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VARIOUS INSTANCES OF HARISH-CHANDRA PAIRS

ALEXEI KOTOV AND VLADIMIR SALNIKOV

Abstract. In this paper we address several algebraic constructions in the context of
groupoids, algebroids and Z-graded manifolds. We generalize the results of integration
of N-graded Lie algebras to the honest Z-graded case and provide some examples of ap-
plication of the technique based on Harish–Chandra pairs. We extend the construction
to the algebroids setting, the main example being the action Lie algebroid.

Introduction

Graded / super manifolds, or in some communities colored manifolds, have been exten-
sively studied for several decades. They provide on the one hand a universal description
for a lot of classical (differential) geometric structures, and on the other a convenient
language for applications to gauge theories. A (non-exhaustive) list of related works can
be found in references in [7], where we have first addressed the purely mathematical
aspects of graded manifolds in the context of integration of differential graded Lie alge-
bras to differential graded Lie groups. In the categorical setting, i.e. both from objects
and morphisms perspective, we have proved the equivalence of categories of differential
graded Lie groups and Lie algebras passing by the intermediate step of differential graded
Harish–Chandra pairs.
While the result for N-graded Lie groups and algebras was expected and essentially similar
to the strategy in the super (Z2-graded) case, the technicalities were much more subtle.
In particular the functional spaces were essentially infinite dimensional, coming not only
from smooth functions on the base of a graded manifold but also from formal power series
on the graded spaces. We have noticed however that most of the construction should
be extendable to the honest Z-graded case, i.e. having generators of both positive and
negative degrees. A tricky point was to make use of the Z-graded version of the Poincaré–
Birkhoff–Witt theorem. Back then we did not have the “tools” for an elegant description
of this situation and decided to address it in a separate paper. Those tools were indeed
found in [11], where we have explained how the functional space on the Z-graded manifolds
can be constructed by enlarging the space generated by polynomials on non-zero degree
generators. And more importantly we introduced a way of intrinsically describing the
properties of this functional space using (double) filtrations.
The approach permitted to prove in that same paper a Z-graded analog of the Batchelor’s
theorem. It turned out to be also fruitful to study the normal form of differential graded
manifolds (Z-graded Q-manifolds) in [12]. In this paper we will use similar techniques to
explain the properties of group-like objects in the category of Z-graded manifolds. We
will in particular address the question of Z-graded Poincaré–Birkhoff–Witt theorem for
various situations, thus revisiting and generalizing the result of [7].
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2 ALEXEI KOTOV AND VLADIMIR SALNIKOV

The paper is organized as follows: in section 1 we revisit the Poincaré–Birkoff–Witt
theorem and related results, and in particular point-out the key differences of the Z-
graded case. The constructions are afterwards applied for the Z-graded Harish–Chandra
pairs (section 2): we consider the even- and the super- subalgebra cases, and end up
with the general Z-graded super case. In the short sections 2.3 and 2.4 we give a natural
definition of semi-formal and global graded Lie groups, and compare them with the one
we gave in the categorical setting in [7]. The section 3 is devoted to universal enveloping
algebroids; we start with a recollection of facts about Hopf algebroids, mostly known
in the literature, and use them for enveloping algebras, the main examples being action
groupoids / algebroids and the tangent Lie algebroid. For self-consistency of the paper we
have recalled the local structure of Z-graded manifolds, and introduced some notations
in the appendix A. We have also recapitulated some of the constructions from [11] there,
namely the filtrations (convenient to study functional spaces on graded manifolds) and
the Z-graded analog of Batchelor’s theorem (for local / global structure of them).

1. PBW for Z-graded algebras

Definition 1. A Z−graded Lie algebra is a Z−graded vector space over k

g =
⊕
i∈Z

gi

together with a super skew-symmetric bilinear operation of degree 0

[−,−] : g⊗ g→ g [x, y] = (−1)p(x)p(y)+1[y, x], x, y ∈ g, ,

which satisfies the super Jacobi identity[
x, [y, z]

]
=
[
[x, y], z

]
+ (−1)p(x)p(y)

[
y, [x, z]

]
Example 1.

