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Extended numerical simulations enable us to ascertain the diffusive behavior at finite temperatures of chiral
walls and skyrmions in ultrathin model Co layers exhibiting symmetric—Heisenberg—as well as antisymmetric—
Dzyaloshinskii-Moriya—exchange interactions. The Brownian motion of walls and skyrmions is shown to obey
markedly different diffusion laws as a function of the damping parameter. Topology related skyrmion diffusion
suppression with vanishing damping parameter, albeit already documented, is shown to be restricted to ultrasmall
skyrmion sizes or, equivalently, to ultralow damping coefficients, possibly hampering observation.
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I. INTRODUCTION

The prospect of ultrasmall stable information bits in mag-
netic layers in the presence of the Dzyaloshinskii-Moriya (DM)
interaction [1] combined to the expectation of their minute
current propagation [2], notably under spin-orbit torques [3],
builds up a new paradigm in information technology. In stacks
associating a metal with strong spin-orbit interactions, e.g.,
Pt and a ferromagnetic metal such as Co, which may host
isolated skyrmions, large domain wall velocities have also been
forecast [4] and observed [5]. The DM interaction induces
chiral magnetization textures, walls or skyrmions, that prove
little prone to transformations of their internal structure, hence
their extended stability and mobility.

In order, however, to achieve low propagation currents,
steps will need to be taken towards a reduction of wall
or skyrmion pinning. Recent experimental studies indicate
that skyrmions fail to propagate for currents below a thresh-
old roughly equal to 2 × 1011 A m−2 for [Pt/Co/Ta]n and
[Pt/CoFeB/MgO]n multilayers [6], or 2.5 × 1011 A m−2 for
[Pt/(Ni/Co/Ni)/Au/(Ni/Co/Ni)/Pt] symmetrical bilayers [7].
Only in one seldom instance did the threshold current fall down
to about 2.5 × 1010 A m−2 for a [Ta/CoFeB/TaO] stack, still
probably, however, one order of magnitude higher than currents
referred to in simulation work applying to perfect samples [8].

In a wall within a Co stripe 50-nm wide, 3-nm thick, the
number of spins remains large, typically 216 for a 5-nm-wide
wall. A skyrmion within a Co monolayer (ML) over Pt or Ir, on
the other hand, contains a mere 250 spins, say 28. Assuming
that a sizable reduction of pinning might somehow be achieved,
then a tiny structure such as a skyrmion is anticipated to become
sensitive, if not extremely sensitive, to thermal fluctuations.

In this work we show, on the basis of extended numerical
simulations, that both chiral walls and skyrmions within
ferromagnets obey a diffusion law in their Brownian motion
at finite temperature [9,10]. The diffusion law is shown to be
valid over a broad range of damping parameter values. The
thermal diffusion of domain walls seems to have attracted very
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little attention, except for walls in one dimension (1D), double
potential, structurally unstable, lattices [11], a source of direct
inspiration for the title of this contribution. Chiral magnetic do-
main walls are found below to behave classically with a mobil-
ity inversely proportional to the damping parameter. As shown
earlier [12,13], such is not the case for skyrmions, a behavior
shared by magnetic vortices [14]. Vortices and skyrmions in
ferromagnetic materials are both characterized by a definite
topological signature. In contradistinction, skyrmions in anti-
ferromagnetic compounds are characterized by opposite sign
spin textures on each sublattice, with, as a result, a classical,
wall-like, dependence of their diffusion constant [15]. Lastly,
ferrimagnets do display reduced skyrmion Hall angles [16],
most likely conducive to modified diffusion properties.

II. DOMAIN WALL DIFFUSION

We examine here, within the micromagnetic framework,
the Langevin dynamics of an isolated domain wall within a
ferromagnetic stripe with thickness tS, width wS, and finite
length L (see Fig. 1). The wall is located at mid-position
along the stripe at time t = 0. Thermal noise is introduced
via a stochastic field �HRd uncorrelated in space, time, and
componentwise, with zero mean and variance η proportional
to the Gilbert damping parameter α and temperature T [17]:

〈 �HRd〉 = �0,〈
Hi

Rd(�r,t)Hj

Rd(�r ′,t ′)
〉 = η δij δ(�r − �r ′)δ(t − t ′),

η = 2kBT

γ0μ0MS
α, (1)

where kB is the Boltzmann constant, μ0 and γ0 are the vacuum
permability and gyromagnetic ratio, respectively, and MS is
the saturation magnetization. Written as such, the functions
δ(�r − �r ′) and δ(t − t ′) have the dimension of reciprocal volume
and time, respectively. Applied to numerical simulations,
the variance of the stochastic field becomes η = 2kBT

γ0μ0MSV dt
α,

where V is the computation cell volume and dt is the integra-
tion time step.
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FIG. 1. (a) Wall within a narrow stripe: wS is the stripe width,
tS its thickness. The stripe element length L is solely defined for
computational purposes. q is the wall displacement. (b) Snapshot of
the magnetization distribution: color coding after mx . The wall region
mx ≈ 1 appears red. Thermal fluctuations are visible within domains:
T = 25 K, wS = 100 nm, tS = 0.6 nm, α = 0.5.

