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]. However we propose here two direct approaches to show this regularity without these regularization steps. The first method is based upon Hile-Yosida theorem while the second one is based upon the duality method of Lax-Philips. An interesting point of these procedures is that both rely on the injectivity of some dual operator. An other point of interest is that both methods are robust enough to handdle, without any substancial modification, with variable coefficients and to characteristic problems while the existing methods in the litterature sometimes need some rather deep modification.

Introduction

This article is about the well-posedness of hyperbolic boundary value problems in the half-space. More precisely we consider the following system of equations for some T ∈ [0, ∞],

     L(∂)u := ∂ t u + d j=1 ∂ j (A j (x)u) = f for (t, x ′ , x d ) ∈ [0, T [ × R d-1 × R + := Ω T , B(x ′ )u |x d =0 = g for (t, x ′ ) ∈ [0, T [ × R d-1 := ∂Ω T , u |t=0 = u 0 for x ∈ R d-1 × R + := Ω, (1) 
where the coefficients matrices A j (x) ∈ M N ×N (R), for some N > 0, may depend on the spacial variable

x but not on the time variable t and where the boundary coefficient B(x ′ ) ∈ M p×N (R) encodes the good number of boundary conditions namely the number of positive eigenvalues of A d (x) which is assumed to be constant with respect to x.

By (strong) well-posedness of the problem (1) we mean that for all sources f , g and u 0 in some suitable functional space X, (1) admits a unique solution u ∈ X and that in X the solution u can be controlled by the sources. Such control is called an energy estimate.

Historically this question as first been studied for u 0 ≡ 0 in the framework X = L 2 (Ω T ) by Kreiss in [Kreiss, 1970] where we can find a complete characterization of the boundary conditions leading to wellposedness, the so-called uniform Kreiss-Lopatinskii condition. This characterization has then been extended

to non homogeneous initial condition by Rauch in [Rauch, 1972] (see also [Audiard, 2011]).

In this article we will have a special attention to the case where the functional space of well-posedness is not L 2 any more but it will be some higher order Sobolev space. This question has first been considered by Rauch-Massey in [START_REF] Rauch | Differentiability of solutions to hyperbolic initial-boundary value problems[END_REF] and then it has been extended to several cases of study like for example the so-called characteristic case (that is that the matrix A d becomes singular). We refer for example (the list being far to be exhaustive) to [Rauch, 1985]- [START_REF] Majda | Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary[END_REF]- [[Benzoni-Gavage and Serre, 2007]-

Chapter 9]- [Guès, 1990]- [START_REF] Casella | Non-homogeneous linear symmetric hyperbolic systems with characteristic boundary[END_REF]]- [Secchi, 1996]-[ [START_REF] Chazarain | Introduction à la théorie des équations aux dérivées partielles linéaires[END_REF]]-Chapter 7] for some of the existing results for regular solution to hyperbolic boundary value problems.

Before to describe the approach of this article let us give some more words about the proofs of existence of a regular solution to (1) that can classically be found in the literature (see for example [[Benzoni-Gavage and Serre, 2007]-Paragraphs 4.5.3 and 9.2.1] or [ [START_REF] Chazarain | Introduction à la théorie des équations aux dérivées partielles linéaires[END_REF]]-Sections 7.6 and 7.7]).

Assume in a first time that the boundary value problem (1) is defined in the whole time line R that it is non characteristic with constant coefficients and that it comes with a solution u ∈ L 2 (R × R d + ). Then a simple way to show that u is regular if the sources are is to mollify u with respect to the tangential variables (t, x ′ ).

Consequently the mollified sequence u ε (note the capital point that the mollification does not change the boundary condition and that in the whole time line we do not have initial condition) satisfies the boundary value problem: for all tangential derivative ∂ l , l ∈ {t} ∪ {1, ..., d -1}

L(∂)∂ l u ε = ∂ l f ε , B∂ l u ε |x d =0 = ∂ l g ε ,
where f ε and g ε stand for the mollifications of the sources. Because u ε is a sequence of regular solution the L 2well-posedness (in particular the energy estimate) applies and shows that u lies in L 2

x d (R + ; H m t,x ′ (R × R d-1 )).
Then to recover the full regularity of u, the simplest way (in the non-characteristic framework) is to use the equation in order to express the normal derivative ∂ d u as

∂ d u = A -1 d f - d-1 j=1 A j ∂ j u ∈ L 2 x d (R + ; H m t,x ′ (R × R d-1
)), so that u in fact lies in H 1 x d (R + ; H m t,x ′ (R×R d-1 )) and so on to end up with the full regularity u ∈ H m t,x (R×R d + ).

This regularization approach can then be extended to the problem with initial condition (1) (see for example [START_REF] Chazarain | Introduction à la théorie des équations aux dérivées partielles linéaires[END_REF]]-Section 7.7] or [[Benzoni-Gavage and Serre, 2007]-Paragraph 4.5.5])

and also to characteristic boundary conditions. For such problems the evolution equation does not give the regularity with respect to the normal variable x d any more but we can obtain the desired result by adding another regularization (see for example [Secchi, 1995] or [Rauch, 1985]) namely the non-characteristic regularization which consists in considering the problem L(∂)u + εI∂ d u, for some small ε > 0 instead of L(∂).

For such an operator the normal matrix A d + εI is now invertible for small ε > 0.

The aim of this paper is thus to obtain regularity results for the solution to (1) by the most direct possible approach that is to say methods avoiding these regularizations (by mollification and/or by non-characteristic one) steps.

The motivations of this work are twofold:

1. The first one is to lighten the proofs and to avoid as much as possible the adding of non essential technical material.

2. The second one is because the regularization method is not adapted to hyperbolic boundary value problems in domain with corners. Consider for example the problem (1) in the quarter space R d-2 ×R 2 + (so that an extra boundary condition has to be imposed on {x d-1 = 0}) then the previous method breaks down. Indeed we can not mollify with respect to x d and x d-1 because it changes the values of the traces and thus the boundary condition is not satisfied any more. However without such a regularization the equation only gives that A d-1 ∂ d-1 u + A d ∂ d u ∈ L 2 which is far to be sufficient to obtain that u ∈ H 1 . So that it seems that a more direct approach is required. The extension to the methods described in this article to hyperbolic boundary value problems in domain with corners can be found in [Benoit, ].

In this work we propose two methods giving a regular solution to (1) without using the regularization methods described so far.

1. The "regular" duality method which is a rather straightforward adaptation of the classical duality method introduced by Lax-Phillips in [START_REF] Lax | Local boundary conditions for dissipative symmetric linear differential operators[END_REF] in order to obtain directly a regular solution.

2. The use of Lumer-Phillips theorem [START_REF] Lumer | Dissipative operators in a Banach space[END_REF], directly inspired from [[Benzoni-Gavage and Serre, 2007]-

Chapter 3], which also gives a regular solution to the problem.

As we will see below these two methods are however closely linked the one to the other because they can both be expressed in terms of the injectivity of some dual operator.

The results of this article are essentially not new and we will only, for a large part of the results, recover the results of the existing literature (see for example [START_REF] Rauch | Differentiability of solutions to hyperbolic initial-boundary value problems[END_REF] and [Rauch, 1985]). However, in the author's knowledge, the result establishing the regularity of the solution for characteristic problems in long time with the associated semigroup estimate is new (we refer to the Theorem 3.2 for a precise statement)

We also want to emphasize that the methods exposed here are rather new (it should be pointed that the idea of using Lumer-Phillips theorem comes from Benzoni-Gavage and Serre in [[Benzoni-Gavage and Serre, 2007]-

Chapter 3]
) and what these methods are rather robust in the sense that they will be able to deal with variable or characteristic coefficients without any substantial modification.

Before to give a description of the results let us recall the keystone idea of [[Benzoni-Gavage and Serre, 2007]-Chapter 3] about the use of Lumer-Phillips theorem. To solve (1), for f ≡ 0 and g ≡ 0, Benzoni-Gavage and Serre propose to consider it as a pure evolution problem in the time variable t and to write it under the form

d dt u = Au for t ∈ [0, T ] , u |t=0 = u 0 , (2) 
where A is an operator containing the spatial derivatives and encoding the boundary condition of (1) in its domain. Once the problem is written in the form (2) then Benzoni-Gavage and Serre solve it by the application of Lumer-Phillips theorem [START_REF] Lumer | Dissipative operators in a Banach space[END_REF]. In order to apply this theorem two elements are required:

the first one is the dissipativity of the operator A which comes for free if one assumes that the boundary condition is maximal dissipative (see for example Assumption 4.1);

the second one is the fact that the operator λI -A is onto for some λ > 0.

In [[Benzoni-Gavage and Serre, 2007]-Chapter 3] the authors are interested in the L 2 well-posedness and more essentially in constant coefficients consequently in order to show the second point they use Fourier analysis. This analysis however can not be directly performed for variable coefficients.

Our aim here has been to follow the same method than the one of Benzoni-Gavage and Serre and to consider (1) as the pure evolution problem (2). However because we have in mind extension to variable coefficients we can not use Fourier analysis as in [Benzoni-Gavage and Serre, 2007]. In order to overcome this difficulty instead of showing that λI -A is onto we will introduce some dual operator to A and show that this operator A * is dissipative. So that in particular λI -A * is injective. This essentially implies that λI -A is onto so that Lumer-Phillips theorem applies and gives directly a regular solution to (1). The variant of the Lumer-Phillips theorem in terms of the dissipativity of the dual operator is well-known and it can be found in example in [ [Pazy, 1983]-Chapter 1].

In this formulation we see the link between the use of Lumer-Phillips theorem and the duality method of Lax-Phillips. Indeed, the core of the duality method is to assume that some dual problem to (1) comes with an a priori energy estimate. This implies in particular the injectivity of the dual operator from which we deduce the existence of a solution for the primal operator. So that both methods rely on the injectivity of a dual operator. In the first method this injectivity is given by the energy estimate for the dual operator in the second one it is ensured by the fact that A * is dissipative which is a rather classical fact for the maximal dissipative boundary conditions.

The paper is organized as follows: in Section 2 we give some preliminary results of functional analysis and we describe the characterization of the dual operators. The main results of this article namely a wellposedness result in high order Sobolev spaces for variable coefficients, Theorem 3.1 and a well-posedness result for characteristic problems, Theorem 3.2 are stated in Section 3. Section 4 exposes the proof with all details of Theorem 3.2 in the simpler framework of constant and non characteristic coefficients. This sketch of proof is then adapted to variable coefficients in Section 5 and to characteristic problems in Section 6.

At last Section 7 gives a short conclusion and draw some prospects.

Preliminaries

This section contains the mandatory materials to the application of Lumer-Phillips theorem to (1).

Some notations

In all the article C P denotes a positive constant depending on P which can vary from one line to the other without modification of the notation. We will also use several multi-index α ′ , β and α. Each one are respectively associated to derivatives with respect to the variables x ′ , (t, x ′ ) and x. For an operator A acting on a Banach space X, the domain of A will be denoted by D(A). However when the space X has some level m ≥ 0 of regularity (that is to say if it is based upon the Sobolev space H m ) then we will sometimes use the notation D m (A) in order to keep in mind the regularity level.

Functional analysis theorems

In this paragraph we recall for convenience the main theorems of functional analysis that will be used in this article. These theorems are variations of the well-known Hille-Yosida theorem which applies to dissipative operators.

Definition 2.1 (Dissipative operator, [Pazy, 1983]) Let (X, ⟨•, •⟩ X ) be a Hilbert space and A : D(A) → X be an operator. We say that A is dissipative if

∀ lambda > 0, ∀ u ∈ D(A), ∥(λI -A)u∥ X ≥ λ∥u∥ X , where ∥ • ∥ X stands for the norm based upon ⟨•, •⟩ X .M
We consider in the following that A : D(A) → X is a closed operator, the adjoint operator of A, A * is defined on the domain

D(A * ) := {v ∈ X \ ∃ w ∈ X s.t. ∀ u ∈ D(A), ⟨Au, v⟩ X = ⟨u, w⟩ X } . (3) 
With such a definition for v in D(A * ) we define A * v := w.

We also have the following theorem [ [Pazy, 1983], Corollary 4.4]

Theorem 2.1 ( [START_REF] Lumer | Dissipative operators in a Banach space[END_REF]) Let A : D(A) → X be a closed densely defined dissipative operator. Then if there exists λ 0 ≥ 0 such that Im(λ 0 I -A) = X then A generates a strongly continuous semigroup of contraction.

