth, WIFI, GPS, or even through hardware
memory sticks or USB connectivity [8]. This raises substantial
security challenges as it boosts the attack surface and entry
points of the vehicle system and makes it highly prone to
intrusions induced by (the well experienced) attackers in the
cyberspace, via exploiting the existing vulnerabilities [18],
[31] (discussed in the first observation).

The automotive community has been recently focusing on
consolidating the network security layer, leaving the higher
software layers insufficiently addressed. Of particular interest
is the introduction of new network security controls and
tools (e.g., Gateways, Firewalls), and hardening the security
of existing networks, e.g., CAN Bus, CAN FD, CAN XL,
FlexRay, Automotive Ethernet (100BASE-T1 and 10BASE-
T1s), etc. [20]. This is also supported by using endpoint tools
like Intrusion Detection Systems (IDS) and Intrusion Preven-
tion Systems (IPS) [14]. IDS systems of either “school”—
signature-based and anomaly-based IDS—have limitations in
the context of in-car systems, respectively blindness to zero-
day vulnerabilities, and being difficult to define a “normal be-
havior”. Not to mention the problem of reaction/mitigation in
real-time, which haunts IPS, and makes these ad-hoc response
techniques currently very limited (e.g., detaching a vulnerable
ECU from the network bus using the Bus-off state [14], [21]).
On the other hand, since the network PHY/MAC protocols
and tools (IPS/IDS) are application-agnostic, they can neither



detect the anomalies and intrusions occurring at the upper
layers nor stop their propagation to other ECUs.

In this position paper, we introduce the concept of In-
trusion Resilience Systems (IRS) for modern vehicles. IRS
aims at contributing to a timely revolution in current in-
vehicle computer and network architectures, by extending the
security and safety properties of component-based architec-
tures (e.g., AUTOSAR). We propose SW-implemented fault
and intrusion tolerance, leveraging available sets of failure-
independent ECUs, similarly to the principles laid down by IT
pioneering architectures of the 80’s in modular, incremental
fault-tolerance [3], [23]. The approach is inline with the
increasing demand for automotive computing and network
channel redundancy, i.e., ASIL Decomposition, as part of the
ISO 26262v.2 safety standard [12], [13].

The novel concepts behind IRS system-level automotive
middleware allow running multiple and possibly diverse repli-
cas of a state-full application process on different ECUs, form-
ing a resilient deterministic Replicated State Machine [27].
Replicas are required to agree on a common state through
a variant of Byzantine Agreement [5] protocols (today widely
used in Blockchain) prior to changing their local state. As long
as the process is deterministic, agreement is reached despite
the existence of benign or intrusion faults in a minority of
replicas. Distributed applications like door locks, window con-
trol, software Over-the-Air (OTA) updates are few examples
on feasible applications on top of IRS.

IRS gives a quantum leap from IDS/IPS functions. First, it
can work at a higher level of abstraction, targeting application
software level anomalies and intrusions. Second, IRS follows
an error masking approach which virtually captures all faults,
even unknown ones, unlike IDS systems. Third, contrary to
IPS whose response often degrades or suspends some system
components or functions [14], [21], IRS makes it possible
to roughly maintain the application functionality and quality
under failures or attack.

In this work, we present a tentative IRS architecture to
demonstrate the our concept; and we then drive a logical
reasoning for the feasibility of IRS for vehicles. Therefore, we
analyze the technological advancements in modern vehicles,
including applications, distributed architectures, ECUs with
decent computational and storage capacity, and improved in-
vehicle networks. An empirical evaluation system meeting
these different networking, architecture and application re-
quirements is a work in progress in our team.