A. Simulation results

The full set of numerical simulations has been performed by
means of an in-house code ported to graphical processing units
(GPUs). Double precision has been used throughout and the
GPU-specific version of the “Mersenne twister” [18] served as
a source of a long-sequence pseudorandom numbers generator.

Material parameters have been chosen such as to mimic a
3-ML Co layer (thickness tS = 0.6 nm) on top of Pt with an
exchange constant equal to A = 10−11 J/m, a Ms = 1.09 ×
106 A/m saturation magnetization, a Ku = 1.25 × 106 J/m3

uniaxial anisotropy constant allowing for a perpendicular easy
magnetization axis within domains, and a moderate-to-high
DM interaction (DMI) constant DDM = 2 mJ/m2. In order
to temper the neglect of short wavelength excitations [19],
the cell size has been kept down to Lx = Ly = 1 nm, while
Lz = tS = 0.6 nm. The stripe length has been kept fixed at
L = 1 μm, a value compatible with wall excursions within the
explored temperature range. The latter has, for reasons to be
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FIG. 2. Excerpt of a wall trace displaying wall position fluctua-
tions vs time: T = 77 K, α = 0.5, wS = 100 nm, tS = 0.6 nm. q is
the wall displacement during time interval �t .

made clear later, been restricted to ≈1/3 of the presumed Curie
temperature for this model Co layer. Finally, the integration
time constant, also the fluctuating field refresh time constant,
has been set to dt = 25 fs.

As shown by the snapshot displayed in Fig. 1(b), the wall
may acquire some (moderate) curvature and/or slanting during
its Brownian motion. Because wall diffusion is treated here as
a 1D problem, the wall position q is defined as the average
position owing to

q = L

NxNy

∑Nx

i=1

∑Ny

j=1 mz(i,j )

[〈mz〉L − 〈mz〉R]
, (2)

where i and j are the computation cell indices, Nx and Ny are
the number of cells along the length and the width of the stripe,
respectively, 〈mz〉L is the fluctuations averaged value of the z

magnetization component far left of the domain wall, 〈mz〉R
is the average value of mz far right. Regardless of sign, 〈mz〉R
and 〈mz〉L are expected to be equal in the absence of any Hz

field.
Figure 2 displays the position as a function of time of a wall

within a wS = 100 nm wide stripe immersed in a T = 77 K
temperature bath. A 2 ns physical time window has been
extracted from a simulation set to run for 1.5 μs. The figure
shows short term wall position fluctuations superimposed
onto longer time diffusion. According to Einstein’s theory
of Brownian motion [9], the probability P (x,t) of finding a
particle at position x at time t obeys the classical diffusion
equation ∂tP (x,t) = D∂2

x2P (x,t) with, as a solution, a normal
(Gaussian) distribution P (x,t) = 1/

√
4πDt exp(−x2/4Dt),

where D is the diffusion constant.
So does the raw probability of finding a (stiff) wall in

a narrow stripe at position q after a time interval �t , as
shown in Fig. 3 (see Fig. 2 for variable definition). It ought

FIG. 3. Wall within stripe: Event statistics with time interval �t

as a parameter; α = 0.5, wS = 100 nm, tS = 0.6 nm, T = 25 K. The
continuous blue lines are fits to a Gaussian distribution, the variance
of which increases with �t .
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FIG. 4. (a) Variance 〈q2〉 (nm2) of the wall displacement vs time
interval �t with temperature T as a parameter. Thick lines represent a
linear fit to data. (b) Diffusion constantD as a function of temperature
(square full symbols). D is proportional to the slope of the 〈q2〉 vs
�t curves in (a) (see text for details). The error bars are deduced
from the slopes of straight lines through the origin that encompass
all data points in (a) for a given temperature and the fit time bracket
1–5 ns. For the sake of legibility, the error bars have been moved up by
2.5 units. Continuous line: Linear fit through the origin. The dashed
line is the analytical expectation in the “low” noise limit. α = 0.5,
wS = 100 nm, tS = 0.6 nm.

to be mentioned that the average wall displacement 〈q(�t)〉
is always equal to 0, with an excellent accuracy, provided
the overall computation time is large enough. The fit to a
normal distribution proves rather satisfactory, with, however,
as seen in Fig. 3, a slightly increasing skewness in the distri-
butions as a function of increasing �t . Skewness, however,
(1) remains moderate up to �t values typically equal to
5–10 ns, and (2) is seen to reverse sign with time interval
[compare Figs. 3(b) and 3(c)], excluding intrinsic biasing. The
distributions standard deviation is clearly seen to increase with
increasing �t .