We thus have the following corollary in which the end of the statement is just a description of a strongly continuous semigroup of contractions Theorem 2.2 Let A be a closed densely defined operator D(A) → X if A and A * are both dissipative then

A generates a strongly continuous semigroup of contractions on X.

In particular the differential equation

d dt u = Au, t ∈ [0, ∞[ , u |t=0 = u 0 , (4) 
has a unique solution u ∈ C 0 ([0, ∞[ , D(A)) ∩ C 1 ([0, ∞[ , X
) which satisfies the energy estimate

∀ t ∈ [0, ∞[ , ∥u(t)∥ X ≤ ∥u 0 ∥ X .
We give the proof of this result for a sake of completeness.

Proof : The proof exposed here follows the one of [Pazy, 1983]. Because of Theorem 2.1 it is sufficient to show that for some λ 0 ≥ 0, Im(λ 0 I -A) = X. Because the operator A is dissipative and

A is closed then Im(λ 0 I -A) is closed. Indeed let λ 0 ≥ 0 be fixed and (v n ) n∈N ⊂ Im(λ 0 I -A) converging to v ∈ X; we write v n = (λ 0 I -A)u n for (u n ) n∈N ⊂ D(A).
Because of the dissipativity of A we have for n, m ∈ N,

∥v n -v m ∥ X = ∥(λ 0 I -A)(u n -u m )∥ X ≥ λ 0 ∥u n -u m ∥ X , so that (u n ) n∈N is a Cauchy sequence in X it converges to some u ∈ X. But we have that (λ 0 I -A) is closed so that u ∈ D(A) and v = (λ 0 I -A)u.
We assume that Im(λ 0 I -A) ̸ = X so that there exists x * ∈ X, x * ̸ = 0 such that ⟨x * , λ 0 x -Ax⟩ X for

x ∈ D(A) because D(A) is dense it implies that λ 0 x * -A * x * = 0. But from the dissipativity of A * it implies that x * = 0 which is a contradiction.

□

In order to deal with variable coefficients problems we will need the following refinement of Lumer-Philips theorem which holds for quasidissipative operators defined below Definition 2.2 (Quasidissipative operator) Let X be a Hilbert space A : D(A) → X an operator. We say that A is ω-quasidissipative if there exists ω ≥ 0 such that A -ωI is dissipative.

With such operators the variant of Lumer-Phillips theorem is the following Theorem 2.3 Let A : D(A) → X be a closed densely defined operator. We assume that A is ωquasidissipative and that there exists λ 0 > ω such that λ 0 I -A is onto then A generates a strongly continuous semigroup of quasicontractions T that is to say that

∃ ω > 0, s.t. ∀ t ∈ [0, ∞[ , ∥T (t)∥ X ≤ e ωt .
Once again we have the following corollary:

Theorem 2.4 Let A be a closed densely defined operator D(A) → X if A and A * are both ω-quasidissipative then A generates a strongly continuous semigroup of quasicontractions on X.

In particular the differential equation

d dt u = Au, t ∈ [0, ∞[ , u |t=0 = u 0 , (5) 
has a unique solution u ∈ C 0 ([0, ∞[ , D(A)) ∩ C 1 ([0, ∞[ , X
) which satisfies the energy estimate

∃ ω > 0, ∀ t ∈ [0, ∞[ , ∥u(t)∥ X ≤ e ωt ∥u 0 ∥ X .
Proof : The proof essentially follows the one of Theorem 2.2. Indeed because A is closed and densely defined we just need to show that for some λ 0 > ω, Im(λ 0 I -A) = X. Set for example λ 0 = 2ω then consider (v n ) n∈N ⊂ Im(λ 0 I -A) converging to v ∈ X. We can write

∥v n -v m ∥ X = ∥(2ωI -A)(u n -u m )∥ X = ∥(ωI -(A -ωI))(u n -u m )∥ X ≥ ω∥u n -u m ∥ X ,
because (A -ωI) is dissipative. Consequently we deduce that Im(λ 0 I -A) = X is closed. Assume that Im(λ 0 I -A) ̸ = X then there exists x * ∈ X, x * ̸ = 0 such that λ 0 x * -A * x * = 0 that is to say that

0 = ∥(2ωI -A * )x * ∥ X = ∥ωI -(A * -ωI))x * ∥ X ≥ ω∥x * ∥ X ,
which is the expected contradiction.

□

Determination of the adjoint operator

As pointed in the introduction and because we want to apply Theorems 2.2 and 2.4 we need to be more precise about the dual operator of the operator A. This is made in the following paragraphs, first by considering the constant coefficients framework then the variable coefficients setting. For characteristic problems such a determination of the adjoint operator is a little more heavy and it is postponed to Paragraph 6.1.

Constant coefficients non characterisitic case

When the operator A has constant coefficients we choose for base Hilbert space

X := L 2 x d ([0, ∞[ , H m x ′ (R d-1 ))
for some fixed m ∈ N. This space is equipped with its canonical scalar product and norm.

We will consider in the following some operator reading A := -d j=1 A j ∂ j where the coefficients A j ∈ M N ×N (R) are symmetric associated to a boundary condition B ∈ M p×N (R) through the domain. More precisely the domain of A reads

D(A) := u ∈ X \ Au ∈ X, u |x d =0 ∈ H m (R d-1 ), Bu |x d =0 = 0 .
We assume that we have some decomposition of the boundary coefficient A d that is

A d := C T M + N T B, (6) 
where N ∈ M p,N (R) is onto and where C, M ∈ M N -p,N (R). The matrix C is characterized by the relation ker C = (A d ker B) ⊥ . We refer for example to [[Benzoni-Gavage and Serre, 2007]-Theorem 4.1] for the proof of such a decomposition.

Proposition 2.1 With A defined as above we have that A * : D(A * ) → X is characterized by

D(A * ) := v ∈ X \ A * v ∈ X, v |x d =0 ∈ H m (R d-1 ), Cv |x d =0 = 0 and A * := -A = d j=1 A j ∂ j . (7) 
Proof : Let u ∈ D(A) and v ∈ X to be specified bellow we have (using the fact that the traces are in H m (R d-1 ) so that the duality product

H -1/2 , H 1/2 for boundary terms is a L 2 , L 2 one) ⟨Au, v⟩ X = - |α ′ |≤m d j=1 R d + ∂ α ′ A j ∂ j u, ∂ α ′ v dx, = |α ′ |≤m R d A d (∂ α ′ u) |x d =0 , (∂ α ′ v) |x d =0 dx ′ + |α ′ |≤m d j=1 R + ∂ α ′ u, ∂ α ′ A j ∂ j v dx, ( 8 
) in which α ′ := (α ′ 1 , ..., α ′ d-1 ) ∈ N d-1 and ∂ α ′ := ∂ α ′ 1 1 • • • ∂ α ′ d-1
d-1 and where we used the symmetry of the coefficients A j . We choose in the following v in such a way that the boundary term in (8) vanishes. From the decomposition (6) we can write

∂ α ′ A d u |x d =0 , ∂ α ′ v |x d =0 = ∂ α ′ N u |x d =0 , ∂ α ′ Cv |x d =0 + ⟨∂ α ′ Bu |x d =0 =0 , ∂ α ′ M v |x d =0 ⟩.
Because N is onto we thus have In this paragraph we consider that the coefficients A j depend on x. More precisely we consider that A reads

∂ α ′ A d u |x d =0 , ∂ α ′ v |x d =0 = 0 if
Au := A(x)u = - d j=1 ∂ j (A j (x)u).
Generically we also consider a dependency of the boundary condition with respect to x ′ so that B := B(x ′ ). The coefficients A j however remain symmetric meaning that for all

x ∈ Ω we have

A j (x) = A j (x) T .
For such coefficients if one chooses the base Hilbert space X to be equal to L 2 (Ω). We define

D(A) := u ∈ X \ Au ∈ X, u |x d =0 ∈ L 2 (R d-1 ), B(x ′ )u |x d =0 = 0 .
Reiterating the same kinds of computations than the ones used in the proof of Proposition 2.1 we obtain Proposition 2.2 With A : D(A) → X defined as above we have that A * : D(A * ) → X is characterized by

D(A * ) := v ∈ X \ A * v ∈ X, v |x d =0 ∈ L 2 (R d-1 ), C(x ′ )v |x d =0 = 0 and A * := -A - d j=1 ∂ j A j , (9) 
where the boundary matrix C is characterized in (13).

Because we are here interested in regular solutions we will consider for base Hilbert space the space

X := L 2 x d ([0, ∞[ , H m x ′ (R d-1
)), for some m ≥ 0, normed by

∥ • ∥ 2 X := |α ′ |≤m ∥∂ α ′ • ∥ 2 L 2 (Ω) , where ∂ α ′ := ∂ α ′ 1 1 ∂ α ′ 2 2 • • • ∂ α ′ d-1 d-1 .
In the following we want to obtain a characterization of the operator A * like in Proposition 2.2 but for this more accurate base Hilbert space.

In such a space for u, v ∈ X, we have from Leibniz formula

⟨Au, v⟩ X = - |α ′ |≤m Ω d j=1 ⟨ γ≤α ′ ,γ̸ =α ′ α ′ γ ∂ j (∂ α ′ -γ A j ∂ γ u), ∂ α ′ v⟩ dx - |α ′ |≤m Ω d j=1 ∂ j (A j ∂ α ′ u), ∂ α ′ v dx. ( 10 
)
Integrating by parts in the second term in the right hand side of (10) we obtain using the symmetry of the coefficients

⟨Au, v⟩ X = - |α ′ |≤m Ω d j=1 ⟨ γ≤α ′ ,γ̸ =α ′ α ′ γ ∂ j (∂ α ′ -γ A j ∂ γ u), ∂ α ′ v⟩ dx + |α ′ |≤m Ω d j=1 ∂ α ′ u, A j ∂ j ∂ α ′ v dx (11) + |α ′ |≤m R d-1 (A d ∂ α ′ u) |x d =0 , ∂ α ′ v |x d =0 dx ′ .
Once again from Leibniz formula we write the second term in the right hand side of (11) as

A j ∂ j ∂ α ′ v =∂ j (A j ∂ α ′ v) -(∂ j A j )∂ α ′ v, =∂ α ′ ∂ j (A j v) - γ≤α ′ ,γ̸ =α ′ α ′ γ ∂ j (∂ α ′ -γ A j ∂ γ v) -(∂ j A j )∂ α ′ v.
So that (11) reads

⟨Au, v⟩ X = -⟨u, Av⟩ X + |α ′ |≤m R d-1 (A d ∂ α ′ u) |x d =0 , ∂ α ′ v |x d =0 dx ′ - |α ′ |≤m Ω d j=1 ⟨∂ α ′ u, (∂ j A j )∂ α ′ v⟩ dx :=b(u,v) (12) 
-

|α ′ |≤m Ω d j=1 ⟨ γ≤α ′ ,γ̸ =α ′ α ′ γ ∂ j (∂ α ′ -γ A j ∂ γ u), ∂ α ′ v⟩ dx :=b1(u,v) - |α ′ |≤m Ω d j=1 ⟨∂ α ′ u, γ≤α ′ ,γ̸ =α ′ α ′ γ ∂ j (∂ α ′ -γ A j ∂ γ v)⟩ dx :=b2(u,v)
.

In order to determine the adjoint operator of A we should first cancel the boundary term in (12) this will be done by imposing some restrictions on the boundary value in the domains of A and A * and then find a way to characterize A * . Because equation ( 12) involve the bilinear forms b, b 1 and b 2 the expression of A *

will not be as explicit as in Proposition 2.2 however it will be sufficiently explicit for our purpose.

To make the boundary term vanish we proceed like for constant coefficients operators. We use for example the result of [[Benzoni-Gavage and Serre, 2007]

-Lemma 9.4] to decompose the matrix A d (x ′ , 0) under the form A d (x ′ , 0) := N (x ′ ) T B(x ′ ) + C(x ′ ) T M (x ′ ), (13) 
where

M (x ′ ), C(x ′ ) ∈ M N -p,N (R) and N ∈ M p,N (R) is onto. So that if we impose at the level of the boundary that ∀ |α ′ | ≤ m, ∂ α ′ u |x d =0 ∈ ker B(x ′ ) and ∂ α ′ v |x d =0 ∈ ker C(x ′ ),
then the boundary term in the right hand side of ( 12) vanishes.