• g = sl2(k) with the standard basis (e, f, h), such that [h, e] = e, h, f = −f , [e, f ] =
2h. Define g0 = kh, g1 = ke, g−1 = kf . We obtain a Z−graded Lie algebra with all
elements of even parity.
• Given a Lie super algebra g, define a Z−graded Lie algebra T [1]g = g[1]⊕g, where, as

usual, g[k] is concentrated in degree −k, so we have (T [1]g)0 = g and (T [1]g)−1 = g[1].
The bracket of elements of g is being as it was, while g is acting on g[1] by the left
adjoint representation. The bracket on g[1] obviously vanish.
• For any Z−graded Lie algebra g of pure even parity define ΠTg = Πg ⊕ g. First,

we canonically extend the grading to the tangent bundle with the reversed parity of
fibers; it becomes a Z−graded vector superspace. Second, endow the obtained graded
space with the structure of a Lie superalgebra using procedure similar to the one in
the previous example. We get a Z−graded Lie superalgebra.

Remark 1. Notice that in all three cases, which we described in Example 1, super parity
and Z−grading are compatible in a nontrivial way, i.e. the former is not the reduction
modulo 2 of the latter.

Example 2. Let V be a Z−graded vector superspace. Consider the Lie superalgebra
g = gl(V ). The grading endomorphism of V provides g with the structure of a graded Lie
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algebra. The super parity on g is the reduction of Z−grading modulo 2 if and only if the
same property is holding for V .

Definition 2. The universal enveloping algebra of g is the unital associative algebra U(g),
defined as the quotient algebra T (g)/I, where T (g) is the tensor algebra of the k−module
g and I is the two-sided ideal generated by all elements of the form

x⊗ y − (−1)p(x)p(y)y ⊗ x− [x, y], for x, y ∈ g.

There is a canonical map ι : g→ U(g). Later on we will see that it is an inclusion, which
will allow us to identify g with its image in U(g) under the above map.

In addition to the (generally non-commutative) multiplication, U(g) is also endowed with:

– an even compatible degree 0 coassociative super cocommutative comultiplication
∆: U(g)⊗ U(g)→ U(g), such that

∆(ab) = ∆(a)∆(b)

for all a, b ∈ U(g) and a counit U(g)→ k, which descend from the ones on T (g). In
particular, an element a is primitive, i.e. it satisfies ∆(a) = a⊗ 1 + 1⊗ a if and only
if it belongs to ι(g).

– an antipode S : U(g)→ U(g), defined such that

S (x1 · · ·xm) = (−1)mxm · · ·x1 , ∀x1, . . . , xm ∈ g .(1.1)

This data (multiplication, comultiplication, unit, counit, and antipode) make U(g) into a
graded Hopf algebra.

It is worth noticing that, given two linear representations (R1, ρ1) and (R2, ρ2) of U(g)
as associative algebras, the tensor product R1 ⊗k R2 admits a canonical structure of a
U(g)−module by the formula

U(g)
∆−→ U(g)⊗ U(g)

ρ1⊗ρ2−−−→ End(R1)⊗ End(R2)

The coassociativity of ∆ implies that the U(g)−module structure on the triple tensor
product does not depend on the order of extension. Note that while the representation of
the Lie algebra on the tensor product of two modules is obtained using the Leibniz rule,
in the case of a universal enveloping algebra, comultiplication plays the same role. This
connection becomes especially noticeable if we take into account the fact that the image
of the Lie algebra in its universal enveloping algebra is described by primitive elements
for which the identity ∆(a) = a⊗ 1 + 1⊗ a holds.

Example 3 (equivariance of comultiplication). Let g be a graded Lie algebra, consider
U(g) as a left U(g)−module. Then the (super cocommutative) comultiplication
∆: U(g)→ U(g)⊗U(g) is a morphism of U(g)−modules. It follows from the compatibility
between multiplication and comultiplication. Indeed, for any a, b ∈ U(g), one has
∆(ab) = ∆(a)∆(b).