Alternatively, one may represent the variance 〈q2〉 (〈q〉 =
0) as a function of time interval �t : if diffusion applies,
then a linear dependence is expected, with a 2D slope for
a one-dimensional diffusion. Figure 4(a) shows, for various
temperatures, that a linear law is indeed observed. Lastly, as
shown in Fig. 4(b), the diffusion constant increases linearly
with increasing temperature. The error bars measuring the
departure from strict linearity in Fig. 4(a) remain limited in
extent. For the stripe width and damping parameter considered
here (wS = 100 nm, α = 0.5), the ratio of diffusion constant
to temperature is found to amount to D/T = 0.187 nm2

ns−1 K−1.

B. Wall diffusion constant (analytical)

Thiele’s equation [20] states that a magnetic texture moves
at constant velocity �v provided the equilibrium of three forces
is satisfied:

�G × �v + αD�v = �F, (3)

where �F is the applied force, �FG = �G × �v is the gyrotropic

force, �G is the gyrovector, �FD = αD�v is the dissipation force,

and D is the dissipation dyadic.

For the DMI hardened Néel wall considered here: �G = �0.
For a 1D wall, the Thiele equation simply reads

αDxxvx = Fx, (4)

where Dxx = μ0MS

γ0

∫
V

( ∂ �m
∂x

)2d3r .
The calculation proceeds in two steps, first evaluate the

force, hence, according to Eq. (4), the velocity autocorrelation
functions, then integrate vs time in order to derive 〈q2〉. The
force, per definition, is equal to minus the partial derivative
of the energy E with respect to the displacement q, namely
Fx = − ∂E

∂q
= −μ0MS

∫
V

∂ �m
∂x

· �Hd3r . Formally,

〈Fx(t)Fx(t ′)〉 = (μ0MS)2

〈 ∫
V

∂ �m(�r,t)
∂x

· �H (�r,t)d3r

×
∫

V

∂ �m(�r ′,t ′)
∂x

· �H (�r ′,t ′)d3r ′
〉
. (5)

As noticed earlier [14], since the random field noise is
“multiplicative” [17], moving the magnetization vector out of
the average brackets is, strictly speaking, not allowed, unless
considering the magnetization vector to only marginally differ
from its orientation and modulus in the absence of fluctuations
(the so-called “low” noise limit [14]):

〈Fx(t)Fx(t ′)〉 = (μ0MS)2
∫

V

∑
i,j

[
∂mi(�r,t)

∂x

∂mj (�r ′,t ′)
∂x

×〈Hi(�r,t)Hj (�r ′,t ′)〉
]
d3r d3r ′. (6)

If due account is being taken of the fully uncorrelated character
of the thermal field [Eq. (1)], the force autocorrelation function
becomes

〈Fx(t)Fx(t ′)〉 = 2αkBT Dxxδ(t − t ′). (7)

The velocity autocorrelation function follows from Eq. (4).
Lastly, time integration q(t) = ∫ t

0 vx(t ′)dt ′ yields

〈q2(t)〉 = 2Dt, D = kBT

αDxx

. (8)

In order to relate the diffusion constant to a more directly
recognizable wall mobility, Dxx may be expanded as

Dxx = μ0MS

γ0

2wStS

�T

, (9)

where �T has been called the Thiele wall width (implicitly
defined in [21]). D may thus be expressed as

D = kBT

2μ0MS

1

wStS

γ0�T

α
, (10)

thus proportional to the wall mobility γ0�T /α.
A directly comparable result may be obtained after con-

structing a full Langevin equation from the (q,φ) equations of
domain wall motion (Slonczewski’s equations [22]), where φ

is the azimuthal magnetization angle in the wall mid-plane. In
this context, the wall mobility is μW = γ0�/α, where � is the
usual wall width, incidentally equal to the Thiele wall width
in the case of a pure Bloch wall. The Langevin equation [10]
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FIG. 5. (a) Diffusion constantD as a function of temperature with
the stripe width wS as a parameter (full symbols). (b) D/T as a
function of the inverse of the stripe width. α = 0.5, tS = 0.6 nm,
throughout. Solid blue lines: Linear fit through the origin. Dashed
line: Analytical expectation.

here reads

mD

2
wStS

d2〈q2〉
dt2

+ 1

2

2μ0Ms

μW
wStS

d〈q2〉
dt

= kBT , (11)

where mD is Döring’s wall mass density (kg/m2):

mD = (1 + α2)

