
HAL Id: hal-03782727
https://hal.science/hal-03782727v1

Submitted on 24 Mar 2023 (v1), last revised 21 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental Platform for Testing Cache Allocation
Policies to Improve Linux Real-Time Behaviour

Aléxis Génèrès, Michaël Lauer

To cite this version:
Aléxis Génèrès, Michaël Lauer. Experimental Platform for Testing Cache Allocation Policies to Im-
prove Linux Real-Time Behaviour. Critical Automotive applications: Robustness & Safety, Jul 2022,
Zaragoza (Saragosse), Spain. �hal-03782727v1�

https://hal.science/hal-03782727v1
https://hal.archives-ouvertes.fr


Experimental Platform for Testing Cache Allocation
Policies to Improve Linux Real-Time Behaviour

Aléxis Génèrès1
1 CNRS LAAS, 7 avenue du colonel Roche

F-31400, Toulouse, France
Email: ageneres@laas.fr

Michaël Lauer12,
1CNRS LAAS, 7 avenue du colonel Roche

2Univ de Toulouse, UPS
F-31400, Toulouse, France

Abstract—Automotive embedded systems have an increasing
need for computing power. To address this issue, we can im-
plement critical and non-critical tasks in the same multicore
processor. A disadvantage of this kind of processor is the
indeterminism it involves due to its complexity. New technologies,
like dynamic allocation of cache memory, allow reducing the
impact of this indeterminism. In this article, we provide an
experimental approach to verify if the dynamic allocation of the
cache memory of Intel (CAT Intel) is efficient.

Index Terms—multi-core, real time, multiple criticity, cache
allocation

I. INTRODUCTION

The growing need for computing power in embedded sys-
tems is leading companies to use multi-core processors, in
particular in the automotive domain for both economic and
technical reasons. Open source operating system is an other
attractive opportunity, namely Linux. The increased number of
onboard applications requires combining high criticality tasks
with low criticality tasks on the same multi-core processor.
Unfortunately, the uses of multi-core processors induce a lack
of predictability of their temporal behavior due to their shared
resources: memories, communication buses... These factors
can provoke deadlines violation for high criticality tasks,
and also a sub-optimal use of the computing power for low
criticality tasks [1].

In this paper, we target one factor: the cache memory shared
between the cores of a processor. Our goal is to evaluate
the gain of a dynamic cache allocation mechanism regarding
deadlines respect and processing power performance. Further-
more, we want to know if the use of these mechanisms can
be implemented with a minimum effect on the background
tasks. On the one hand, a static allocation allows to isolate
the high criticality tasks and thus, to limit the interferences
linked to shared resources. However, on the other hand, the
cache memory, in case of a static allocation, is then no longer
fully available for other tasks, even if the high criticality tasks
are terminated. This limits the use of the processor. In this
study, we will therefore focus on dynamic allocation to avoid
this behavior.

In this preliminary work, we will realize a set of experiments
using high criticality tasks and low criticality tasks on a single
multi-core processor. More specifically, we use the technology
of cache memory allocation to isolate the cache memories
of the tasks having a different level of priority. The goal is

to evaluate the impact of dynamic low-level cache allocation
mechanisms on the side-effect of shared resources.

To achieve this evaluation, we will use the Earliest Deadline
First (EDF) scheduling of Linux. Based on the works of Lelli
[2], we can use the EDF scheduling of Linux and guarantee
the real-time requirements if we limit the computing power at
90% on one core. For our experiments, we will also use CAT
technology of Intel. In section II of this article we describe
this work. In this section, we also define our experimental
approach and tools to analyze the last level of cache memory
mechanism. In section III, we detail our experimental platform
and our protocol to evaluate the mechanism.

II. EXPERIMENTAL APPROACH AND TOOLS

A. Experimental approach

The goal behind our experimental protocol is to improve the
execution determinism of the high criticality task while also
ensuring optimal performances for the low criticality tasks. To
this end, we evaluate the relevance of the dynamic allocation
of cache memory on the shared cache memory.
To do this, we simulate one high criticality task with 12 low
criticality tasks. After that, we will measure the response time
of the high criticality task to evaluate the non-violation of
the deadline and thus the execution determinism. In a second
time, we estimate the computing power that we can use for low
criticality tasks by measuring the IPCs of the 12 low criticality
tasks.
Therefore, the experimental approach to evaluate the impact of
dynamic low-level cache allocation mechanisms for reducing
the effect of shared resources is composed of three phases.