Example 4 (equivariance of multiplication). Let G be a smooth Lie supergroup (i.e. for
a regression deg(·) ≡ p(·) ∈ Z2), the Lie superalgebra of which is g. By identifying g
with left-invariant super vector fields on G, we endow the algebra of smooth functions1

1F(X) throughout the paper will denote the algebra of functions on X of appropriate class, depending
on the context, for example smooth when X is a smooth manifold, or power series when X is formal.
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F(G) in a natural way with the structure of a g-module, and hence also a U(g)-module.
Then the (supercommutative) multiplication F(G)⊗F(G)→ F(G) is a U(g)−equivariant
map. It is easy to see that the last statement is an associative version of the Leibniz rule
for differentiation of the product of two functions along left-invariant super vector fields
representing g.

Assume that each gk admits a well-ordered basis {xαj}αj∈Ik , parameterized by a totally
ordered set Ik, consisting of elements of homogeneous parity and degree simultaneously.
Then the whole space g can be supplied with a well-ordered basis, such that any element
of I0 is strictly less than any element of Ik for k 6= 0. Define zαj = ιxαj .

Let A be either ∅ or a sequence {α1, α2, . . . , αm}, where αj ∈ Ik for some k; we say that
the length of A is 0 or m > 0, respectively. Let us call A admissible if m = 0 or A is
increasing, i.e. a1 ≤ a2 ≤ . . . ≤ αm, and the multiplicity of each index αj is at most
one whenever the corresponding xαj is odd. Notice that for odd elements on always has

x2 = 0 and then it is sometimes convenient to replace (ιx)2 by 1
2
ι[x, x].

Define an admissible S-monomial to be x∅ = 1 or xA = xα1�xα2� . . . �xαm ∈ Sym(g) for
an admissible A of positive length m. Likewise, an admissible U-monomial is said to be
z∅ = 1 or zA = zα1zα2 . . . zαm ∈ U(g) for an admissible A with m > 0.

Theorem 1 (Poincaré–Birkhoff–Witt). ([2], p.286)

(1) The admissible U-monomials are a basis of U(g).
(2) In particular, the linear map ι is an inclusion and extends to an isomorphism of

graded vector spaces Sym(g)
∼→ U(g).

The proof of the PBW theorem is rather standard, an un-graded version of it can be
found for example in [17]. The N− or Z− graded cases are not conceptually different
from each other, and basically mimic the super (Z2−graded) case (see e.g. a recollection
in [2]). There is however the statement about isomorphism of coalgebras in the context;
while it seems to be known to the community, we have not found an accessible proof in
the literature. And since precisely in the Z-graded case subtleties may occur, we will give
some details of it below, namely deduce it from a more general proposition.

Proposition 1. Let g be a graded Lie algebra admitting a countable homogeneous basis,
h be a graded Lie subalgebra of g, and m be a graded vector space complement to h, i.e.
g = h⊕m as graded vector spaces. Then

(1) U(h)⊗ Sym(m) and U(g) are canonically isomorphic as k−coalgebras.
(2) This isomorphism respects the natural left U(h)−module structures on the correspond-

ing spaces.

Proof. Define ϕ(a⊗ y1� . . . �yp) = aψ(y1� . . . �ym) for a ∈ U(h), y1, . . . , yp ∈ m, where

ψ(y1� . . . �ym) =
1

p!

∑
σ∈Sn

ε(σ)ιyσ(1) . . . ιyσ(p)(1.2)

for y1, . . . , yp ∈ g. First, we check that ϕ is an isomorphism of vector spaces. Since,
by the condition of the proposition, g, as a vector space, admits a countable basis, both
subspaces h and m have the same property. We choose a basis in each of them and
combine them; this will give a basis in the whole space g. Let us order the obtained basis
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of g in ascending order so that the vectors from the basis of h are strictly less than the
vectors from the basis of m (i.e. the whole h comes before the whole m). Denote the basis
constructed by us as {xαj}αj∈I . Let zαj = ιxαj as above.