II. INTRUSION RESILIENCE SYSTEM

A. Systems and Threat Models

Consider an in-vehicle system of N nodes. A node is
composed of an computing device, i.e., an ECU, a correspond-
ing software stack, and a (critical) soft real-time vehicular
application for simplicity. (This can be generalized to many
applications.) A node can communicate with its counterparts
through messaging via a vehicular network, either through
a direct link, a switch, or via a gateway. A sent message
is assumed to eventually reach its destination node despite

network failures or attacks (e.g., after re-transmissions). A
node has a unique identity in the system to verify message
authenticity and integrity using lightweight cryptography prim-
itives, like Elliptic Curve Cryptography (ECC). A node, or the
application therein, is assumed to be deterministic. However,
an application can fail by crashing or behave arbitrarily or ma-
liciously when subject to an intrusion. We assume that at most
a fraction F of N nodes can fail at a time, which implicitly
assumes some independence of failures between nodes. This
can be achieved by employing ECUs from diverse vendors,
different libraries, software stack, and implementation, etc.,
which is not uncommon in the automotive setting. Finally,
we assume the existence of a technique to detect Denial of
Service (DoS) jamming attack in multi-hop bus networks like
CAN and 10BASE-T1s [14], [20].

B. Architecture and Concept

a) Concept: The IRS concept is based on the idea of
intrusion error masking rather than detection and prevention
as in IPS/IDS. By running multiple (N ) replicas/versions of
an application and comparing their outputs on different nodes
(ECUs), it is possible to mask any error caused by accidental
or malicious faults occurring on F faulty nodes, by adopting
the output state of an uninfected majority (N − F ). This
is possible through running a Byzantine agreement protocol
across application replicas. In this approach, the state of a
critical application can only be modified upon the agreement of
at least N−F counterparts. This exploits the current replicated
vehicle functionalities, often used for coordinated actuation
and notification, to improve intrusion resilience.

b) Architecture: We present the IRS system view archi-
tecture in Fig. 1, A. The System View shows a number N of
IRS nodes (N = 4, in this case) replicated over N ECUs. For
clarity, we use Zonal Control Units (ZCU) as ECUs to host
different applications (e.g., door locks and window control)
on the same ECU. On the other hand, Fig. 1, B presents
the Node View at one of the nodes (i.e., node 2) describing
its components and relation within the Hardware/Software
(HW/SW) stack.

In particular, the IRS stands as a middleware or service used
by those critical applications that require intrusion resilience.
N versions of the application are employed over N different
nodes, making use of the underlying IRS middleware. The
core module of the IRS seeks to ensure agreement on requests
issued by the application via an IRS proxy. The proxy encapsu-
lates the authentication, peer information, and the function to
be made resilient through IRS in an application-agnostic way.
The agreement module runs the main Byzantine agreement
protocol to ensure (1) total ordering on the application state
and (2) output validation (i.e., comparison of results from
counterpart nodes on other ECUs). The agreement module
benefits from three underlying modules, namely, Discovery,
Broadcast, and Overlay to facilitate the membership manage-
ment and networking with the peer nodes as a separate layer.
Note that IRS can make use of these modules if made available
by other frameworks, e.g., in the AutoSAR architecture.



Fig. 1. Intrusion Resilience System (IRS) Architecture.

IRS offers modular and incremental fault and intrusion
tolerance [23]. Not all node applications—or even functions
of an application—are supposed to use the IRS, as they might
not be critical, e.g., the case of App4 in the figure. Likewise,
applications using IRS may resort to different models of
replication (from crash to Byzantine fault tolerance), as well as
different sizes of tolerance quorums (#(N )). For instance, an
application that controls the remote door locks is much more
critical than the mirror tilting application. Similarly, an Over-
the-Air (OTA) update application is highly critical compared
to infotainment social network (e.g., chatting) update.

IRS runs on top of other basic services and abstractions,
such as those defined in the AutoSAR standard1. This way,
it facilitates the integration of resilience in the existing
component-based automotive architecture philosophy. At this
layer, other tools like IDS, IPS may operate as well. Finally,
the bottom layer encapsulates the PHY network protocols (e.g.,
CAN, FlexRay, Automotive Ethernet) typically managed by
the physical controller. ECUs are connected via a network that
could be multidrop, node-to-node, or switch-based network as
long messages sent by one node are eventually delivered at
the destination node.

c) Byzantine Agreement: IRS encapsulates a distributed
voting logic using an intrusion tolerant protocol category based
on the concept of Byzantine Agreement/Consensus. Initial
practical protocols [5] would require N = 3F + 1, had
quadratic (O(n2)) messaging complexity, and were compu-
tationally demanding due to the heavy use of cryptography.
The following generation was architecturally hybrid [2], fea-
turing the use of trusted-trustworthy components [9], [32],
dramatically reducing complexity, and requiring a smaller
quorum of N = 2F + 1. Later, the advent of Blockchain
inspired yet another generation of intrusion tolerant protocols,