Remark that in the variable coefficients case the boundary condition in the domain of the operator is a little more restrictive than the one in the coefficient case for which we automatically had

u |x d =0 ∈ ker B ⇒ ∀ |α ′ | ≤ m, ∂ α ′ u |x d =0 ∈ ker B.
This property is not true any more because B depends on x ′ . In particular it will give rise to a little restriction for variable coefficients problems.

To obtain an expression for A * we first show that under the assumption that the coefficients matrices A j ∈ W m+1,∞ (Ω) then the bilinear forms b, b 1 and b 2 are continuous on X. It is readable for b. For b 1 or b 2 we remark that because the sum on γ runs on γ ≤ α ′ and γ ̸ = α ′ we have in particular that |γ| ≤ |α ′ | -1. So that when the j derivative falls on ∂ α ′ -γ A j it gives an operator of differentiation of order at most m -1 on u and when it falls on ∂ γ u it gives an operator of order at most m. Cauchy-Schwarz inequality then gives

∃ C m,A > 0, |b 1 (u, v)| ≤ C m,A ∥u∥ X • ∥v∥ X ,
and the same property holds for b 2 .

Riesz representation theorem then gives the existence of three linear continuous operators φ, φ 1 , φ 2 :

X → X such that ∀ u, v ∈ X, b(u, v) = ⟨u, φ(v)⟩ X ; b 1 (u, v) = ⟨u, φ 1 (v)⟩ X and b 2 (u, v) = ⟨u, φ 2 (v)⟩ X .
We sum up the characterization of the dual operator in the following proposition

Proposition 2.3 Let m > 0, X := X m = L 2 x d (R + ; H m x ′ (R d-1
)), assume that the interior coefficients A j are in W m+1,∞ (Ω) and let A : D(A) → X be defined on the domain

D(A) := u ∈ X \ Au ∈ X, u |x d =0 ∈ H m (R d-1 ) and ∀ |α ′ | ≤ m, B(x ′ )∂ α ′ u |x d =0 = 0 .
Then the dual operator A * : D(A * ) → X has the following domain

D(A * ) := v ∈ X \ Av ∈ X, v |x d =0 ∈ H m (R d-1 ) and ∀ |α ′ | ≤ m, C(x ′ )∂ α ′ v |x d =0 = 0 ,
moreover it can be written under the form

A * = -A -φ -φ 1 -φ 2 := -A -Φ,
where Φ : X → X is a linear and continuous operator.

Its norm satisfies ∥Φ∥ L(X) ≤ C m,A , where C m,A
depends on m and on the W m+1,∞ -norm of the A j .

The determination of the adjoint operator for characteristic problems will follow essentially the same lines as the ones exposed for the problem with variable coefficients. It is however a little more heavy and more technical so that we decided to postpone this determination to Paragraph 6.1. However like for the variable coefficients case we will mainly require that the adjoint operator reads under the form A * = -A -Φ for some linear and continuous operator Φ.

Main results

In this section we state the main results of this article. The first one namely Theorem 3.1 applies to variable but non characteristic coefficients. The second one, Theorem 3.2, deals with constant but characteristic coefficients.

Each of these theorems contains two statements the first one comes from the use of Lumer-Phillips theorem the second one is the result of the adaptation of the duality method of Lax-Phillips. Let us be more precise about each of these results:

The use of Lumer-Philips theorem applies to the initial boundary value problem

     L(∂)u = 0 in Ω T , Bu |x d =0 = 0 on ∂Ω T , u |t=0 = u 0 on Ω, (14) 
so that the only non trivial source in the problem is the initial data u 0 . Using the same approach as in [[Benzoni-Gavage and Serre, 2007]-Chapter 3] it is possible to consider1 non vanishing interior source term f . However because the core of the proof is to rewrite ( 14) into the pure evolution form (2) and to incorporate the boundary condition in the domain of the evolution operator then this method is restricted to homogeneous boundary conditions.

Moreover this method also have some other restrictions. The first one is that the boundary is constant. Then to have the required characterization on the dual operator (more precisely that it reads A * = -A -Φ) then this method only applies to symmetric coefficients. At last, as we will see in order to have the dissipation of the operator A (and of its adjoint) then the boundary condition in ( 14) can not be arbitrary it has to be maximal dissipative (see Assumption 4.1 for a precise definition) so that we can not reach the whole generality of the uniform Kreiss-Lopatinskii condition (see [Kreiss, 1970]).

Nevertheless let us point that in terms of the regularity result this method gives the estimate of the

L ∞ t ([0, ∞[ ; H m x (Ω)
)-norm of the solution that is referred as the semigroup estimate which is essentially the strongest estimate that we can expect to (14). In the author's knowledge such a result for characteristic problems (in infinite times) is a new result compared to the literature and constitutes an interesting result (indeed the results of [Rauch, 1985]- [Guès, 1990] or [START_REF] Casella | Non-homogeneous linear symmetric hyperbolic systems with characteristic boundary[END_REF] are finite time results).

Let us also point that such well-posedness results for the semigroup estimate in infinite time like the result exposed bellow are rather rare in the litterature. The control of the L ∞ t ([0, T ] ; H m x (Ω))-norm is rather easy to obtain if we are in finite time because in such a framework it comes for free in the energy estimate but that in infinite time the only way in the author's knowledge to obtain such estimate is to use the L 2 continuation result of Rauch [Rauch, 1972] which has not been established yet for characteristic problems.

To conclude also note that because we are interested in high order Sobolev regularity and in problems with non vanishing initial condition then for the solution u to exist some necessary compatibility conditions on the data u 0 are required (see ( 22) for more details).

The use of the regular duality method applies to the pure boundary value problem

L(∂)u = f (t, x) ∈ R × Ω, B(x ′ )u |x d =0 = g (t, x) ∈ R × ∂Ω, (15) 
in which there is no initial condition at all. However following [ [START_REF] Chazarain | Introduction à la théorie des équations aux dérivées partielles linéaires[END_REF]]-Section 7.7] or [[Benzoni-Gavage and Serre, 2007]-Paragraph 4.5.5] the well-posedness for the initial boundary value problem can be obtained from the one of the pure boundary value problem (15) with the help of the L 2 -continuation result of Rauch [Rauch, 1972]. But we choose to not reproduce here the whole method for a lake of simplicity.

Also note that compared to ( 14), ( 15) applies to non homogeneous boundary source term. Moreover the required assumptions for this method to hold are not as restrictive as the one for the first method to hold. Indeed the symmetry of the coefficients will not be required and, probably more interesting, the boundary condition in ( 15) is not required to be dissipative any more so that this method can reach the whole generality of the uniform Kreiss-Lopatinskii condition.

The only assumption that we need for the regular duality method to operate is that the dual problem to (15) (see ( 46) for more details) comes with an a priori energy estimate in high order Sobolev spaces.

The fact that the a priori energy estimate holds in high order Sobolev spaces is the only novelty compared with the usual duality method where the a priori energy estimate is only required to hold on L 2 . Also note the quite interesting fact that for the regularity duality method to operate the a priori energy estimate for the dual problem is only require to hold for tangential derivatives and not for the normal derivatives. However this point is meaningful because it permits to obtain directly the existence of a regular solution to (15).

But because the assumptions of the method are rather weak then the well-posedness result will be rather weak also. Indeed, if we do not use the L 2 -continuation of [Rauch, 1972], then the regular duality method adapted from [START_REF] Lax | Local boundary conditions for dissipative symmetric linear differential operators[END_REF]] "only" gives the control of the

L 2 t (R, H m x (Ω))-
norm of the solution and not the semigroup estimate like in the use of Lumer-Phillips theorem.

Also note that in the following we will not recover the complete energy estimate of [Kreiss, 1970].

More precisely we will obtain the control of the L 2 t (R, H m x (Ω)) of the solution in the interior but not on the boundary that is the control of

u |x d =0 in L 2 t (R, H m x ′ (∂Ω)).
It is because we do not require the primal problem to satisfy any a priori energy estimate. However if one assumes both of the primal and the dual problems to satisfy such a priori energy estimate simultaneously (which is the case for example when the uniform Kreiss-Lopatinskii condition holds) then he can recover the whole estimate of [Kreiss, 1970].

The two results are the following Theorem 3.1 Let m ≥ 0 be given.

1. Consider the initial boundary value problem (14) for which we assume that the coefficients in the interior A j ∈ W m+1,∞ (Ω; M N ×N (R)) and B gives rise to a symmetric operator and that the boundary condition is maximal dissipative in the sense of Assumption 5.1. We also assume that ( 14) is uniformly non characteristic in the sense that for all x ∈ Ω, det A d (x) ̸ = 0. So that to sum up we assume that (14) satisfies Assumption 5.1.

Then for all u 0 ∈ H m (Ω) satisfying the compatibility conditions (22) up to the order m -1 then (14)

admits a unique solution u ∈ ∩ m k=0 C k t ([0, ∞[ ; H m-k x (Ω)). Moreover u satisfies the energy estimate ∃ ω, C > 0, ∀ t ∈ [0, ∞[ , ∀ k ∈ {0, ..., m} , ∥∂ k t u(t)∥ H m-k (Ω) ≤ Ce ωt ∥u 0 ∥ H m (Ω) , (16) 
where ω, C > 0 depend on m and the W m+1,∞ -norm of the coefficients.

Assume that the coefficients

A j ∈ W m+1,∞ (Ω; M N ×N (R)) and B ∈ W m+1,∞ (∂Ω; M p×N (R))
are also regular and that the boundary value problem (15) comes with a dual a priori energy estimate (see Assumption 5.2) then there exists γ := γ m > 0 such that if the sources (f, g) ∈ H m γ (R×Ω)×H m γ (R×∂Ω) the problem (15) admits a unique solution u ∈ H m γ (R × Ω) for all γ ≥ γ satisfying the energy estimate

∃ C > 0, ∀ γ > γ, γ∥u∥ 2 H m γ (R×Ω) ≤ C 1 γ ∥f ∥ 2 H m γ (R×Ω) + ∥g∥ 2 H m γ (R×∂Ω) ,
where for

X ⊂ Ω, H m γ (R × X) := e -γt H m (R × X). Theorem 3.2 Let m ≥ 0
Consider the initial boundary value problem (14) for which we assume that the coefficients are constant, symmetric and that the boundary condition is maximal dissipative in the sense of Assumption 4.1. We also permit the problem (14) to have a characteristic boundary in the sense that we can have det A d = 0.

Then for all u 0 ∈ H m (Ω) satisfying the compatibility condition (22) up to the order m -1 then (14) admits a unique solution u ∈ ∩ m k=0 C k ([0, T [ ; H m-k (Ω)). Moreover u satisfies the energy estimate

∃ ω, C > 0, ∀ t ∈ [0, T [ , ∀ k ∈ {0, ..., m} , ∥∂ k t u(t)∥ H m-k (Ω) ≤ Ce ωt ∥u 0 ∥ H m (Ω) , (17) 
where ω can be chosen arbitrarily small, where C depends on m and on ω and where the space H m (Ω) is defined by

∀ p ∈ {0, ..., m} , H p (Ω) := H p (Ω) if det A d ̸ = 0, H p con (Ω) if det A d = 0
, where H m con (Ω) stands for the conormal Sobolev space generated by

1 [0,1] x d ∂ d + 1 ]1,∞[ ∂ d instead of ∂ d .
Finally if det A d ̸ = 0 we can choose ω = 0.

1.

2. Assume that the boundary value problem (15) comes with a dual a priori energy estimate (see Assumption 6.

2 if det A d = 0 or 4.2 if det A d ̸ = 0) then there exists γ := γ m > 0 such that if the sources (f, g) ∈ H m γ (R × Ω) × H m γ (R × ∂Ω)
the problem (15) admits a unique solution u ∈ H m γ for all γ ≥ γ satisfying the energy estimate

∃ C := C m > 0, ∀ γ > γ, γ∥u∥ 2 H m γ (R×Ω) ≤ C 1 γ ∥f ∥ 2 H m γ (R×Ω) + ∥g∥ 2 H m γ (R×∂Ω) ,
where for X ⊂ Ω the space H m (R × X) is defined by

H m γ (R × X) := e -γt H m (R × X) if det A d ̸ = 0, e -γt H m con (R × X) if det A d = 0.
Finally if det A d ̸ = 0 one can choose γ = 0.

Constant coefficients problems

In this section we give the proof of Theorem 3.2 in the simpler framework of non-characteristic coefficients.