We take into account that for every admissible A = {α1, . . . , αm} and σ ∈ Sm one has

zασ(1) . . . zασ(m)
= ε(σ)zA + linear combination of zA′ of length < m

By Theorem 1 the set of admissible monomials {zA} is a basis of U(g), hence so is
{ψ(xα1� . . . �xαp)} for all admissible {α1, . . . , αp}, such that the corresponding change
of basis is lower unitriangular (with respect to the grading by the monomial length). This
immediately proves that ψ is a k−linear isomorphism.

Now we shall verify that ψ respects the comultiplication. It is easy to see that for every
y1, . . . , ym ∈ g the following formulas hold true

∆
(
y1� . . . �ym

)
=

m∑
p=0

∑
σ∈Sh(p,m−p)

ε(σ)yσ(1)� . . . �yσ(p) ⊗ yσ(p+1)� . . . �yσ(m)(1.3)

∆
(
ιy1 . . . ιym

)
=

m∑
p=0

∑
σ∈Sh(p,m−p)

ε(σ)ιyσ(1) . . . ιyσ(p) ⊗ ιyσ(p+1) . . . ιyσ(m) ,(1.4)

where Sh(p,m− p) = {σ ∈ Sm |σ(1) < . . . < σ(p) , σ(p+ 1) < . . . < σ(m)}. Therefore(
ψ ⊗ ψ

)
∆
(
y1� . . . �ym

)
=

m∑
p=0

1

p!

1

(m− p)!
∑

τ∈Sp×Sm−p
σ∈Sh(p,m−p)

ε(σ)ε(τ)ιyστ(1) . . . ιyστ(p) ⊗

⊗ιyστ(p+1) . . . ιyστ(m) =
m∑
p=0

1

p!

1

(m− p)!
∑
σ∈Sm

ε(σ)ιyσ(1) . . . ιyσ(p) ⊗ ιyσ(p+1) . . . ιyσ(m)

On the other hand

∆ψ
(
y1� . . . �ym

)
= ∆

(
Sym(y1, . . . , ym)

)
=

=
1

m!

m∑
p=0

∑
τ∈Sm

σ∈Sh(p,m−p)

ε(σ)ε(τ)ιyτσ(1) . . . ιyτσ(p) ⊗ ιyτσ(p+1) . . . ιyτσ(m) =

1

m!

m∑
p=0

∣∣Sh(p,m− p)
∣∣ ∑
σ∈Sm

ε(σ)ιyσ(1) . . . ιyσ(p) ⊗ ιyσ(p+1) . . . ιyσ(m)

From
∣∣Sh(p,m− p)

∣∣ = m!
p!(m−p)! we immediately derive the identity(
ψ ⊗ ψ

)
∆
(
y1� . . . �ym

)
= ∆ψ

(
y1� . . . �ym

)
which holds true for all y1, . . . , ym ∈ g. Thus we conclude that

(
ψ ⊗ ψ

)
∆ = ∆ψ and, as

a corollary, prove the first statement of the proposition.

The second statement of Proposition 1 follows from the compatibility of the product and
coproduct. �
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2. Harish–Chandra pairs for Z-graded algebras

In this section, we will discuss Harish-Chandra pairs for different situations. Some of the
material, including the principle construction of Harish-Chandra pairs, is known in the
literature ([9, 19]). However, the honest Z-graded case, while being very natural, has not
been extensively studied, and we are also not aware of papers where pairs were considered
where the corresponding Lie subalgebra is a superalgebra, which is exactly in the spirit of
decoupling the degree and the parity we have mentioned before. We will show that one
can work with such pairs of this more general type in the same way as with pairs where
all elements of the subalgebra have even parity.

Subsection 2.1 is a kind of entrée to get a taste of the theory. It can be said that we are
dealing with Harish-Chandra pairs with zero subalgebra.