1https://www.autosar.org/

becoming even more efficient and lightweight [10], [33]. The
current state of affairs makes them feasible for environments
with moderate capacities like modern vehicles (more on this
in the next section). Describing a specific protocol is out
of the scope of this position paper; however, we are cur-
rently validating two variants of Byzantine Resilient Real-
Time protocols, namely, RTByzCast and PISTIS [16], [17].
Unlike previous intrusion tolerant protocols, which were non-
synchronous, these real-time protocols are suited for hard or
soft real-time environments as they have Timeliness properties
to guarantee delivery/execution given a defined probabilistic
time-bound. The main challenges we envision are validating
the Safety and Liveness properties in the Byzantine threat
model over in-vehicle networks, and the behavior with multi-
drop (broadcast) networks and their synchrony models.

III. FEASIBILITY DISCUSSION

While the need for building resilient systems is very well
understood, applying redundancy-based solutions like IRS
may look infeasible for in-vehicular systems. Nevertheless, we
argue that this is no longer the case as the three trends automa-
tion, digitization, and connectivity have changed modern ve-
hicular systems dramatically. In this section, we try to alleviate
these concerns by driving a conceptual analysis demonstrating
the potential feasibility of IRS to modern vehicles.

A. Distributed and Redundant Applications

The current application landscape in automotive is very rich
and complex, spanning ADAS & Safety Systems, Infotain-
ment, Body Electronics, Powertrain, and Telematics. At a fine-
grained level, these applications incur millions of functionali-
ties. For instance, a Volvo modern vehicle “contains 10 million
conditional statements as well as 3 million functions, which
are invoked some 30 million places in the source code” [7].
Many of these applications are becoming naturally distributed
across the vehicle to manage the dependencies between func-
tionalities and to synchronize the similar ones across the
vehicle. For instance, a vehicle may have applications running
four steering, braking, tyre pressure processes; four/five door
lock and window processes; four light sets of processes, two
mirror processes, several airbag processes, etc. Nevertheless,
these processes are currently only synchronized in a passive
way, i.e., propagating notifications, where “decisions”, e.g.,
changing an actuator state, are only made locally. Given
this, the overhead of enforcing distributed control through
agreement protocols prior to changing the application state
would be reasonably low since replicas are already being used.
This is sound for safety/security critical applications that are
soft-real time, in particular, like door lock/unlock, window
open/close, and OTA update validation by different processes
on different ECUs.

On the other hand, using redundancy to boost vehicle
safety is becoming increasingly required [13]. Indeed, the
ASIL Decomposition mechanism drafted in the ISO 26262v.2
automotive safety standard [12], [13] suggests using redundant
computing nodes and network channels to improve safety



and reduce the costs (e.g., by using redundant cheaper nodes
instead of one expensive node).

B. Distributed Architecture

The vehicular architecture has become heavily distributed
as more ECUs are being added over time to cope with the
application demands. Considering the evolution of distributed
architectures [22], applications are becoming more aggregated
in larger ECUs: (1) Domain-based ones aggregate applications
with similar functionalities; (2) Zonal-based ones aggregate
based on the vehicle zone, e.g., a Door Control Unit hosts
many applications (like door locks, motors, windows, theme
lights) at the door proximity; and (3) Centralized. The for-
mer two are considered very convenient environments to run
replicated protocols as the agreement protocol suggested in
IRS. In addition, multiple aggregated applications can directly
benefit from the IRS being a middleware/service. Indeed, while
the replication cost has always been an adoption barrier in
the IT world, the costs (surprisingly) look lower in vehicular
architectures being natively distributed.

The latter centralized architecture is getting more traction
recently. We do not recommend this architecture from a
security perspective, being a single point of failure/attack.
Nevertheless, transforming the central controller into a dis-
tributed cluster could be a trade-off solution to mitigate this
risk significantly.