This preliminary work is nevertheless interesting in its own because as we will see an important part of the analysis can be extended directly from the non-characteristic constant coefficients case to the variable and/or to the characteristic frameworks. Paragraph 4.1 gives the proof of the first statement of Theorem 3.2 while Paragraph 4.2 gives the proof of the second one.

Lumer Phillips theorem

We consider in this section the half-space problem

     L(∂)u = ∂ t u + d j=1 A j ∂ j u = 0, for (t, x ′ , x d ) ∈ [0, ∞[ × Ω, Bu |x d =0 = 0, on (t, x ′ ) ∈ [0, ∞[ × ∂Ω, u |t=0 = u 0 on Ω, ( 18 
)
where u 0 is a given initial data in H m (Ω), for some m ≥ 0, and where the coefficients

A j ∈ M N ×N (R), B ∈ M p×N (R).
The integer p being the number of positive eigenvalues of A d . We also assume that the boundary is not characteristic in the sense that det

A d ̸ = 0.
With the notations introduced in Section 2 we can see (18) as a pure evolution problem by defining

d dt u = Au, for t ∈ [0, ∞[ , u |t=0 = u 0 on Ω, ( 19 
)
where the domain of A encodes the boundary condition. More precisely we recall that

D(A) := D m (A) = u ∈ X \ Au ∈ X, u |x d =0 ∈ H m (R d-1 ), Bu |x d =0 = 0 , where X := L 2 x d ([0, ∞[ , H m x ′ (R d-1
)). Note that compared to [[Benzoni-Gavage and Serre, 2007]-Chapter 3]

we assume some regularity on the traces in the definition of the domain of A.

Our main assumptions are summarize in the following assumption:

Assumption 4.1 We assume the following 1. The initial boundary value problem (18) is symmetric that is that for all j ∈ {1, ..., d}, A T j = A j .

The boundary condition

B is maximal dissipative [[Benzoni-Gavage and Serre, 2007]-Definition 3.1- 3.2] that is ∀ u ∈ ker B we have ⟨A d u, u⟩ ≤ 0,
and ker B is not properly contain in any other subspace having this property.

3. The boundary condition for the side ∂Ω is non-characteristic that is det A d ̸ = 0.

In the following we will use the following property Proposition 4.1 Assume that the initial boundary value problem (18) satisfies Assumption 4.1 then its dual problem

d dt v = A * v for (t, x ′ , x d ) ∈ [0, ∞[ × Ω, v |t=0 = v 0 on Ω, (20) 
where the dual operator A * and the dual boundary conditions are defined in Proposition 2.1 satisfies Assumption 4.1. In particular we have the sign property

∀ v ∈ D(A * ), ⟨A d v, v⟩ ≥ 0. ( 21 
)
Proof : The fact that the operator A * has symmetric non-characteristic coefficients is readable. We here give the proof of the maximal dissipativity of C because it is the only point in the proof where we used the maximality of the boundary condition. This proof comes from [START_REF] Lax | Local boundary conditions for dissipative symmetric linear differential operators[END_REF].

Let v ∈ D(A * ) be such that ⟨A d v, v⟩ < 0. For u ∈ D(A) and λ ∈ R we compute

⟨A d (u + λv)u + λv⟩ = ⟨A d u, u⟩ ≤0 +2λ ⟨A d u, v⟩ =0 +λ 2 ⟨A d v, v⟩ <0 ,
where we used the characterization ker C = (A d ker B) ⊥ . So that we have ⟨A d (u + λv)u + λv⟩ ≤ 0. Because we assumed that ker B to be maximal for this property it implies that ker B + Rv ⊂ ker B so that v ∈ ker B.

We thus have v ∈ D(A). In particular from the decomposition (6) it comes that A d v = 0 so that ⟨A d v, v⟩ = 0 which is the desired contradiction.

□

Because we are interested in regular (in Sobolev spaces) solution to (18) compatibility conditions are expected and required. In the following let u be regular enough such that all the following traces are well-defined. Define u k := (∂ k t u) |t=0 for k ≥ 1 and u 0 = u 0 then we should have

Bu |x d =t=0 = Bu 0 |x d =0 = 0, so that u 0 |x d =0 ∈ ker B,
which is refered as the compatibility condition of order 0. Then from the evolution equation we have

∂ t u = Au =⇒ u 1 = Au 0 ,
so that injecting in the boundary condition

B(∂ t u) |x d =t=0 = Bu 1 |x d =0 = 0 so that u 1 |x d =0 ∈ ker B,
which is referred as the compatibility condition of order one. More generally the evolution equation gives that for all k ≥ 1, u k = A k u 0 so that we should have

B(∂ k t u) |x d =t=0 = Bu k |x d =0 = 0 so that u k |x d =0 ∈ ker B, (22) 
the so-called compatibility condition of order k. By convention the compatibility condition of order -1 is the void condition.

We thus have the following well-posedness result establishing the first statement of Theorem 3.2 for non characteristic coefficients.

Theorem 4.1 For all m ∈ N, for all u 0 ∈ H m (Ω) satisfying the compatibility conditions (22) up to the order m -1 the initial boundary value problem (18) admits a unique solution

u ∈ ∩ m k=0 C k ([0, ∞[ , H m-k (Ω)
). Moreover the solution u satisfies the energy estimates

∀ t ∈ [0, ∞[ , ∀ k ∈ {0, ..., m} , ∥∂ k t u(t)∥ H m-k (Ω) ≤ C k ∥u 0 ∥ H m (Ω) . (23) 
Proof : We first show the result for u 0 ∈ H m+1 (Ω) satisfying the compatibility conditions up to the order m and then we complete the result by using a regularization of the initial data.

We will intensively use the following lemma: Proof : We first show the dissipativity of A, the one of A * follows essentially the same lines. Let λ > 0 and u ∈ D k (A) we define f := λu -Au. We thus have by Cauchy-Schwarz inequality

Lemma 4.1 Let k ∈ N and X := X k = L 2 x d ([0, ∞[ ; H k x ′ (∂Ω))
λ∥u∥ 2 X + |α ′ |≤m d j=1 Ω ∂ α ′ A j ∂ j u, ∂ α ′ u dx = ⟨f, u⟩ X ≤ ∥f ∥ X • ∥u∥ X . (24) 
In the following we show that the second term in the left hand side of ( 24) is positive so that it can be neglected in (24) and thus that the dissipativity of A follows. More precisely we have

|α ′ |≤m d j=1 Ω ∂ α ′ A j ∂ j u, ∂ α ′ u dx = |α ′ |≤m d j=1 Ω ∂ j A j ∂ α ′ u, ∂ α ′ u dx, = 1 2 |α ′ |≤m d j=1 Ω ∂ j ∂ α ′ A j u, ∂ α ′ u dx = - 1 2 |α ′ |≤m ∂Ω A d ∂ α ′ u |x d =0 , ∂ α ′ u |x d =0 dx ′ . (25) 
However because ∂ α ′ is a tangential derivative operator it commutes with the boundary condition and we thus have

∂ α ′ Bu |x d =0 = B(∂ α ′ u) |x d =0
= 0 so that all the traces appearing in (25) lie in ker B and thus we have from the dissipativity assumption

A d ∂ α ′ u |x d =0 , ∂ α ′ u |x d =0 ≤ 0 for all α ′ .
For the dissipativity of A * , using Proposition 2.1 and that A * = -A, the same computations follows up to the sign. We however conclude exactly in the same manner by using (21) to neglect the boundary term in (24).

□

Because of Lemma 4.1, assuming for a while that u 0 ∈ D m (A), Theorem 2.2 applies and we thus have a

unique solution u to (19), u ∈ C 0 ([0, ∞[ , D m (A)) ∩ C 1 ([0, ∞[ , L 2 x d (H m x ′ (∂Ω))).
We now justify that u 0 can be chosen in D m (A). Because we have u 0 ∈ H m+1 (Ω) it is in particular in

L 2 x d (H m x ′ (∂Ω)) and Au 0 ∈ L 2 x d (H m x ′ (∂Ω)). Then the trace u 0 |x d =0 ∈ H m+ 1 2 x ′ (∂Ω) ⊂ H m x ′ (∂Ω).
Finally because of the compatibility condition of order 0 we have Bu 0 |x d =0 = 0.

We now want to apply Theorem 2.2 to ∂ t u where u has been previously determined. We have that ∂ t u is a solution to

d dt ∂ t u = A∂ t u, for t ∈ [0, ∞[ , (∂ t u) |t=0 = Au 0 := u 1 on Ω. We have u 1 = Au 0 ∈ H m x (Ω) ⊂ L 2 x d (H m-1 x ′ (∂Ω)) and Au 1 ∈ L 2 x d (H m-1 x ′ (∂Ω)). Then we have that u 1 |x d =0 ∈ H m-1 2 x ′ (∂Ω) ⊂ H m-1 x ′
(∂Ω) and finally because we have the compatibility condition of order one we have Bu 1

|x d =0 = 0. So that ∂ t u ∈ C 0 ([0, ∞[ , D m-1 (A)) ∩ C 1 ([0, ∞[ , L 2 x d (H m-1 x ′ (∂Ω))
). Proceeding similarly we can show that

∀ k ∈ {0, ..., m} we have ∂ k t u ∈ C 0 ([0, ∞[ , D m-k (A)) ∩ C 1 ([0, ∞[ , L 2 x d (H m-k x ′ (∂Ω))). ( 26 
)
Indeed for the last application of Theorem 2.2 we have that ∂ m u satisfies

d dt ∂ m t u = A∂ m t u, for t ∈ [0, ∞[ , (∂ t u) |t=0 = u m := A m u 0 on Ω. ( 27 
)
and we can verify that u m ∈ D 0 (A) because u 0 ∈ H m+1 (Ω) satisfies the compatibility conditions up to the order m (so that we have Bu m

|x d =0 = 0). Equation (26) for k = m gives that u ∈ C m t (R + ; L 2 x (Ω)) because D 0 (A) ⊂ L 2 (Ω). Then we want to justify first that u ∈ C m-1 t (R + ; H 1 x (Ω)). Because of (26) for k = m-1 we have that ∂ m-1 t u ∈ D 1 (A) ⊂ L 2 x d (H 1 x ′ (∂Ω)) so we shall just show that ∂ d ∂ m-1 t u ∈ L 2 (Ω).
In order to do so we use the fact that the boundary condition is not characteristic to express

∂ m t u = A∂ m-1 t u so that ∂ d ∂ m-1 t u = A -1 d ∂ m t u ∈L 2 (Ω) - d-1 j=1 A j ∂ j ∂ m-1 t u ∈L 2 (Ω)
,

where we used that ∂ m-1 t u ∈ L 2 x d (H 1 x ′ (∂Ω)) for the second term. Consequently we have u ∈ C m-1 t (R + ; H 1 x (Ω)).

Proceeding similarly we show that u ∈ ∩ m k=0 C k t (R + , H m-k x (Ω)). Indeed to fix the ideas let us show

it for k = m -2 we have that ∂ m-2 t u ∈ D 2 (A) ⊂ L 2 x d (H 2 x ′ (∂Ω)) so that we shall justify that ∂ d ∂ m-2 t u, ∂ l ∂ d ∂ m-2 t u ∈ L 2 (Ω)
for all l ∈ {1, ..., d}.

But we have

∂ m-1 t u = A∂ m-2 t u so that ∂ d ∂ m-2 t u = A -1 d ∂ m-1 t u ∈H 1 x (Ω) - d-1 j=1 A j ∂ j ∂ m-2 t u ∈L 2 x d (H 1 x ′ (∂Ω))
, for which we deduce that

∂ d ∂ m-2 t u ∈ L 2 (Ω)
. Now differentiating the previous equation with respect to l ∈ {1, ..., d -1} gives

∂ l ∂ d ∂ m-2 t u = A -1 d ∂ l ∂ m-1 t u ∈L 2 (Ω) - d-1 j=1 A j ∂ j ∂ l ∂ m-2 t u ∈L 2 (Ω) , so that the ∂ l ∂ d ∂ m-2 t u ∈ L 2 (Ω) for all tangential l ∈ {0, ..., d -1}. Finally differentiating with respect to x d gives ∂ 2 d ∂ m-2 t u = A -1 d ∂ d ∂ m-1 t u ∈L 2 (Ω) - d-1 j=1 A j ∂ j ∂ d ∂ m-2 t u ∈L 2 (Ω)
.