The formalism of Harish-Chandra pairs, being applied to Lie supergroups ([9, 19]), allows
to explicitly construct the corresponding Hopf algebra of functions in terms of the Lie
superalgebra g = g0 ⊕ g1 and the Lie group which integrates the even2 part g0. In
subsection 2.2, we briefly explain this mechanism using a somewhat more general example
of a Lie superalgebra, where the corresponding subalgebra is even. Then by a simple
remark we generalize this approach to the case of Lie super subalgebras and apply it to
the case of Z−graded algebras in subsection 2.3.

2.1. Formal groups via Hopf algebras. It is known that the universal enveloping
algebra of the Lie algebra g, completed by the polynomial filtration, contains a formal
group integrating g; in particular, the product of two elements of the form expx for x ∈ g
can be calculated using Baker–Campbell–Hausdorff (BCH) formula. To be more detailed,
the BCH formula (in the Dynkin’s form, [1]) asserts that

exp ~u exp~v = expZ(~u,~v)(2.5)

where ~u =
∑
j∈I

uαjxαj , ~v =
∑
j∈I

(v)αjxαj and

Z(~u,~v) =
∞∑
n=1

(−1)n−1

n

∑
r1+s1>0

...
rn+sn>0

[~u r1~v s1~u r2~v s2 · · · ~u rn~v sn ](
n∑
j=1

(rj + sj)

)
·
n∏
i=1

ri!si!

,(2.6)

[~u r1~v s1~u r2~v s2 · · · ~u rn~v sn ] = [~u, [~u, · · · [~u︸ ︷︷ ︸
r1

, [~v, [~v, · · · [~v︸ ︷︷ ︸
s1

, · · · [~u, [~u, · · · [~u︸ ︷︷ ︸
rn

, [~v, [~v, · · ·~v︸ ︷︷ ︸
sn

]] · · · ]]

Decompose vector Z(~u,~v) into the basis {xαj}αj∈I of g

Z(~u,~v) =
∑
j∈I

Zαj(~u,~v)xαj .

Considering (uαj) as coordinates on the formal group and identifying formal power series
in variables (uαj , vαj) with the completed tensor product k[[uαj ]]⊗̂k[[vαj ]], we obtain the

2Here we use the underlined subscripts to label the components of the Lie superalgebra, to distinguish
it from a Z-graded Lie algebra generated only by elements of degree 0 and 1.
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comultiplication in the algebra of formal power series in variables uαj by the formula

∆(uαj) = Zαj(~u,~v) .(2.7)

On the other hand, since U(g) is a Hopf algebra, the dual space to it is again a Hopf
algebra.3 Identifying U(g) with Sym(g) as graded coalgebras by formula (1.2) in Propo-
sition 1, we automatically identify the dual space U(g)∗ = Homk

(
U(g),k

)
with graded

formal power series of variables uαj . It is not surprising that the comultiplication on U(g)∗

coincides with the one on the formal group, given by formula (2.7). The last statement be-
comes almost tautological if we introduce a dual admissible basis in the dual space U(g)∗

according to the following rule: we decompose the expression exp ~u into homogeneous
components

exp ~u =
∑

β1,...,βm

1

m!
ψ (xβ1� · · · �xβm)uβm · · ·uβ1 =

=
∑

B={β1,...,βm}−
admissible

1

|B|!
ψ (xβ1� · · · �xβm)uβm · · ·uβ1 ,

where |B|! = d1! · · · dr! for B = {α1, . . . , α1︸ ︷︷ ︸
d1

, . . . , αr, . . . , αr︸ ︷︷ ︸
dr

}, and call the monomials

1
|B|!u

βm · · ·uβ1 admissible whenever so is the sequence B. Then it is obvious that any

element from the U(g)∗ expands into a formal infinite linear combination of those mono-
mials, and the resulting correspondence between admissible bases in U(g) and U(g)∗ is
canonical.

Remark 2. Assume we are able to integrate a Lie (super)algebra g into a smooth Lie
(super)group G. Then the formal group, constructed out of g in subsection 2.1 in terms
of the corresponding Hopf algebra of formal power series, can be viewed as the formal
neighborhood of the identity in G.