(
γ0

2μ0Ms

)−2 1

π |DDM| , (12)

an expression valid in the limit |DDM| � KEff = Ku −
1
2μ0M

2
s . Note that the DMI constant DDM explicitly enters

the expression of the wall mass, as a consequence of the wall
structure stiffening by DMI. In the stationary regime, 〈q2〉 is
proportional to time t and the wall diffusion constant exactly
matches Eq. (10), after substitution of �T by �. Finally, the
characteristic time for the establishment of stationary motion
is

t0 = mD
1

2μ0Ms

γ0�

α
. (13)

For the parameters of our model 3-ML Co layer on top of
Pt, Döring’s mass density is equal to ∼3 × 10−8 kg/m2 for
α = 0.5, and the characteristic time amounts to t0 
 25 ps. Still
for α = 0.5, wS = 100 nm and tS = 0.6 nm, D/T amounts
to 0.153 nm2 ns−1 K−1 for �T = 4.13 nm, i.e., the value
computed from a properly converged wall profile at T = 0. The
relative difference between simulation and theoretical values
is found to be of the order of ≈20%.

Owing to Eq. (10), D is expected to prove inversely
proportional to both the stripe width wS and the Gilbert
damping parameter α, a behavior confirmed by simulations.
Figure 5(a) displays the computed values of the diffusion
coefficient as a function of temperature with the stripe width
as a parameter, while Fig. 5(b) states the linear behavior of
D vs wS

−1. The slope proves, however, some 13.5% higher
than anticipated from Eq. (10). Lastly, the 1/α dependence
is verified in Fig. 6 showing the computed variation of D
vs temperature with α as a parameter for a narrow stripe
(wS = 25 nm) as well as the corresponding α dependence of
D/T . The dotted line represents Eq. (10) without any adjusting
parameter. The relative difference between simulation data and

(a) (b)

FIG. 6. (a) Diffusion constantD as a function of temperature with
the damping constant α as a parameter (wS = 25 nm, tS = 0.6 nm).
Solid blue lines: Linear fit through the origin. (b) D/T (large semi-
open symbols) as a function of α for wS = 25 nm and tS = 0.6 nm.
Dotted blue curve: Analytical expectation. Full symbols: Relative
difference between computational and analytical results (%).

theoretical expectation is, beyond say α = 0.25, seen to grow
with increasing α but also appears to be smaller for a narrow
stripe as compared to wider tracks.

Altogether, simulation results only moderately depart from
theoretical predictions. The Brownian motion of a DMI-
stiffened wall in a track clearly proves diffusive. The diffusion
constant is classically proportional to the wall mobility and in-
versely proportional to the damping parameter. Unsurprisingly,
the smaller the track width, the larger the diffusion constant.
In order to provide an order of magnitude, the diffusion
induced displacement expectation

√
2D�t for a wall sitting

in a 100-nm-wide, pinning-free, track for 25 ns at T = 300 K
proves essentially equal to ± the stripe width.

III. SKYRMION DIFFUSION

Outstanding observations, by means of spin polarized scan-
ning tunneling microscopy, have revealed the existence of
isolated, nanometer size, skyrmions in ultrathin films such as
a PdFe bilayer on an Ir(1111) single crystal substrate [23,24].
We analyze below the thermal motion of skyrmions in a model
system made of a Co ML on top of Pt(111). We deal with
skyrmions with a diameter of about 2.5 nm containing at T = 0
about 250 spins.

A. Simulation results

In order to monitor the Brownian motion of an isolated
skyrmion, rather than micromagnetics, it is preferred to sim-
ulate the thermal agitation of classical spins �s (| s |= 1)
on a triangular lattice. Lattice effects and frequency cutoffs
in thermal excitations are thus avoided. Such simulations
have already been used, e.g., for the determination of the
barrier to collapse of an isolated skyrmion [25,26]. The
parameters are: lattice constant a = 2.51Å, magnetic moment
μAt = 2.1 μB/atom, Heisenberg exchange nearest-neighbor
constant J = 29 meV/bond, Dzyaloshinskii-Moriya ex-
change d = −1.5 meV/bond, magnetocrystalline anisotropy
0.4 meV/atom. The stochastic field is still defined by Eq. (1)
after substitution of the product MSV by the magnetic moment

214426-4
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FIG. 7. Snapshot of a skyrmion immersed in a 12.5 K temperature
bath (α = 0.5), together with the underlying lattice. Red cells: sz ≈
+1, blue cells: sz ≈ −1. The white cross indicates the barycenter of
lattice site positions satisfying sz � 0.5.

per atom. The code features full magnetostatic (dipole-dipole)
interactions. Fast Fourier transforms implementation ensues
from the decomposition of the triangular lattice into two
rectangular sublattices, at the expense of a multiplication of
the number of dipole-dipole interaction coefficients. Lastly,
the base time step, also the stochastic field refresh time, has
been given a low value in view of the small atomic volume,
namely dt = 2.5 fs for α � 0.1, dt = 1 fs below. Time steps
that small may be deemed little compatible with the white
thermal noise hypothesis [17]. They are in fact dictated by the
requirement for numerical stability, primarily with respect to
exchange interactions.