1) Without cache memory allocation.
2) With static cache memory allocation.
3) With dynamic cache memory allocation.
If we do not observe any ”deadline miss” nor any behavior

side-effect with dynamic allocation, we can state that dynamic
allocation has no negative impact on the high criticality task.

B. Tools

In our experimental framework, the high criticality task is
scheduled with the EDF scheduling policy of Linux (named
SCHED DEADLINE). This scheduler is characterised by three
key parameters: ”runtime”, ”deadline” and ”period”. The
”runtime” parameter represents the budget allocated by the OS
to perform the task before its deadline. This budget is refreshed



at each new period. If this budget is fully consumed, the task is
suspended and we consider its deadline as missed. We manage
the low criticality tasks using the default scheduling policy of
Linux: ”time-sharing”.

For cache memory allocation, we use the Intel CAT (Cache
Allocation Technology)[3]. CAT allows us to allocate a sub-
space of memory of the last level cache of the processor. We
can use CAT for multiple cores or processes. The allocation
is done via a software lock: a mask that changes the write
permissions only. It’s granularity is determined by the number
of ways in the CPU. For example, in a 8 ways last level
of cache, we can allocate from 1 to 8 ways (zero is not
possible) to one or multiple processes. The maximum number
of allocation depends on the CPU models.

Finally, we use BCC (BPF Compiler Collection)[4] to
collect data (IPC and response times). BCC permit our obser-
vation mechanisms and measures to be implemented. BCC is
a group of elementary tools which allows us to program and
use BPF (Berkeley Packet Filter) probes in order to collect
the necessary data for our experiments. BCC introduces a
low overhead in terms of computing power and provides key
elements to implement fine-grained instrumentation.

III. EXPERIMENTAL PROTOCOL

The overall approach to address the problem is composed
of three phases. Each phase consists of the execution of
the high criticality task alone, then, in a second step, the
execution of the high criticality task and low criticality tasks
simultaneously. This step aims to generate interference. The
three phases are the following:

• Without cache memory allocation.
• With static cache memory allocation.
• With dynamic cache memory allocation.
For the realization of this protocol, the experimental plat-

form uses two processors for the time being. One is an Intel
Xeon Bronze 3204 (named Xeon 3204). A Xeon 3204 has 6
cores without hyperthreading, its last level is an 11-way set-
associative cache with a size of 8.25MB. The L2 caches are of
a size of 1MB each and are not shared by multiple cores. The
second is an Intel Celeron J3455. A J3455 has 4 cores without
hyperthreading, its last level is an 8-way set-associative cache
with a size of 2×1MB.
In the remainder in this paper, we use the Xeon 3204 as the
main processor.

Based on the information about the last level cache of our
processor, we can explain the use of CAT in this experimen-
tation. Using CAT we can exploit two times 11 ways for the
allocation. Each way is an allocation of 0.75 MB of memory
space. Since our high criticality task needs 3 MB of cache
memory space, to isolate it, we will use CAT to allocate a
sufficient number of ways : 5 ways. We will also deactivate
the write authorization in the same memory space for the low
criticality tasks.

The operating system we will work on is a 5.12.5 Kernel.
It allows us to have access to the last version of BCC. We
will use BCC to save the start date of the high criticality task.

We will also need, using this compiler collection, to save any
violation of the deadline for the high criticality task and, to
measure the Instruction per Cycle (IPC) of each core.

A. Step by step protocol

Each of these phases (without allocation, with a static
allocation, and with a dynamic allocation) regroup two steps;
the first with the high criticality task alone and the second
with the high criticality task and the low criticality tasks in
parallel.
As we use the EDF Linux schedule for the high criticality
task, we must specify the three parameters of this scheduler:
runtime, deadline, and period.

For our experiment, the runtime is 150ms and the period
is equal to the deadline: 200 ms. Both of the tasks (high
criticality and low criticality) use an entry data size of 3 MB.
Indeed, to provoke the effect of the shared memory, the entry
data size needs to be greater than the size of L2 cache memory
size which is 1MB for the Intel Xeon 3204.