We now turn to the proof of the energy estimates. First for k = m the application of Theorem 2.2 to (27) directly gives that

∀ t ∈ [0, ∞[ , ∥∂ m t u(t)∥ L 2 (Ω) ≤ ∥u m ∥ L 2 (Ω) ≤ C m ∥u 0 ∥ H m (Ω) , (28) 
because by definition u m := A m u 0 , so we have the estimate for k = m. To obtain the estimate for k = m -1 we notice that the use of Theorem 2.2 gives that

∀ t ∈ [0, ∞[ , ∥∂ m-1 t u(t)∥ L 2 x ′ (H 1 x ′ (∂Ω)) ≤ ∥u m-1 ∥ L 2 x ′ (H 1 x ′ (∂Ω)) ≤ C m-1 ∥u 0 ∥ H m (Ω) , (29) 
so that it remains to estimate the derivative with respect to x d . But recall that we have the explicit formula

∂ d ∂ m-1 t u = A -1 d ∂ m t u + d-1 j=1 A j ∂ j ∂ m-1 t
u so that the triangle inequality combined with ( 28) and ( 29)

gives ∥∂ d ∂ m-1 t u(t)∥ L 2 (Ω) ≤ C m-1 ∥u 0 ∥ H m (Ω)
and thus the energy estimate for k = m -1 follows. The other energy estimates are then shown inductively.

So we have shown that if u 0 ∈ H m+1 (Ω) satisfies the compatibility conditions up to the order m then the problem (18) admits a unique solution

u ∈ ∩ m k=0 C k t ([0, ∞[ , H m-k x (Ω)
) and that u satisfies the energy estimates

∀ t ∈ [0, ∞[ , ∀ k ∈ {0, ..., m} , ∥∂ k t u(t)∥ H m-k x (Ω) ≤ C k ∥u 0 ∥ H m (Ω)
, so that to conclude the proof of Theorem 4.1 is remains to show the same result with u 0 ∈ H m (Ω) satisfying the compatibility conditions up to the order m -1 only.

In order to do so we use the following lemma2 Lemma 4.2 ( [Métivier, 2004]-Proposition 2.4.9 ; [START_REF] Rauch | Differentiability of solutions to hyperbolic initial-boundary value problems[END_REF]]-Lemma 3.3) Assume that u 0 ∈ H m (Ω) satisfies the compatibility conditions up to the order m -1 for m ∈ N, then there exists a sequence (u ν ) ν∈N ⊂ H m+1 (Ω) satisfying the compatibility conditions up to the order m such that

lim ν→∞ u ν = u 0 in H m (Ω).
With this lemma in hand then Theorem 4.1 follows easily by energy estimates. Indeed consider u 0 ∈ H m (Ω) satisfying the compatibility conditions up to the order m-1, let (u ν ) ν∈N ⊂ H m+1 (Ω) be the sequence given by Lemma 4.2. Then for all ν ∈ N the problem

d dt v ν = Av ν for t ∈ [0, ∞[ , v ν |t=0 = u ν on Ω, admits a unique solution v ν ∈ ∩ m k=0 C k t ([0, ∞[ , H m-k x (Ω)
) and it satisfies the energy estimate

∥v ν (t)∥ H m (Ω) ≤ C∥u ν ∥ H m (Ω) . ( 30 
)
The problem ( 19) being linear and because u ν → u 0 in H m (Ω), (30) implies that (v ν (t)) ν∈N is a Cauchy sequence in H m (Ω) so that it converges pointwise to some u(t) ∈ H m (Ω). Theorem 4.1 follows by taking the limit ν → ∞ in the energy estimates for k ∈ {0, ..., m}.

□

Regular duality method

In this paragraph we consider the pure boundary value problem

L(∂)u = f in R × Ω, Bu |x d =0 = g on R × ∂Ω, (31) 
and we only assume that its dual problem comes with an a priori energy estimate in X := H m (R × Ω) for some given m ≥ 0. More precisely we consider the so-called dual problem to (31),

L * (∂)u = f in R × Ω, Cu |x d =0 = g on R × ∂Ω, ( 32 
)
where from Section 2.3.1 the dual operator3 L * (∂) is given by

L * (∂) := -∂ t - d j=1 A T j ∂ j ,
and where the boundary matrix C is defined in ( 6) and is characterized by ker C = (A d ker B) ⊥ .

In order to state our well-posedness result we need to introduce the following functional space. For m ∈ N, χ ∈ R we define

X := X m,χ = u ∈ D ′ (R × Ω) \ ∀ |β| ≤ m, e -χt ∂ β u ∈ L 2 (R × Ω) ,
where we defined for

β := (β 0 , β 1 , ..., β d-1 ) ∈ N d , ∂ β := ∂ β0 t ∂ β1 1 ...∂ β d-1 d-1
. This space comes with the norm:

for u ∈ X ∥u∥ 2 Xχ,m := |β|≤m R×Ω e -2χt |∂ β u(t, x)| 2 dt dx.
We also introduce the following space for the boundary

∂X := ∂X m,χ = u ∈ D ′ (R × ∂Ω) \ ∀ |β| ≤ m, e -χt ∂ β u ∈ L 2 (R × ∂Ω) ,
with obvious norm.

From these definitions reiterating essentially the computations of Paragraph 2.3.1 (up to the adding of the term ∂ t in A) we can show that we have the following duality formula: for all u ∈ X m,γ such that

L(∂)u ∈ X m,γ , u |x d =0 ∈ ∂X m,γ and for all v ∈ X m,-γ such that L(∂)v ∈ X m,-γ , v |x d =0 ∈ ∂X m,-γ we have ⟨L(∂)u, v⟩ Xm,γ ,Xm,-γ -⟨u, L * (∂)v⟩ Xm,γ ,Xm,-γ + Bu |x d =0 , N v |x d =0 ∂Xm,γ ,∂Xm,-γ + M u |x d =0 , Cv |x d =0 ∂Xm,γ ,∂Xm,-γ = 0. ( 33 
)
In such a setting the sufficient assumption for strong well-posedness is the following Assumption 4.2 Assume that for some m ∈ N, γ > 0, if v ∈ X m,-γ , g := Cv |x d =0 ∈ ∂X m,-γ and that f := L * (∂)v ∈ X m,-γ then there exists C > 0 such that for all γ > 0 we have the (a priori) energy estimate

γ∥v∥ 2 Xm,-γ + ∥v |x d =0 ∥ 2 ∂Xm,-γ ≤ C 1 γ ∥ f ∥ 2 Xm,-γ + ∥ g∥ 2 ∂Xm,-γ . ( 34 
)
Let us stress that from Proposition 4.1, Assumption 4.2 is automatically satisfied if the A j are symmetric and if the boundary condition B is strictly dissipative (that is to say that the sign property on ⟨A d u, u⟩ is satisfied with a < instead of a ≤). The proof is just a straightforward modification of the one of Proposition 4.1.

However is is also interesting to note that the fulfilment of Assumption 4.2 is not restricted to symmetric with strictly dissipative boundary conditions. Indeed we can show that it is satisfied if the coefficients are not symmetric any more and if the boundary condition satisfied the so-called uniform Kreiss-Lopatinskii condition mentioned in the introduction (see [[Benzoni-Gavage and Serre, 2007]-Theorem 4.2] for a precise statement).

Before to turn to the proof of the existence of a regular solution, let us remark that the assumed a priori energy estimate (34) is weaker than the energy estimate that we will obtain on the solution because (34)

does not contain anyv derivatives with respect to x d .

In the following we want to show that under the a priori energy estimate Assumption 4.2 for the dual problem then the primal problem (31) admits a regular solution.

Proposition 4.2 Let m ∈ N, γ > 0, under Assumption 4.2 also assume that f ∈ H m γ (R × Ω) and g ∈ H m γ (R × ∂Ω) then the primal problem (31) admits a unique solution u ∈ H m γ (R × Ω). Moreover u satisfies the energy estimate: there exists C > 0 such that for all γ > 0 we have

γ∥u∥ 2 H m γ (R×Ω) ≤ C 1 γ ∥f ∥ 2 H m γ (R×Ω) + ∥g∥ 2 H m γ (R×∂Ω) . ( 35 
)
Proof : The proof exposed here is a straightforward generalization of the classical one given for example in [[Benzoni-Gavage and Serre, 2007]-Paragraph 4.5.3] see also [START_REF] Lax | Local boundary conditions for dissipative symmetric linear differential operators[END_REF]. For γ > 0 and m ∈ N, we introduce the following subset of X m,-γ :

X := X m,-γ = L * (∂)v ∈ X m,-γ where v ∈ X m,-γ satisfies Cv |x d =0 = 0 ,
and for given f ∈ X m,γ , g ∈ ∂X m,γ the linear form ℓ : X → R defined by

ℓ(L * (∂)v) := |β|≤m R×Ω ∂ β f, ∂ β v dt dx + R×∂Ω ∂ β g, N ∂ β v dt dx ′ ,
where the matrix N comes from the decomposition (6).

The form ℓ is well-defined on X and it is moreover continuous. Indeed we have by Cauchy-Schwarz inequality

|ℓ(L * (∂)v)| ≤∥f ∥ Xm,γ • ∥v∥ Xm,-γ + ∥N ∥ • ∥g∥ ∂Xm,γ • ∥v |x d =0 ∥ ∂Xm,-γ ≤C 1 γ ∥f ∥ Xm,γ + 1 √ γ ∥g∥ ∂Xm,γ ∥L * (∂)v∥ Xm,-γ , ( 36 
)
where we used the a priori energy estimate (34).

From Hahn-Banach Theorem ℓ can be extended by continuity up to the whole space X m,-γ so that the extension still satisfies (36).

We are thus in position to apply Riesz representation theorem which implies that there exists a unique u ∈ X m,γ such that

∀ v ∈ X m,-γ , ℓ(L * (∂)v) = ⟨u, L * (∂)v⟩ Xm,γ ,Xm,-γ .
In particular because of the characterization of u by Riesz theorem we also have the partial energy estimate

∥u∥ Xm,γ = ∥ℓ∥ L ≤ C 1 γ ∥f ∥ Xm,γ + 1 √ γ ∥g∥ ∂Xm,γ so that γ∥u∥ 2 Xm,γ ≤ 2C 1 γ ∥f ∥ 2 Xm,γ + ∥g∥ 2 ∂Xm,γ ,
giving the partial energy estimate (35) in which we shall only add the control of the derivatives with respect to x d .

To conclude we have to justify first that such a u is solution to (31). We use the duality formula (33) and the definition of ℓ so that we obtain that for all v ∈ X m,-γ :

⟨f , v⟩ Xm,γ ,Xm,-γ + ⟨g, N v⟩ ∂Xm,γ ,∂Xm,-γ (37) = ⟨L(∂)u, v⟩ Xm,γ ,Xm,-γ + Bu |x d =0 , N v |x d =0 ∂Xm,γ ,∂Xm,-γ + M u |x d =0 , Cv |x d =0 ∂Xm,γ ,∂Xm,-γ .
We test (37) against v ∈ D(R × Ω) to make the boundary terms vanish and thus gives that L(∂)u = f in the sense of distributions. Then test (37

) against v ∈ D(R × Ω) with Cv |x d =0 = 0 gives because L(∂)u = f , g -Bu |x d =0 , N v
∂Xm,γ ,∂Xm,-γ = 0 using the fact that N is onto it follows that Bu |x d =0 = g. Consequently u is a solution to (31).

To conclude we thus have to justify that u is regular with respect to the normal variable x d is f = L(∂)u is. It is made essentially like in the proof given in Paragraph 4.1 by using the fact that the boundary condition is not characteristic. Indeed the equation tells us that

∂ d u = A -1 d L(∂)u ∈Xm,γ - d-1 j=1 A j ∂ j u ∈Xm,γ , (38) 
so that u ∈ H 1 γ (R × Ω). Differentiating (38) with respect to some tangential derivatives ∂ l for l ∈ {t} ∪ {1, ..., d -1} then gives

∂ l ∂ d u = A -1 d ∂ l L(∂)u ∈Xm-1,γ - d-1 j=1 A j ∂ l ∂ j u ∈Xm-1,γ .
Consequently differentiating (38) with respect to x d gives us 

∂ 2 d u = A -1 d ∂ d L(∂)u ∈Xm-1,γ - d-1 j=1 A j ∂ j ∂ d u ∈Xm-1,γ , if the source f ∈ H 1 γ (Ω) from which we deduce that u ∈ H 2 γ (R × Ω)

Lumer-Phillips theorem

In this paragraph we apply Theorem 2.4 in order to recover some well-posedness result for the initial boundary value problem with variable coefficients. More precisely we consider

     L(∂)u := ∂ t u + d j=1 ∂ j (A j (x)u) = 0, for (t, x ′ , x d ) ∈ [0, ∞[ × Ω, Bu |x d =0 = 0, on (t, x ′ ) ∈ [0, ∞[ × ∂Ω, u |t=0 = u 0 on Ω, (39) 
where for some given m ≥ 0, the coefficients A j ∈ W m+1,∞ (Ω; M N ×N (R)) and B ∈ M p×N (R), where p denotes the number of positive eigenvalues of det A d (x) which is assumed to be constant with respect to

x ∈ Ω. This regularity assumption on the coefficients is made to make sure that the adjoint problem of (39) is well-characterized. We stress that in (39) the boundary matrix B is assumed to be constant. The necessity of this little restriction will be made precise in the core of the proof. Applying the Lumer-Philips method to variable boundary matrices is left for future studies.