2.2. Harish-Chandra pairs as a “semi-formal” integration. Let us consider a more
general situation. Assume there is a pair (g, h) of a Lie algebra g and a Lie subalgebra
h ⊂ g. Let us also assume that we have succeeded in integrating a subalgebra h into a
Lie group H simultaneously with the adjoint action of h on g; we call (H, g) a Harish-
Chandra pair. Given such a pair, one constructs a Hopf algebra A, which represents
a “semi-formal” (in the sense of [11]) group integrating g (see also Proposition 2). By
definition,

A = HomU(h) (U(g),F(H)) ,(2.8)

where the action of U(h) on functions onH is generated by left-invariant super vector fields
on H. The multiplication of two k−linear morphisms Φ1 and Φ2 in Homk (U(g),F(H))
is determined as the following composition of maps

U(g)
∆−→ U(g)⊗ U(g)

Φ1⊗Φ2−−−−→ F(H)⊗F(H)
µ−→ F(H) ,(2.9)

3As above, while defining a bialgebra, we allow completion of the tensor product. In what follows, by
⊗̂ we will denote the completed tensor product, but also sometimes omit the hat sign, when it does not
lead to confusion.
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where µ is the multiplication of smooth functions on H. Since both maps ∆ and µ
are U(g)−invariant (see Examples 3 and 4), the resulting map descends to the space of
U(h)−invariants.

The comultiplication in A, being regarded as a U(h)⊗U(h)−equivariant map from A to
bi-linear functionals on U(g) with values in F(H × H), is given for any φ ∈ A by the
following formula:

∆ (φ) (h1, a1, h2, a2) = φ(h1h2, Ad
−1
h2

(a1)a2) ,(2.10)

where h1, h2 ∈ H, a1, a2 ∈ U(g). The equivariance property (2.8) for φ can be reformulated
as

φ(h, za) =

(
∂

∂λ

)
λ=0

φ(h expλz, a)

for any h ∈ H, z ∈ h, a ∈ U(g). We have to check that ∆(φ) obeys the same property
with respect to both pairs of arguments (h1, a1) and (h2, a2). Indeed, for any z ∈ h one
has

∆ (Φ) (h1, za1, h2, a2) = φ(h1h2, Ad
−1
h2

(za1)a2) = φ(h1h2, Ad
−1
h2

(z)Ad−1
h2

(a1)a2) =(
∂

∂λ

)
λ=0

φ(h1h2expAd
−1
h2

(λz), Ad−1
h2

(a1)a2) =

(
∂

∂λ

)
λ=0

φ(h1(expλz)h2, Ad
−1
h2

(a1)a2) =(
∂

∂λ

)
λ=0

∆ (φ) (h1expλz, a1, h2, a2)

Similarly,

∆ (φ) (h1, a1, h2, za2) = φ(h1h2, Ad
−1
h2

(a1)za2) = φ(h1h2, zAd
−1
h2

(a1)a2) +

φ(h1h2, [Ad
−1
h2
, z](a1)a2) =

(
∂

∂λ

)
λ=0

(
φ(h1h2, Ad

−1
h2 expλz(a1)a2)

)
+

(
φ(h1h2 expλz,Ad−1

h2
(a1)a2)

)
=

(
∂

∂λ

)
λ=0

φ(h1h2 expλz,Ad−1
h2 expλz(a1)a2) =(

∂

∂λ

)
λ=0

∆ (φ) (h1, a1, h2 expλz, a2)

An antipode S acts on φ ∈ A as follows:

S(φ)(h, a) = φ
(
h−1, Adh(a)

)
, ∀h ∈ H, a ∈ U(g) .(2.11)

In the same way as it was shown above that comultiplication preserves the U(h)-equivariance
property, one proves that S obeys the same rule, i.e. it preserves A.