1) Without cache memory allocation phase: as mentioned
before, the first step is to launch the high criticality task alone
with the observation tools. This step intended to collect the
reference response times.
The second step is to launch the high criticality task and the
low criticality tasks at the same time. The low criticality tasks
are represented by 12 stress tasks, one per core, which will
flood the cache memory. Thereby, we could measure the effect
of noisy neighbors on our system. This effect is due to the
interferences of the memories shared by other tasks.

2) With static cache memory allocation phase: the static
cache memory allocation will be effective until the end of this
step. To set the allocation, we allocate to high criticality task
five successive ways among the 11 available in the processor.
We can do this allocation using the CAT intel technology.

This allocation will be exclusive to the high criticality task.
The allocated memory size is 3.75 MB (0.75MB by way). In
fact, it needs to be greater than 3 MB which is the size of
the data used by the high criticality task.

The first step, which is to launch the high criticality task
alone, allow us to observe the effect of cache allocation on
the high criticality task response time. This effect should be
insignificant.

The second step, which is to load the system with our 6
stress tasks, should give us the same results, i.e no modification
of our response times because the allocation protects the high
criticality task. Since we use only five of the 11 ways to the
high criticality task, we suppose that the absence of the six
other ways will impact the number of instructions per cycle
for the low criticality tasks.

To observe this result we compare:

• the average response time.



• the average IPCs of all the cores.

3) With dynamic cache allocation phase: for this phase,
we also use five of the existing ways for the allocation. We
will deactivate this allocation when the high criticality task has
terminated and reactivate it at the beginning of a new period.

To analyze the impact of the dynamic allocation, we
compare the dynamic and the static allocation regarding the
average response.

To analyse the computing power of the low criticality tasks,
we compare the dynamic and the static allocation regarding
the IPCs. This comparison is done while the stress tasks are
activated. We should observe a higher IPC in the case of
dynamic allocation. This would conclude about the efficiency
of this mechanism towards low criticality tasks.

IV. RELATED WORKS

In this section, we will detail some solutions to make coexist
a high criticality task and tasks of low-level criticality on the
same multi-core processor.
The first solution is illustrated by the works of Suzuki and
others [5]. It suggests allocating for each core a subspace of
the cache memory. Then, to set the core affinity of the high
criticality task to only one core and assign all the other cores
to the low criticality tasks. This solution has been proven to
limit the impact of the shared resources. However, it is quite
pessimistic due to the proprietary of one core, which can be
not fully used, to the high criticality task. This solution showed
similarities with the static allocation of cache memory (risk of
over-allocation).

Another type of solution, that we call ”all-or-nothing” is
to execute the high criticality task while we deactivate all
the low criticality tasks. Such is the case of the works of
Kritikakou and others. [6] which shows how to guarantee
the real-time constraint with a two-step method. First, by
executing tasks with different levels of criticality in parallel.
Then, by deactivating the low criticality tasks based on a
computation of the RWCET (remaining worst-case execution
time). Other works of Kiritikakou and others. [7] and Girbal
and others. [8] uses this same method. In our experimental
approach, we want to be less pessimistic and keep the low
criticality tasks activated.

Finally, a solution proposed by Xu and others. [9] uses CAT
technology to allocate cache memory on Virtual Machines.
The number of Virtual Machines is equal to the different levels
of criticality. Then, tasks are executed on these Virtual Ma-
chines depending on the level of criticality. The disadvantage
of this method is that the low criticality tasks will never use
100 % of cache memory due to pre-reservation.

V. TECHNICAL DETAILS

To use the experimental platform the high criticality task
need to to be schedule with Sched deadline. We use the
sched yield command to end the job and release the scheduler.

We create a python script using BCC to measure the
response time of the high criticality task. We trace the deadline
scheduler of Linux. More precisely we execute a C script at
any update of the deadline scheduler at the kernel level. This
C script aims to save the state of the high criticality task at the
moment of the update. If the high criticality task is not yielded
and not throttled, then the task is currently running. If the high
criticality task is yielded then it’s the end of the measure of
the response time. And if the task throttled (consume all the
runtime budget) and it is not yielded then it is considered has
a deadline miss. At the end of this C script, the data are push
in the user level (and come to the python script) and the save
in the text file don’t impact the high criticality task.