C. Efficient and Secure Networks

Vehicular networks, especially the CAN bus, have always
been considered slow and the weakest spot in a vehicle. In
particular, the classical baud rate of CAN bus cannot be higher
than 1Mbps, and the payload is only 8 bytes per packet2. This
prohibits an IRS-like solution where the agreement meta-data
size (identifiers, signatures, cryptographic digests, clock) is
high. On the other hand, CAN frames lack the sender/receiver
identifiers which makes authentication and integrity a non-
trivial task. However, the new versions of CAN, i.e., CAN
FD and XL, have larger frame’s payload size of 64B and
2KB, and baud rate to 2Mbps and 10Mbps, respectively. These
are considered acceptable for soft real-time applications, e.g.,
like door locks and OTA updates, as response time is not
critical. Furthermore, novel networks like Automotive Ethernet
and FlexRay have native security support and an order of
magnitude higher bit rate. We believe that these advancements
mitigate the concerns regarding the feasibility of IRS to such
environment.

D. Decent HW/SW Stack

It can be assumed that running IRS agreement protocols
in a constrained device (like a micro-controller-based ECU)
and networks would be an overkill due to the heavy use of
cryptography. Despite being challenging, modern automotive

2The CAN bus is a broadcast-based network that arbitrates message
identifiers on a bit basis. The lower the identifier (composed of a number of
bits, e.g., 11 bits) the highest its priority. In this sense, a competing message
with lowest identifier can take over sending over the bus. This imposes limits
on payload sizes to maintain high message frequencies.

ECUs (microprocessor-based and multi-core) are getting high
computational and storage capacities that could be compared
to a Raspberry Pi or a mobile phone3. This is correct, in
particular, for main ECUs like domain and zone controllers,
gateways, telecommunication units, etc. On top of this hard-
ware, the software stack [26] is also getting more mature while
we observe more UNIX, POSIX, and Linux-based RTOS/OS,
e.g., AGL, RTLinux, QNX, Android Auto, and Apple CarPlay.
This also means that a lot of IT/IoT libraries could now be
adapted or used in automotive. New architectures are widely
adopting the virtualization hypervisor technology, which facili-
tates application deployments on an ECU, and thus, replication
in our case [26]. Therefore, the modern HW/SW stack of
modern vehicles is decent enough to support a solution like
IRS.

Furthermore, independence of failures between IRS replicas
is considered a main challenge, being key for the effectiveness
in common-mode vulnerabilities or faults. The rich supply
chain of automotive HW/SW is useful to generate diversity,
which is the main approach to improve independence of fail-
ures, among others [1], [6], [11], [24], [29], [30]. For instance,
it not uncommon to have ECUs or MCUs of the same spec-
ifications from different vendors; diverse software libraries,
operating systems and hypervisors. Even at application level,
one can choose only the critical functions to run over IRS,
which will require only these functions to be implemented by
different teams, e.g., using N-version programming.

IV. CONCLUSION

We introduced the concept of Intrusion Resilience Systems
(IRS) for modern vehicles. The aim is to bridge the gap
left in security-by-design and intrusion detection and preven-
tion systems at two levels: first, it is tailored for the soft-
ware/application layer; second, it tolerates faults and intrusions
to roughly maintain the same service quality even if intrusions
could not be profiled. IRS uses the State Machine Replication
approach in which the replicated application can only change
the local state upon Byzantine agreement with its counterpart
nodes. The paper proposed a preliminary architecture and an
analytic feasibility study that highlights the fact that modern
vehicular technologies are closing the gap with IT/IoT tech-
nologies, which makes them plausible environments to adopt
a replicated solution as IRS. We believe that our approach is
therefore worth consideration, and we encourage researchers
and practitioners to investigate this direction by studying
the tradeoffs of agreement protocols, architectures, diversity,
application space, etc.

As a work progress, we are currently investigating the
feasibility of IRS over CAN and Automotive Ethernet variants
to validate the application timing constrains and bandwidth
efficiency. Primary results indicate that under malicious threat
models, Automotive Ethernet and FlexRay are more suited
than CAN (and any multi-hop network, in general), since the
latter is more prone to jamming and spoofing attacks.

3https://www.emobility-engineering.com/focus-ecus/
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