Figure 7 is a snapshot of an isolated skyrmion in the model
Co ML with a temperature raised to 12.5 K. The skyrmion is at
the center of a 200 a.u., i.e., ≈50-nm-size square computation
window, that contains 46 400 spins and is allowed to move with
the diffusing skyrmion. Doing so alleviates the computation
load without restricting the path followed by the skyrmion.
Free boundary conditions (BCs) apply. The window, however,
proves sufficiently large to render the confining potential
created by BCs ineffective.

The skyrmion position as a function of time is defined
simply as the (iso)barycenter of the contiguous lattice site
positions x(k), y(k), where sz � 0.5:

qSk
x = 1

K

K∑
k=1

x(k), qSk
y = 1

K

K∑
k=1

y(k), (14)

where k is the lattice site index and K is the number of lattice
sites satisfying the above condition. Such a definition proves
robust vs thermal disorder such as displayed in Fig. 7. A
typical skyrmion trajectory for a ≈100 ns time lapse is shown
in Fig. 8. In analogy to the wall diffusion case, we analyze first
the distributions of the displacement components qx,qy . The
event statistics for each value of the time interval is clearly
Gaussian (see Fig. 9). However, the noise in the distributions
appears larger when compared to the wall case. It also increases
faster with �t . On the other hand, the raw probabilities for 〈q2

x 〉
and 〈q2

y 〉 barely differ as anticipated from a random process.

FIG. 8. Example of skyrmion trajectory. Distances in atomic units
(1 a.u. = 2.51 Å). The trajectory started at the origin of coordinates
at time t = 0 and stopped at the cross location at physical time t ≈
100 ns. T = 25 K, α = 1.

The behavior of 〈q2〉 (q2 = q2
x + q2

y ) vs �t is displayed in
Fig. 10(a).

The range of accessible temperatures is governed by the
thermal stability of the tiny skyrmion within a Co ML: with
a lifetime of 
1 μs at 77 K [25–28], temperatures have been
confined to a � 50 K range. When compared to the wall case
[Fig. 4(a)], the linear dependence of 〈q2〉 with respect to �t

appears less satisfactory, although, over all cases examined, the
curves do not display a single curvature, but rather meander

FIG. 9. Skyrmion: Event statistics with time interval �t as a
parameter for the displacement components qx (black full symbols)
and qy (red open symbols), labeled qx,y in the figures. In each panel,
the curves have been offset vertically for legibility. Solid lines: fit to
a Gaussian distribution. α = 0.25, T = 25 K.
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FIG. 10. (a) Variance (a.u.2) of the skyrmion displacement 〈q2〉
vs time interval �t with temperature T as a parameter. Thick and
dashed lines represent a linear fit to data with different time coverage,
namely [0.25–2.5 ns] and [0–5 ns]. (b) Diffusion constant D as a
function of temperature for a [0.25–2.5 ns] (open symbols) and [0–5
ns] (full symbols) linear fit. Solid blue line: Linear fit through the
origin. Dashed line: Analytical expectation in the low noise limit. In
order to ensure legibility, the error bars as defined in the caption of
Fig. 4 and pertaining to the [0.25–2.5 ns] fit time bracket have been
moved up by one unit. α = 0.5.

gently around a straight line. The slope is defined as the slope
of the linear regression either for time intervals between 0.25
and 2.5 ns [thick line segments in Fig. 10(a)] or for the full
range 0 to 5 ns (dashed lines). Then, the ratio of the diffusion
constant to temperature D/T for an isolated skyrmion within
the model Co ML considered here is equal to 0.250 and
0.249 nm2 ns−1 K−1, respectively, for α = 0.5 [see Fig. 10(b)].
The difference proves marginal. Lastly, error bars appear even
narrower than in the wall case.