We recall that from Paragraph 2.3.2 we now consider

A• := A(x)• = - d j=1 ∂ j (A j (x)•) in the base Hilbert space X = X m := L 2 x d (R + ; H m x ′ (∂Ω)) and D(A) := D m (A) = u ∈ X \ Au ∈ X, u |x d =0 ∈ H m (∂Ω) and ∀ |α ′ | ≤ m, B∂ α ′ u |x d =0 = 0 .
Note that because A does not depend on the time variable the condition A(x)u ∈ X makes sense globally in Ω. If one has a time depending coefficient A = A(t, x) then the condition becomes A(t, x)u ∈ L 2 (Ω) so that the domain of the operator depends on t.

Also note that because the coefficients A j do not depend on the time variable t then the expected compatibility conditions for the variable coefficient problem are the same (up to an extra dependency with respect to x ′ via A) as the one imposed for the constant coefficient problem (see ( 22)).

The initial boundary value problem (39) can be written as the pure evolution problem

d dt u(t, x) = A(x)u(t, x) for t ∈ [0, ∞[ , u |t=0 = u 0 on Ω, (40) 
in which x ∈ Ω acts like a parameter.

We summarize the assumptions on (40) in the following Assumption:

Assumption 5.1 We assume that there exists m ≥ 0 such that 1. p the number of positive eigenvalues of A d (x) does not depend on x.

The coefficients

A j ∈ W m+1,∞ (Ω; M N ×N (R)) and B ∈ M p×N (R) being constant.
We also assume that the matrix A d (x ′ , 0) := A ♯ d does not depend on x ′ in order that we have the (constant) decomposition

A ♯ d = N T B + M T C.
3. The initial boundary value problem (18) is symmetric that is that for all j ∈ {1, ..., d} and for all x ∈ Ω,

A T j (x) = A j (x).

The boundary condition

B is maximal dissipative [[Benzoni-Gavage and Serre, 2007]-Definition 3.1- 3.2] that is ∀ u ∈ ker B we have A ♯ d u, u ≤ 0,
and ker B is not properly contain in any other subspace having this property.

5. The boundary condition for the side ∂Ω is non-characteristic that is to say that for all x ∈ Ω,

det A d (x) ̸ = 0.
The adjoint operator A * of A and its domain have been introduced in Paragraph 2.3.2 (see Proposition

for more details).

The well-posedness result of this paragraph that is to say the first statement of Theorem 3.1, is recalled here:

Theorem 5.1 Let m ≥ 0, under Assumption 5.1 for all u 0 ∈ H m (Ω) satisfying the compatibility conditions to the order m -1 the problem (39) admits a unique solution

u ∈ ∩ m k=0 C k t ([0, ∞[ , H m-k x (Ω)).
Moreover the solution u satisfies the energy estimate

∀ t ∈ [0, ∞[ , ∀ k ∈ {0, ..., m} , ∥∂ k t u(t)∥ H m-k (Ω) ≤ C m e ωmt ∥u 0 ∥ H m (Ω) ,
where ω m , C m > 0 depend on the W m+1,∞ -norm of the A j .

Proof : We essentially follows the same sketch of proof as the one of Theorem 4.1. We first consider regular initial data u 0 ∈ H m+1 (Ω) satisfying the compatibility conditions ( 22) at the order m and then we use Lemma 4.2 to recover the result for u 0 ∈ H m (Ω) satisfying the boundary condition to the order m -1.

We want to apply Theorem 2.2 to (40). In order to do so we require the following lemma:

Lemma 5.1 Let k ∈ {0, ..., m} under Assumption 5.1 there exists ω k > 0 such that for all u ∈ D k (A) and for all v ∈ D k (A * ) we have the inequalities

∀ λ > 0, ∀ ω ≥ ω k , ∥((λ + ω)I -A)u∥ X ≥ λ∥u∥ X and ∥((λ + ω)I -A * )v∥ X ≥ λ∥v∥ X . (41) 
In particular the operators A and A * are ω k -quasidissipative in the sense of Definition 2.2.

Proof : We first show the first inequality in (41), let λ, ω > 0 and u ∈ D k (A) we set f = ((λ + ω)I -A)u such that by Cauchy-Scharwz inequality we obtain

(λ + ω)∥u∥ 2 X -⟨Au, u⟩ X ≤ ∥f ∥ X • ∥u∥ X . (42) 
In the following we need to make the second term in the left hand side of (42) more explicit. We have from Paragraph 2.3.2 (see equation ( 12))

-⟨Au, u⟩ X = - 1 2 |α ′ |≤k R d-1 ⟨(A d ∂ α ′ u) |x d =0 , ∂ α ′ u |x d =0 ⟩ dx ′ - 1 2 b(u, u) -b 1 (u, u), (43) 
where we recall that the bilinear forms b and b 1 are continuous on X × X and are defined by

b(u, u) := |α ′ |≤k Ω d j=1 ⟨(∂ j A j )∂ α ′ u, ∂ α ′ u⟩ dx,
and

b 1 (u, u) := |α ′ |≤k Ω d j=1 ⟨ γ≤α ′ ,γ̸ =α ′ β γ ∂ j (∂ α ′ -γ A j ∂ α ′ u), ∂ α ′ u⟩ dx, so that their norms satisfy ∥b∥ B(X×X) , ∥b 1 ∥ B(X×X) ≤ C k,A for some C k,A > 0 depending on k and on the W k+1,∞ -norm of the A j .
Because of the definition of the domain of A all the tangential terms appearing in the boundary term in the right hand side of (43) lie in ker B. Consequently because the boundary condition is assumed to be dissipative then the associated boundary term is negative. We thus have the inequality

(λ + ω)∥u∥ 2 X ≤ ∥f ∥ X • ∥u∥ X + 3 2 C k,A ∥u∥ 2 X .
We choose ω ≥ 3 2 C k,A so that the right hand side can be absorb by the factor ω∥u∥ 2 X in the left hand side and the first estimate in (41) follows.

We now turn to the estimate for A * . We proceed essentially similarly for λ, ω > 0 we define for v ∈ D k (A * ), f := (λ + ω)I -A * we have

(λ + ω)∥v∥ 2 X -⟨A * v, v⟩ X ≤ ∥f ∥ X • ∥v∥ X . (44) 
From Proposition 2.3 we have the characterization A * = -A -Φ so that we can use (12) in order to make the term -⟨A * v, v⟩ X more explicit. We have

-⟨A * v, v⟩ X = ⟨Av, v⟩ X + ⟨Φv, v⟩ X = 1 2 |α ′ |≤k R d-1 ⟨(A d ∂ α ′ v) |x d =0 , ∂ α ′ v |x d =0 ⟩ dx ′ + 3 2 b(u, u) + 2b 1 (u, u).
Note that all the terms in the boundary term are now in ker C so that the dissipativity of the adjoint boundary condition gives that the boundary term is positive so that it can be neglected. We then conclude exactly like for A.

□

With this dissipativity property the proof of Theorem 5.1 follows the one for the constant coefficients case exposed in Paragraph 4.1. Indeed for each k ∈ {0, ..., m} because of Lemma 5.1 we can apply Theorem 2.4 (note that the extra regularity of the initial condition is required to the application for k = m). Consequently we obtain the existence of a unique solution u such that

∀ k ∈ {0, ..., m} , ∂ k t u ∈ C 0 ([0, ∞[ ; D m-k (A)) ∩ C 1 ([0, ∞[ ; L 2 x d ([0, ∞[ ; H m-k x ′ (∂Ω))),
with energy estimate

∀ t ∈ [0, ∞[ , ∀ k ∈ {0, ..., m} , ∥∂ k t u(t)∥ X m-k ≤ C m e ωm ∥u 0 ∥ H m (Ω) , (45) 
where we choose ω m := max k∈{0,...m} ω k .

Let us be more precise about the several application of Theorem 5.1. We shall justify that for all k ∈ {0, ..., m} u k := A(x ′ , 0)u 0 ∈ D m-k (A). Because we work with initial datum with an extra level of regularity we have u 0 ∈ H m+1 (Ω) so that

u k ∈ H m+1-k (Ω) ⊂ H m-k (Ω) and Au k ∈ H m-k (Ω) then u k |x d =0 ∈ H m-k (∂Ω)
and that from the compatibility condition of order m -k we have Bu k |x d =0 = 0 so that for all tangential derivatives B∂ α ′ u k |x d =0 = 0.

In particular it is the point of the proof where we use the fact that the boundary matrix is constant. Indeed if it is not then the compatibility condition only gives that

∂ α ′ Bu k |x d =0 = 0 ⇏ B(∂ α ′ u k |x d =0 ) = 0.
Because the boundary is not characteristic we can recover the control of the normal derivatives in the energy estimate (45) exactly like it has been done in the constant coefficients case.

To conclude we show the result for u 0 ∈ H m (Ω) by using the approximation Lemma 4.2 exactly as in Paragraph 4.1. This ends up the proof of the first statement in Theorem 3.1.

□

Regular duality method for variable coefficients

In this paragraph we show that the duality method described for constant coefficients in Paragraph 4.2 can be easily extended to deal with variable coefficients. This is really not a surprise because the duality method is commonly used to show the existence of solution to variable coefficients hyperbolic boundary value problems. The novelty here is that this method directly builds a regular solution. Thus this paragraph gives the proof of the second statement in Theorem 3.1.

We recall that we are dealing with a pure boundary value problem with variable coefficients reading under the form4 

L(∂)u = f in R × Ω, B(x ′ )u |x d =0 = g on R × ∂Ω, (46) 
where the interior coefficients A j ∈ C ∞ (Ω, M N ×N (R)) ∩ W m+1,∞ (Ω; M N ×N (R)) and the boundary matrix )) are now assumed to be regular5 .

B ∈ C ∞ (∂Ω, M p×N (R)) ∩ W m+1,∞ (∂Ω; M p×N (R
We can associate to the primal problem (46) a dual problem

L * (∂)u = f in R × Ω, C(x ′ )u |x d =0 = g on R × ∂Ω,
where the operator L * (∂) is defined by

L * (∂)v := -∂ t v - d j=1 ∂ j (A T j v).
Because of the results of Paragraph 2.3.2 (see Proposition 2.3) we have the following duality formula: for all u ∈ X m,γ such that L(∂)u ∈ X m,γ and u |x d =0 ∈ ∂X m,γ and for all v ∈ X m,-γ verifying that L

* (∂)v ∈ X m,-γ and v |x d =0 ∈ ∂X m,-γ it holds that ⟨L(∂)u, v⟩ Xm,γ ,Xm,-γ -⟨u, L * (∂)v⟩ Xm,γ ,Xm,-γ (47) 
+ Bu |x d =0 , N v |x d =0 ∂Xm,γ ,∂Xm,-γ + M u |x d =0 , Cv |x d =0 ∂Xm,γ ,∂Xm,-γ = 0,
where L * (∂) := -L * (∂) -Φ, Φ being the linear continuous operator on X m,-γ introduced in Proposition 2.3 (so that in particular L * (∂)v lies in X m,-γ if L * (∂)v and v lie in X m,-γ ).

The main Assumption6 of this paragraph is the analogous as the one for the constant coefficient problem (see Assumption 4.2).