For the low criticality task we measure the IPC of each core.
Howerver to instrument the instruction, we need to place a
probe. One solution is to place a fixe probe every x instructions
(or cycle). But with this solution we cannot have temporal
coherence during the measure. The second solution, that we
use, is to create C scipt at user level which is basically a
clock that use Linux Signal and don’t use CPU in background.
We run on each core this clock script. After, we trace the
tracepoint signal generate. The C script at the kernel level
(with BCC) test if the signal generated is the Signal 14 (SIG
ALARM). Then, we open for each CPU, the perf event for
the cycles and the perf event for the instructions. At the end
we push the data in the user level (python script) with the
name of application which generate the signal, the core, the
instructions, and cycles. We can’t calculate IPC directly due
to the missing of floating type in kernel level.

VI. CONCLUSION

Our experimental protocol and the corresponding platform
aim at analyzing the dynamic allocation mechanism of the
last lever cache, on an experimental computer with an Intel
processor and using Linux. Our approach is meant to estimate
the impact of noisy neighbours effect on a high criticality
task. Furthermore, we aim to find a compromise between the
temporal requirement for the high criticality task, and as much
as possible computing power to low criticality tasks.

The dynamic cache allocation uses CAT technology to
allocate enough cache memory only during the runtime of the
high criticality task. It is worth noting that CAT has limited
precision when allocating processor ways last level cache to
tasks.

If the dynamic allocation is efficient, then we will circum-
vent this issue by affecting different allocations to tasks during
our experiments. More specifically, we allocate the sufficient
number of ways for a task during its time execution only and
then reallocate the same ways to another task when the first
one is over.

The technology used for scheduling, which is Linux EDF,
excludes the possibility to manage the core affinity for specific
tasks. Regarding this second limitation, Linux is going through
a process of adding real time assets on its new future Kernel.
We therefore expect this limitation to be resolved in a near
future.



REFERENCES

[1] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke,
B. Triquet, and R. Wilhelm, “Predictability considerations in the design of
multi-core embedded systems,” 05 2010, pp. 36–42. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.4533&rep
=rep1&type=pdf

[2] A. L. Lelli Juri, Scordino Claudio and F. Dario,
“Deadline scheduling in the linux kernel,” Software prac-
tice and experience, vol. 46, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/epdf/10.1002/spe.2335

[3] K. Nguyen, “ cat cache allocation technology ” 2016. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/articles/introduction-
to-cache-allocation-technology.html

[4] “Bpf compiler collection (bcc),” 2021. [Online]. Available:
https://github.com/iovisor/bcc

[5] N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein, and
R. Rajkumar, “Coordinated bank and cache coloring for temporal protec-
tion of memory accesses,” in 2013 IEEE 16th International Conference
on Computational Science and Engineering, 2013, pp. 685–692.

[6] A. Kritikakou, T. Marty, and M. Roy, “DYNASCORE:
DYNAmic Software COntroller to Increase REsource Utilization
in Mixed-Critical Systems,” ACM Tran. on Design Automation
of Electronic Systems, vol. 23, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3149546.3110222

[7] A. Kritikakou, C. Rochange, M. Faugère, C. Pagetti, M. Roy,
S. Girbal, and D. G. Pérez, “Distributed run-time wcet controller
for concurrent critical tasks in mixed-critical systems,” in Proceedings
of the 22nd International Conference on Real-Time Networks and
Systems, ser. RTNS ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 139–148. [Online]. Available:
https://doi.org/10.1145/2659787.2659799

[8] S. Girbal, X. Jean, J. Le Rhun, D. G. Pérez, and M. Gatti, “Deterministic
platform software for hard real-time systems using multi-core cots,”
in 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC),
2015, pp. 8D4–1 to 8D4–15.

[9] M. Xu, L. Thi, X. Phan, H.-Y. Choi, and I. Lee, “vcat: Dynamic cache
management using cat virtualization,” in 2017 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2017, pp.
211–222.