B. Skyrmion diffusion constant (analytical)

The gyrovector �G in Thiele’s equation [Eq. (3)] has in the
case of a skyrmion or a vortex, and in many other instances
such as lines within walls, a single nonzero component, here
Gz. Thiele’s equation, in components form, reads

−Gzvy + α[Dxxvx + Dxyvy] = Fx,

+Gzvx + α[Dyxvx + Dyyvy] = Fy. (15)

Because of the revolution symmetry of a skyrmion at rest, Dxy

or Dyx may safely be neglected and Dyy = Dxx . Accordingly,
the velocities may be expressed as

vx = αDFx + GFy

G2 + (αD)2
, vy = αDFy − GFx

G2 + (αD)2
, (16)

where G = Gz, D = Dxx = Dyy .
Similarly to the stochastic field, the force components are

necessarily uncorrelated. The velocity autocorrelation func-
tions may now be obtained following the same lines as in the
wall case, yielding, in the low noise approximation:

〈vx(t)vx(t ′)〉 = 〈vy(t)vy(t ′)〉 = 2kBT
αD

G2 + (αD)2
δ(t − t ′).

(17)

The average values of the displacements squared, 〈q2
x 〉 and

〈q2
y 〉, follow from time integration:

〈
q2

x (t)
〉 = 〈

q2
y (t)

〉 = 2kBT
αD

G2 + (αD)2
t. (18)

As shown previously [12,13], the diffusion constant for a
skyrmion thus reads

D = kBT
αD

G2 + (αD)2
. (19)

The following relations do apply:

〈
q2

x (t)
〉 = 〈

q2
y (t)

〉 = 2Dt,

〈q2(t)〉 = 〈
q2

x (t) + q2
y (t)

〉 = 4Dt. (20)

Relation (19) implies a peculiar damping constant depen-
dence with, assuming for the time being D and G to have com-
parable values, a gradual drop to zero of the diffusion constant
with decreasing α (α � 1), termed “diffusion suppression by
G” by Schütte et al. [12]. Diffusion suppression is actually not
a complete surprise since, for electrons in a magnetic field, a
similar effect is leading to the classical magnetoresistance. A
similar dependence D(α) is also expected for a vortex. Bound-
ary conditions, however, add complexity to vortex diffusion.
What nevertheless remains is a linear dependence of D vs α

[14], namely, diffusion suppression.
The classical expressions for Gz and Dxx valid for a

magnetization continuum need to be adapted when dealing
with discrete spins. We obtain

Gz = μ0μAt

γ0

∑
k

[�s(k) · [∂x�s(k) × ∂y�s(k)]],

Dxx = μ0μAt

γ0

∑
k

[[∂x�s(k)]2],
(21)

where μAt is the moment per atom.
The dimensionless product γ0SAt

μ0μAt
Gz [Eq. (21)], where SAt

is the surface per atom, amounts to 4π , irrespective of the
skyrmion size in a perfect material at T = 0. Stated otherwise,
the skyrmion number is 1 [29]. In the Belavin-Polyakov profile
limit [30], the dimensionless product γ0SAt

μ0μAt
Dxx [Eq. (21)] also

amounts to 4π . In this limit, D is proportional to α/(1 + α2).
Dxx increases with skyrmion radius beyond the Belavin-
Polyakov profile limit (see the Supplemental Material in
Ref. [7]). For a skyrmion at rest in the model Co ML considered
here, D = Dxx ≈ 14.5μ0μAt/(γ0SAt). For that value of Dxx ,
and for the parameters used in the simulations D/T , the ratio
of the theoretical skyrmion diffusion constant to temperature is
equal to 0.234 nm2 ns−1 K−1 for α = 0.5 (SAt = a2

√
3/2), to

be compared to the 0.250 value extracted from simulations.
More generally, Fig. 11 compares numerical D/T values
calculated for a broad spectrum of α values with theoretical
expectations for D = 14.5μ0μAt/(γ0SAt) and in the Belavin-
Poliakov limit. The average difference between analytical and
simulation results is, in the α = (0,1) interval, seen to be of
the order of 
15%.

214426-6



BROWNIAN MOTION OF MAGNETIC DOMAIN WALLS AND … PHYSICAL REVIEW B 97, 214426 (2018)

FIG. 11. Computed values of D/T vs α (large open symbols);
black line: guide to the eye; blue (red) solid curves: analytical values
with [γ0SAt/μ0μAt]D = 4π (14.5). The blue curve thus corresponds
to the Belavin-Polyakov profile limit. The relative difference between
simulation and theory is indicated by small full symbols (%: right
scale).

IV. DISCUSSION

In the present study of thermal diffusion characteristics,
satisfactory agreement between simulations and theory has
been attained for DMI stiffened magnetic textures, be it walls
in narrow tracks or skyrmions. The α dependence of the
diffusion constants has been thoroughly investigated, with, as
a result, a confirmation of Brownian motion suppression in the
presence of a nonzero gyrovector or, equivalently, a topological
signature. The theory starts with the Thiele relation applying
to a texture moving under rigid translation at constant velocity.
Furthermore, the chosen values of the components of the
dissipation dyadic, are those valid for textures at rest, at T = 0.
The α dependence of the diffusion constants clearly survives
these approximations. And, yet, a wall within a narrow stripe
or a skyrmion in an ultrathin magnetic layer are deformable
textures, as obvious from Figs. 1 and 7. Simulations, on
the other hand, rely on the pioneering analysis of Brownian
motion, here meaning magnetization/spin orientation fluctua-
tions [17], within a particle small enough to prove uniformly
magnetized and then extend the analysis to ultrasmall compu-
tation cell volumes down to the single spin. Both approaches
rely on the hypothesis of a white, uncorrelated noise at
finite temperature.