Assumption 5.2 Assume that for some m ∈ N, γ > 0, if v ∈ X m,-γ , g := Cv |x d =0 ∈ ∂X m,-γ and that f := L * (∂)v ∈ X m,-γ then there exists C, γ 0 > 0 such that for all γ ≥ γ 0 we have the a priori energy estimate

γ∥v∥ 2 Xm,-γ + ∥v |x d =0 ∥ 2 ∂Xm,-γ ≤ C 1 γ ∥ f ∥ 2 Xm,-χ + ∥ g∥ 2 ∂Xm,-χ . (48) 
We can remark that compared to Assumption 4.2, the a priori energy estimate ( 48) is assumed to hold only for large γ. This refinement is natural because for variable coefficients the solution to ( 46) is expected to be in X m,γ for large γ only. It is natural because at some point of the proof the zero order operator d j=1 ∂ j A j appears. Moreover the necessity of this exponential growth with respect to time will be clear in the following proof.

Proposition 5.1 Let m ∈ N, γ > 0, assume that the source of (46) satisfy that f ∈ H m,γ ( mathbbR × Ω) and g ∈ H m γ (R × ∂Ω) for large γ then under Assumption 5.2 there exists γ 0 := γ 0,m > 0 such that for all γ ≥ γ 0 the problem (46) admits a unique solution u ∈ H m γ (R × Ω) where m is the one of Assumption 5.2. Moreover the solution u satifies the energy estimate: there exists C > 0 such that for all γ ≥ γ 0 we have

γ∥u∥ 2 H m γ (Ω) ≤ C 1 γ ∥f ∥ 2 H m γ (Ω) + ∥g∥ 2 H m γ (∂Ω) . (49) 
Proof : The proof of this proposition follows closely the one in the constant coefficient framework that is to say Proposition 4.2.

We thus introduce the subspace of X m,-γ , X defined by

X := L * (∂)v where v ∈ X m,-γ satisfies C(x ′ )v |x d =0 = 0 ,
and for fixed f ∈ X m,γ , g ∈ ∂X m,γ the linear form ℓ : X → R defined by

ℓ(L * (∂)v) = ⟨f, v⟩ Xm,γ ,Xm-γ + ⟨g, N v⟩ ∂Xm,γ ,∂Xm,-γ .
Like for Proposition 4.2 the main point in the proof is to show that ℓ is continuous on X . We have by Cauchy-Scharwz inequality combined with the a priori energy estimate (48) that for all γ ≥ γ 0 :

|ℓ(L * (∂)v)| ≤ C 1 γ ∥f ∥ Xm,γ + 1 √ γ ∥g∥ ∂Xm,γ ∥L * (∂)v∥ Xm,-γ ,
and in order to conclude we shall change the term ∥L * (∂)v∥ Xm,-γ in the right hand side by ∥L * (∂)v∥ Xm,-γ .

To do so we recall that we have the relation

L * (∂) = -L * (∂) -Φ. Consequently the triangle inequality gives ∥L * (∂)v∥ Xm,-γ ≥ ∥L * (∂)v∥ Xm,-γ -∥Φv∥ Xm,-γ , (50) 
but we have for γ

≥ γ 0 ∥Φv∥ Xm,-γ ≤∥Φ∥ • ∥v∥ Xm,-γ ≤ C ∥A∥ W m+1,∞ • ∥v∥ Xm,-γ ≤ 1 γ C ∥A∥ W m+1,∞ ∥L * (∂)v∥ Xm,-γ ,
where we used the energy estimate (48). Set γ 0 := max(γ 0 , C ∥A∥ W m+1,∞ ) so that the right hand side of ( 50) is positive and we thus have the desired continuity result

|ℓ(L * (∂)v)| ≤ C 1 γ ∥f ∥ Xm,γ + 1 √ γ ∥g∥ ∂Xm,γ ∥L * (∂)v∥ Xm,-γ .
The end of the proof follows closely the one of the Proposition 4.2 and is omitted here. In particular the regularity of the coefficients is used in order to replace the term N (x ′ )v |x d =0 by an arbitrary test function and thus to recover the boundary condition B(x ′ )u |x d =0 = g.

□ 6 Characteristic problems

For now to the end of the article we consider characteristic problems for which the matrix A d can become singular meaning det A d = 0. In order to simplify as much as possible the following exposition we choose to consider characteristic problems with constant coefficients. We have strong reasons to believe that the following proofs can be extended mutatis mutandis to deal with characteristic problems with variable coefficients but it is left for a future study. We thus consider the boundary value problem

     L(∂)u = 0 in Ω T , Bu |x d =0 = 0 on ∂Ω T , u |t=0 = u 0 on Ω. (51) 
About the well-posedness of such problems we can for example refer to the work of Secchi [Secchi, 1995]- [Secchi, 1996] and also the work of Rauch [Rauch, 1985] or Guès [Guès, 1990] for non linear problems. The common point of such works is that for characteristic boundary conditions the problem ( 51) is expected to be well-posed (for higher order Sobolev regularity) in the tangential Sobolev space or in the conormal Sobolev space.

In order to define precisely the scalar product on the conormal Sobolev space we introduce the following notation for a function f and α

d ∈ N (x d ∂ d ) α d f := α d p=1 λ α d p x p d ∂ p d f,
where the scalars λ α d p are recursively defined by

λ α d +1 p = λ α d p-1 + pλ α d p ∀ α d ≥ p -1, λ 1 p = • • • = λ p-2 p = 0; λ p-1 p = 1. (52) 
For m ≥ 0, λ := (λ α d p ) α d ≤m, p≤α d and C = (C 1 , ..., C m ) ∈ R m + to be determined we introduce the following Hilbert space X := X m,C,λ by the following scalar product:

⟨u, v⟩ X := α d =0,|α ′ |≤m Ω ∂ α ′ u, ∂ α ′ v dx + m α d =1 1 C α d |α ′ |≤m-α d 1 0 R d-1 ∂ α ′ (x d ∂ d ) α d u, ∂ α ′ (x d ∂ d ) α d v dx ′ dx d + m α d =1 1 C α d |α ′ |≤m-α d ∞ 1 R d-1 α d p,q=1 λ α d p λ α d q ∂ α ′ ∂ p d u, ∂ α ′ ∂ q d v dx ′ dx d . (53) 
Note that for v = u the last term in the right hand side of (53) reads

N (u) := m α d =1 1 C α d |α ′ |≤m-α d ∞ 1 R d-1 α d p=1 λ α d p ∂ α ′ ∂ p d u, α d p=1 λ α d p ∂ α ′ ∂ p d u dx ′ dx d ≥ 0,
so that we effectively define a scalar product. Also note that on [1, ∞] we have the majoration

N (u) ≤ C∥u∥ H m (R d-1 ×[1,∞[) so that in particular we have ∥ • ∥ Xm ≤ C∥ • ∥ H m (Ω) and thus H m (Ω) ⊂ X m .
In the following in order to save some notations we introduce some notations for the multi-index α :=

(α 1 , ..., α d ) = (α ′ , α d ) ∈ N d we write ∂ α := ∂ α1 1 • • • ∂ α d-1 d-1 ∂ α d
d where ∂ d stands for the conormal derivative operator defined by

∂ d := x d ∂ d for x d < 1, ∂ d for x d ≥ 1.
The parameter C will be fixed in order to ensure the quasidissipativity of the operators A and A * with arbitrary small quasidissipativity parameter.

6.1 Adjoint operator for characteristic problems.

In this paragraph we describe a way to obtain a characterization of the adjoint operator for characteristic boundary value problems in the spirit of the characterization of the dual problem for variable coefficients given in Paragraph 2.3.2. Let u, v ∈ X we want to compute ⟨Au, v⟩ X :=

α d =0,|α ′ |≤m Ω ∂ α ′ Au, ∂ α ′ v dx + m α d =1 1 C α d |α ′ |≤m-α d 1 0 R d-1 ∂ α ′ (x d ∂ d ) α d Au, ∂ α ′ (x d ∂ d ) α d v dx ′ dx d + m α d =1 1 C α d |α ′ |≤m-α d ∞ 1 R d-1 α d p,q=1 λ α d p λ α d q ∂ α ′ ∂ p d Au, ∂ α ′ ∂ q d v dx ′ dx d . (54) 
About the first term in the right hand side of (54), that is the one containing all the tangential derivatives reiterating the same kind of computations as in Paragraph 2.3.1 we easily obtain

α d =0,|α ′ |≤m Ω ∂ α ′ Au, ∂ α ′ v dx = α d =0,|α ′ |≤m Ω ∂ α ′ u, ∂ α ′ (-A)v dx + R d-1 A d ∂ α u |x d =0 , ∂ α v |x d =0 dx ′ .
For the second term in the right hand side of (54) we use the commutator equality

(x d ∂ d ) α d A d ∂ d u = A d ∂ d (x d ∂ d ) α d u - α d p=1 pλ α d p x p-1 d A d ∂ p d u.
So that we have

m α d =1 1 C α d |α ′ |≤m-α d 1 0 R d-1 ∂ α ′ (x d ∂ d ) α d Au, ∂ α ′ (x d ∂ d ) α d v dx ′ dx d = - m α d =1 1 C α d |α ′ |≤m-α d R d-1 ×[0,1] d-1 j=1 ⟨∂ α A j ∂ j u, ∂ α v⟩ dx - m α d =1 1 C α d |α ′ |≤m-α d R d-1 ×[0,1] ⟨∂ α A d ∂ d u, ∂ α v⟩ dx = m α d =1 1 C α d |α ′ |≤m-α d R d-1 ×[0,1] d-1 j=1 ⟨∂ α u, ∂ α A j ∂ j v⟩ dx + m α d =1 1 C α d |α ′ |≤m-α d R d-1 ×[0,1] ∂ α u, A d ∂ d ∂ α ′ (x d ∂ d ) α d v dx + m α d =1 1 C α d |α ′ |≤m-α d R d-1 ∂ α ′ (x d ∂ d ) α d A d u |x d =1 , ∂ α ′ (x d ∂ d ) α d v |x d =1 dx ′ :=B + m α d =1 1 C α d |α ′ |≤m-α d R d-1 ×[0,1] α d p=1 pλ α d p x p-1 d A d ∂ p d ∂ α ′ u, ∂ α ′ (x d ∂ d ) α d v dx = m α d =1 1 C α d |α ′ |≤m-α d R d-1 ×[0,1] ⟨∂ α u, ∂ α (-Av)⟩ dx + B + m α d =1 1 C α d |α ′ |≤m-α d R d-1 ×[0,1] α d p=1 pλ α d p x p-1 d A d ∂ p d ∂ α ′ u, ∂ α ′ (x d ∂ d ) α d v dx :=I1 + m α d =1 1 C α d |α ′ |≤m-α d R d-1 ×[0,1] ∂ α ′ (x d ∂ d ) α d u, α d p=1 pλ α d p x p-1 d A d ∂ p d ∂ α ′ v dx :=I2
.

Proceeding similarly for the last term in the right hand side of (54) we have (the computations simplify because there is no commutators any more)

m α d =1 1 C α d |α ′ |≤m-α d ∞ 1 R d-1 α d p,q=1 λ α d p λ α d q ∂ α ′ ∂ p d Au, ∂ α ′ ∂ q d v dx ′ dx d = m α d =1 1 C α d |α ′ |≤m-α d ∞ 1 R d-1 α d p,q=1 λ α d p λ α d q ∂ α ′ ∂ p d u, ∂ α ′ ∂ q d (-Av) dx ′ dx d - m α d =1 1 C α d |α ′ |≤m-α d R d-1 α d p,q=1 λ α d p λ α d q ∂ α ′ ∂ p d A d u |x d =1 , ∂ α ′ ∂ q d v |x d =1 dx ′ :=B ′ .
However by definition of the coefficients λ α d p (see ( 52)) we have for a function f

[(x d ∂ d ) α d f ] |x d =1 = α d p=1 λ α d p [∂ p d f ] |x d =1 ,
The duality formula thus becomes ⟨Au, v⟩ X = -⟨u, Av⟩ X +

α d =0,|α ′ |≤m R d-1 A d ∂ α u |x d =0 , ∂ α v |x d =0 dx ′ + I 1 + I 2 , (55) 
and we shall make the terms I 1 and I 2 more precise in terms of u and v. To do so we introduce the notation Ω 1 := R d-1 × [0, 1] and we write

A d ∂ p d = ∂ p-1 d A d ∂ d = -∂ p-1 d A -∂ p-1 d d-1
j=1 A j ∂ j so that

I 1 + I 2 = - m α d =1 1 C α d |α ′ |≤m-α d Ω1 α d p=1 pλ α d p ∂ α ′ x p-1 d ∂ p-1 d Au, ∂ α ′ (x d ∂ d ) α d v dx :=J1 - m α d =1 1 C α d |α ′ |≤m-α d Ω1 α d p=1 pλ α d p ∂ α ′ x p-1 d ∂ p-1 d d-1 j=1 A j ∂ j u, ∂ α ′ (x d ∂ d ) α d v dx :=J2 - m α d =1 1 C α d |α ′ |≤m-α d Ω1 ∂ α ′ (x d ∂ d ) α d u, α d p=1 pλ α d p ∂ α ′ x p-1 d ∂ p-1 d Av dx :=J3 - m α d =1 1 C α d |α ′ |≤m-α d Ω1 ∂ α ′ (x d ∂ d ) α d u, α d p=1 pλ α d p ∂ α ′ x p-1 d ∂ p-1 d d-1 j=1 A j ∂ j v dx :=J4
.