The discussion of results is organized in two parts. In the
first, results are analyzed in terms of a sole action of structure
plasticity on the diagonal elements of the dissipation dyadic.
In the second, we envisage, without further justification, how
the present results are amended if, in the diffusion constants
of walls and skyrmions [Eqs. (8) and (19)], the gyrotropic and
dissipation terms are replaced by their time average as deduced
from simulations.

FIG. 12. (a) Power spectrum S of the time series rEq(t) for three
temperatures. The hatched area corresponds to the frequency range
where a signature of the fundamental skyrmion breathing mode is
anticipated to be observed (≈39.3 GHz, in the present case). (b)
Equivalent skyrmion radius 〈rEq〉 as a function of temperature. Error
bars correspond to ±1σ of the Gaussian distribution, itself a function
of temperature. α = 0.5, throughout.

A. Size effects

The integral definition of wall position adopted in this work
[Eq. (2)] allows for a 1D treatment of wall diffusion, thus
ignoring any diffusion characteristics potentially associated
with wall swelling, tilting, curving, or meandering. Additional
information is, however, available in the case of skyrmions.
We concentrate here on the number n of spins within the
skyrmion satisfying the condition sz � 0.5, and its fluctuations
as a function of time. The surface of the skyrmion is nSAt

and its equivalent radius rEq is defined by r2
Eq = nSAt/π . The

skyrmion radius rEq is found to fluctuate with time around
its average value, according to a Gaussian distribution that
depends on temperature, but becomes independent of the auto-
correlation time interval beyond ≈25 ps. The power spectrum
of the time series rEq(t), shown in Fig. 12(a), excludes the
existence of a significant power surge around the fundamental
breathing mode frequency of the skyrmion (≈39.3 GHz for the
present model Co ML) [31]. The skyrmion radius as defined
from the discrete n distribution is thus subject to white noise.
The average radius 〈rEq〉, on the other hand, varies significantly
with temperature, increasing from ≈1.6 to 2.4 nm when the
temperature is increased from 4.2 to 50 K [Fig. 12(b)] and
the diagonal element of the dissipation dyadic is expected to
increase with increasing skyrmion radius [3,7].

Owing to relations (19) and (21), the maximum of D(α) is
found for α = Gz/Dxx = G/D. For α < G/D (α > G/D) D
increases (decreases) with D, hence the relative positions of the
blue and black continuous curves in Fig. 11. At maximum,D is
independent of D and amounts to kBT

γ0SAt

μ0μAt

1
2G

= kBT
γ0SAt

μ0μAt

1
8π

.
It ensues that the discrepancy between numerical and analytical
D values around α = 1 may not be relaxed by a sole variation of
D. On the other hand, allowing D to increase with skyrmion
radius, itself a function of temperature, leads to an increase
(decrease) of the diffusion coefficient for α < G/D (α >

G/D).
Likely more important is the reduction, as a function of

skyrmion size, of the α window where diffusion suppression
is expected. If including the (R/� + �/R) dependence of Dxx

(see the Supplemental Material in Ref. [7]; � is the wall width
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(a) (b)

FIG. 13. Diffusion suppression: (a) general shape of function
f (α,R/�) with 0 < α < 1, 1 < R/� < 50. (b) Crest line separat-
ing the region of diffusion suppression (∂D/∂α > 0) from region
∂D/∂α < 0.

and R is the skyrmion radius), the skyrmion diffusion constant
may be expressed as

D = kBT
γ0SAt

μ0μAt

1

8π
f

(
α,

R

�

)
,

η = R

�
, ξ = 1

2

(
1 + η2

η

)
, f (α,η) = 2αξ

1 + (αξ )2
. (22)

The general shape of function f (α,R/�) is shown in
Fig. 13(a). The maximum of f (α,R/�) is equal to 1 for
all values of α and R/�. The crest line Rα = � is seen to
divide the parameter space into two regions [see Fig. 13(b)],
a region close to the axes where ∂D/∂α > 0, i.e., the re-
gion of diffusion suppression, from the much wider region
where ∂D/∂α < 0, that is, the region of wall-like behavior
for skyrmion diffusion. Clearly the α window for diffusion
suppression decreases dramatically with increasing skyrmion
size R/�. A first observation of skyrmion Brownian motion at
a video recording timescale (25 ms) may be found in the Sup-
plemental Material of Ref. [32]. Skyrmions are here unusually
large and most likely escape the diffusion suppression win-
dow (α < 0.02 for R/� = 50). Combining skyrmion thermal
stability with general observability and damping parameter
tailoring may, as a matter of fact, well prove extremely
challenging for the observation of topology related diffusion
suppression.