So that we have the duality formula ⟨Au, v⟩ X = -⟨u, Av⟩ X +

α d =0,|α ′ |≤m R d-1 A d ∂ α u |x d =0 , ∂ α v |x d =0 dx ′ -J 1 -J 2 -J 3 -J 4 .
We claim that the forms J j are bilinear continuous on X × X.
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To show this let us first remark that from the definition of the coefficients λ α d p there exists C ′ α d > 0 such that

α d -1 p=1 x p d ∂ p d f ≤ C ′ α d (x d ∂ d ) α d -1 f,
so that for α d ≤ m we have

α d p=1 pλ α d p x p-1 d ∂ p-1 d f ≤ C ′ m f + (x d ∂ d ) α d -1 f .
We now turn to the estimate for J 2 we have by Cauchy-Schwarz inequality

|J 2 | ≤C ′ m m α d =1 1 C α d |α ′ |≤m-α d ∥∂ α ′ d-1 j=1 ∂ j u∥ 2 L 2 (Ω1) × ∥v∥ X + C ′ m m-1 α d =0 1 C α d +1 |α ′ |≤m-α d -1 ∥∂ α ′ (x d ∂ d ) α d d-1 j=1 ∂ j u∥ 2 L 2 (Ω1) × ∥v∥ X ≤ √ 2C ′ m ∥v∥ X × m C 1 |α ′ |≤m-1 ∥∂ α ′ ∂ j u∥ 2 L 2 (Ω1) + m-1 α d =0 1 C α d +1 |α ′ |≤m-α d -1 ∥∂ α ′ (x d ∂ d ) α d d-1 j=1 ∂ j u∥ 2 L 2 (Ω1)
We choose the coefficients C 1 , C 2 ... such that C 1 ≥ 2γC ′ m √ 2(m + 1) and

C α d +1 ≥ 2γC ′ m √ 2C α d with γ > 0 so that |J 2 | ≤∥v∥ X × |α ′ |≤m ∥∂ α ′ u∥ 2 L 2 (Ω1) + m-1 α d =1 1 C α d |α ′ |≤m-α d ∥∂ α ′ (x d ∂ d ) α d u∥ 2 L 2 (Ω1) ≤ 1 2γ ∥v∥ X • ∥u∥ X .
The same majoration applies to J 4 .

Consequently using Riesz representation theorem there exist two continuous linear operators φ 2 and φ 4 : X → X such that J 2 := ⟨u, φ 2 (v)⟩ X and J 4 := ⟨u, φ 4 (v)⟩ X .

Reiterating the same kind of computations for J 1 and J 3 we obtain

|J 1 | ≤ 1 2γ ∥Au∥ X m-1 • ∥v∥ X m and |J 3 | ≤ 1 2γ ∥Av∥ X m-1 • ∥u∥ X m .
To conclude the discussion for J 1 and J 3 we introduce the following subspace, Y of X:

Y := {u ∈ X \ ∂ d u ∈ ker A d } .
It is clearly a non trivial vectorial subspace of X. Indeed let e ∈ ker A d and ψ ∈ D(Ω) be arbitrary then uψe ∈ Y.

For all u ∈ Y we have the identity Au = d-1 j=1 A j ∂ j u so that we have the estimate

∀ u ∈ Y, |J 1 | ≤ C∥u∥ X m • ∥v∥ X m .
We can thus apply Hahn-Banach theorem to extend by continuity the form J 1 to the whole space X, then Riesz representation theorem applied to J 1 and J 3 gives the existence of two continuous linear operators φ 1 , φ 3 : X → X such that J 1 := ⟨u, φ 1 (v)⟩ X and J 3 := ⟨u, φ 3 (v)⟩ X .

For the characterization of the L(X)-norm given by Riesz representation theorem we have that for all j ∈ {1, ..., 4}, ∥φ j ∥ L(X) ≤ 1 2γ . We thus end up which the following duality formula ⟨Au, v⟩ X = -⟨u, Av⟩ X -4 j=1 ⟨u, φ j v⟩ X + where Φ : X → X is a linear and continuous operator satisfying that for all γ > 0 we have ∥Φ∥ L(X) ≤ 2 γ .

α d =0,|α ′ |≤m R d-1 A d ∂ α u |x d =0 , ∂ α v |x d =0 dx ′ . ( 56 
Indeed by the triangle inequality combined with the fact that ∥Φ∥ L can be made small: ∥L * (∂)v∥ Ym,γ ≥ ∥L * (∂)v∥ Ym,γ -2 γ ∥v∥ Ym,γ ≥ c∥L * (∂)v∥ Ym,γ .

This shows that ℓ is continuous so that Riesz representation theorem gives the existence of the regular solution u.

□ 7 Conclusion and perspectives

In this article we gave two methods to obtain regular solutions to hyperbolic boundary value problems without the classical step(s) of the regularization of the solution. These methods apply respectively to inhomogeneous initial condition and inhomogeneous boundary condition so that the combination of these two methods gives a rather simple way to show the regularity of the solution to a hyperbolic boundary value problem.

Moreover both of these methods are robust enough to deal with variable coefficients and characteristic problems (but with constant coefficients).

We have strong reasons to believe that our approach can however be extended to characteristic problems with variable coefficients. An other point of interest about characteristic problems may be to see if from the energy estimates of Theorem 3.2 one can recover the whole regularity of the normal derivatives like it has been done by Secchi [Secchi, 1995]- [Secchi, 1996] via the two to one principle (meaning that the control of two tangential derivatives gives the control of one normal derivatives). These two points are left for future studies.

In the proof of Theorem 3.2 we restrict our attention to constant coefficients with respect to time. This restriction is made to make sure that in its definition of domain of the operator A and thus A * does not depend on the time variable t. So that it is not warless at all. A way to overcome this restriction may be to apply Lumer-Phillips theorem to the Banach space X := L ∞ t (R + ; L 2 x d (R + ; H m x ′ (R d-1 ))) so that the dependency of D(A) with respect to t is avoided. This point is however also left for future studies.

  then under Assumption 4.1 the operators A : D k (A) → X and A * : D k (A * ) → X are dissipative in the sense of Definition 2.1.

  and so on we conclude like in the proof of Paragraph 4.1. □ 5 Variable coefficients problems, proof of Theorem 3.1 This section is devoted to variable coefficients problems with the proof of Theorem 3.1. More precisely Paragraph 5.1 gives the proof of the first statement of Theorem 3.1 and Paragraph 5.2 gives the proof of the second one.

)

  Defining the boundary conditions like in Paragraph 2.3.1 to avoid the boundary terms such gives the following characterization of the dual operator for characteristic problems. Proposition 6.1 Let A : D(A) → X be defined on the domainD(A) := u ∈ X \ Au ∈ X, u |x d =0 ∈ H m (R d-1 ) and Bu |x d =0 = 0 .Then the dual operator A * : D(A * ) → X has the following domainD(A * ) := v ∈ X \ Av ∈ X, v |x d =0 ∈ H m (R d-1) and Cv |x d =0 = 0 , moreover it can be written under the formA * = -A -4 j=1 φ j := -A -Φ,

  and only if ∂ α ′ Cv |x d =0 = 0 with follows from Cv |x d =0 = 0 because the operator ∂ α ′ is tangential. With such a v we thus have ⟨Au, v⟩ X = ⟨u, A * v⟩ X .

	□
	2.3.2 Variable coefficients case

But we choose to not insist on this point because the second statement that is the use of the regular duality method will apply to non vanishing source f and because of the linearity of the problem.

It is rather fair to say that the following lemma can in fact be seen as a regularization result. However we believe that it is a less crucial argument than the mollification and/or the non characteristic regularization argument mentioned in the introduction. Indeed Lemma 4.2 is only used to obtain the sharpest energy estimate and without the use of this lemma the whole method applies but with a loss of one derivative.

Note in particular that we drop off the symmetry assumption

Note that the regular duality method permits a variable boundary matrix.

The regularity of the coefficients is not necessary in the following but it has the advantage of simplicity.

Note in particular that this Assumption involves L * (∂) which is the natural dual operator when the problem is considered on L 2 (Ω) and not the "complete" dual operator L * (∂) that is the one for which we have a duality formula.

The author acknowledge financial support from the ANR research project NABUCO.

Lumer Phillips theorem

This paragraph uses the dual operator in order to show the strong well-posedness of the characteristic boundary value problem and thus it gives the proof of the first statement in Theorem 3.2. Once the dual operator is rigorously defined this section is thus a rather simple adaptation of Paragraphs 4.1 or 5.1. Some points of the proof are even easier because the space X already contains the regularity with respect to the normal variable x d so that no recovering of the whole regularity using the equation is required.

The main ingredient is once again the dissipativity of the operators A and A * . In order to have this property we assume the following. Assumption 6.1 Assume that 1. The initial boundary value problem (51) is symmetric that is that for all j ∈ {1, ..., d}, A T j = A j .

The boundary condition

and ker B is not properly contain in any other subspace having this property.

We then have the following lemma: We shall justify that for all k ∈ {0, ..., m}, u k := A k u 0 ∈ D m-k (A). We recall that we have the inclusion

The last requirement to be in D m-k (A), then comes from the compatibility conditions.

We give the proof of Lemma 6.1 to conclude this discussion Proof : We only show the result for A, the one for A * follows exactly the same lines like it has been done in Paragraph 5.1.

For λ > 0, ω > 0 to be fixed large enough and u ∈ D k (A) we define f := (λ + ω)u -Au. We have

and we have to make the term ⟨Au, u⟩ X more explicit. From the duality formula (56) we have (remark that the form J 1 and J 3 coincide on (u, u))

Because the derivatives are tangential we have that ∂ α u |x d =0 ∈ ker B so that the second term in the right hand side of is negative. Consequently from Cauchy-Schwarz inequality we obtain

so that we have the expected quasidissipativity property by choosing ω ≥ 1 γ . □

Regular duality method

In this paragraph we give the proof of the second statement of Theorem 3.2. The proof exposed here is a rather straightforward adaptation of the one in the variable coefficients case (see Paragraph 5.2) so that we only give the main steps in the proof here.

We assume that the dual problem to (51) comes with some a priori energy estimate and show the existence of a regular solution.

We thus associate to (51) the dual problem

where the operator L * (∂) is defined by

Because of the results of Paragraph 6.1 (see Proposition 6.1) we have the following duality formula: for all u ∈ Y m,γ such that L(∂)u ∈ Y m,γ and

where L * (∂) = -L * (∂) -Φ, Φ being the linear continuous operator on Y m,-γ introduced in Proposition 6.1.

Note that compared to the non-characteristic framework the space Y m,χ now includes the regularity with respect to x d because it is defined by

where we defined for

The boundary space ∂Y m,χ being defined similarly.

We thus assume the following a priori energy estimate Assumption 6.2 Assume that for some m ∈ N such that for all γ > 0, if v ∈ Y m,-γ , g := Cv |x d =0 ∈ ∂Y m,-γ and that f := L * (∂)v ∈ Y m,-γ then there exists C > 0 such that for all γ > 0 we have the a priori energy estimate

The result is thus the following Proposition 6.2 Under Assumption 6.2 such that for all γ > 0 the problem (46) admits a solution u ∈ Y m,γ

where m is the one of Assumption 6.2. The main point in the proof is to show that ℓ is continuous on Y. We have by Cauchy-Scharwz inequality combined with the a priori energy estimate (59) that for all γ > 0:

Reiterating exactly the same arguments as the ones used in the proof of Proposition 5.1 we can replace the term ∥L * (∂)v∥ Ym, γ in the right hand side by ∥L * (∂)v∥ Ym, γ .