B. Time averaging

One certainly expects from the simulation model a fair
prediction of the average magnetization 〈Mz〉 or 〈Sz〉 vs
temperature T , at least for temperatures substantially lower
than the Curie temperature TC . Figure 14 shows the variation of
〈Mz〉/Mz(T = 0) or 〈Sz〉/Sz(T = 0) with temperature for the
two model magnetic layers of this work. Although simulation
results do not compare unfavorably with published experi-
mental data [33–35], where, typically, the Curie temperature
amounts to ≈150 K for 1 ML, and proves larger than 300 K for
thicknesses above 2 ML, a more detailed analysis, potentially

FIG. 14. Average reduced z magnetization or spin component as
a function of temperature (left scale) and time averaged value of
the sole vector function 〈DVF〉 within the diagonal element of the
dissipation tensor in the skyrmion case (right scale). These results
prove independent of the damping parameter provided the time step
in the integration of the LLG equation be suitably chosen.

including disorder, ought to be performed.

〈Gz〉 = μ0μAt〈sz〉
γ0

〈∑
k

[�s(k) · [∂x�s(k) × ∂y�s(k)]]

〉

= μ0μAt〈sz〉
γ0SAt

〈
GVF

z

〉
,

〈Dxx〉 = μ0μAt〈sz〉
γ0

〈∑
k

[∂x�s(k)]2

〉
= μ0μAt〈sz〉

γ0SAt

〈
DVF

xx

〉
. (23)

Let us now, without further justification, substitute in the
expression of the skyrmion diffusion coefficient time averaged
values of G and D, owing to relations (23). Keeping in mind
the geometrical meaning of GVF

z , the dimensionless vector
function in G, 〈Gz〉 is anticipated to be a sole function of 〈sz〉.
Inversely, DVF

xx , the (dimensionless) vector function in 〈Dxx〉,
a definite positive quantity, steadily increases with thermal
disorder. It is even found to be proportional to temperature
(not shown). Its time averaged value for the sole skyrmion
may only be obtained by subtraction of values computed in the
presence and absence of the skyrmion.

For the skyrmion in our model Co monolayer, 〈DVF
xx 〉 is

found to increase moderately with temperature (see Fig. 14), a
result also anticipated from an increase with temperature of the
skyrmion radius. Besides, both 〈Gz〉 and 〈Dxx〉 are expected to
decrease with temperature due to their proportionality to 〈sz〉.
〈Dxx〉 is thus subject to two competing effects of temperature
T . Present evidence, however, points at a dominating influence
of 〈sz(T )〉.

V. SUMMARY AND OUTLOOK

Summarizing, it has been shown that the Brownian motion
of chiral walls and skyrmions in DMI materials obeys diffusion
equations with markedly different damping parameter (α)
dependence. Although not a new result, skyrmions Brownian
motion suppression with decreasing α (α < G/D) is
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substantiated by a wide exploration of the damping parameter
space. The observation of this astonishing topological property
might, however, be hampered by the restriction to ultrasmall
skyrmion sizes or ultralow α values. The discrepancy (up to
20%) between simulation results and theoretical expectations
could be reduced by the introduction of time averaged
values for the gyrotropic and dissipation contributions to the
analytical diffusion coefficients in the low noise limit, at the
expense of a tiny upwards curvature in the D(T ) curves. A
strong theoretical justification for doing so remains, however,
lacking at this stage.

In this work, the sample has been assumed to be perfect,
i.e., devoid of spatial variations of the magnetic properties,
even though the lifting of such a restriction is anticipated
to prove mandatory for a proper description of experiments.
Diffusion in the presence of disorder has been theoretically
studied for a number of disorder and random walk types

[36,37]. Generally, disorder changes the linear growth with
time of the position variance into a power law, a behavior
called superdiffusion if the exponent is larger than 1 and
subdiffusion if smaller. For instance, if the skyrmion motion in
a disordered system may be mapped onto a 2D random walk
with an on-site residence time τ , probability ∝τ−(1+μ) (μ < 1),
then the diffusion exponent will be μ, meaning subdiffusion.
Besides, choosing a physically realistic disorder model for a Co
monolayer might well prove equally arduous [38]. Altogether,
skyrmion diffusion in the presence of disorder has been left
out for future work.
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