Remark 3. Let m be a vector space complement to h in g. By Proposition 1, there is a
canonical isomorphism of coalgebras over H(h)

Homk (U(g),F(H)) ' Homk (U(h)⊗ Sym(m),F(H)) ,(2.12)

therefore A is canonically isomorphic to Homk (Sym(m),F(H)). This will immediately
show that the obtained Hopf algebra is isomorphic as an algebra to functions on the “semi-
formal” manifold H × m, which are smooth on H and formal with respect to the linear
coordinates on m.
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Proposition 2. Let g be a finite-dimensional even Lie algebra. Let us integrate (g, h)
into a pair of a Lie group G and its Lie subgroup H. Then the “semi-formal” manifold
mentioned in Remark 3, determined by the Harish-Chandra pair (H, g) is isomorphic to
the formal neighborhood of H ⊂ G.

Proof. To prove the assertion of the Proposition, we present an explicit epimorphism of
Hopf algebras F(G) → A, where A is as in equation (2.8) for the Harish-Chandra pair

(H, g): given any φ̃ ∈ F(G), define φ ∈ A, such that

φ(h, x1 · · ·xm) =

(
∂

∂λ1

)
λ1=0

· · ·
(

∂

∂λm

)
λm=0

φ̃
(
h, heλ1x1 · · · eλmxm

)
for all h ∈ H, x1, . . . , xm ∈ g. The surjectivity of the map φ̃ 7→ φ is beyond doubt. The
verification that we have obtained a morphism of Hopf algebras follows from the definition
of the algebra A, which, frankly speaking, is arranged in such a way that the map defined
above “respects” the structure of Hopf algebras. �

Example 5 (Integration of a Lie superalgebra by use of Harish-Chandra pairs). Let
g = g0 ⊕ g1 be a finite-dimensional Lie superalgebra. Regard the decomposition of g into
even and odd parts as a reductive decomposition, i.e. let h = g0, m = g1. Then one can
make (h,m) into a Harish-Chandra pair by integrating the Lie algebra g0 together with its
linear action on g1. The obtained semi-formal manifold is isomorphic to a Lie supergroup
integrating g; given that linear coordinates on the vector space complement m = g1 to g0

are odd and thus nilpotent, the corresponding formal power series contain only a finite
number of non-zero terms, and are the same as smooth functions of m. It was proved
[9, 19] that the category of Harish-Chandra pairs of the type described here is equivalent
to the category of Lie supergroups.

The Hopf algebra, constructed out of a Harish-Chandra pair, is a left- (right-) g−module,
where the corresponding structure for any Φ ∈ A = HomU(h) (U(g),F(H)), z ∈ g, a ∈
U(g), and h ∈ H is given by the formulas(

xlΦ
)

(h, a) = Φ(h, ax)(2.13)

(xrΦ) (h, a) = Φ(h,Ad−1
h (x)a)(2.14)

Remark 4 (The super subalgebra case). Let (g, h) be a pair consisting of a Lie superalge-
bra and its subalgebra which is not necessarily even. Then it turns out that it is sufficient
to apply the Harish-Chandra technique to the even part of h thanks to the canonical iso-
morphism

HomU(h)

(
U(g),HomU(h0) (U(h),F(H0))

)
' HomU(h0) (U(g),F(H0))(2.15)

2.3. Integration of graded Lie algebras. A graded Lie algebra (Definition 1) is an
excellent example of a reductive superalgebra, where the set of elements of degree zero
is chosen as a subalgebra h, and a direct sum of subspaces consisting of homogeneous
elements of nonzero degree as a complement m:

h = g0 , m =
⊕
i 6=0

gi

We now use the isomorphism (2.12) that respects the comultiplication. Following the
approach to Z-graded manifolds from [11] (see also the Appendix A), we endow F(H)⊗
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Sym(m), viewed as a F(H)−coalgebra, with a canonical filtration by coideals as in (A.2).
Then, on the dual space HomF(H) (F(H)⊗ Sym(m),F(H)), which is isomorphic as an
algebra to A (defined in (2.8)), a canonical filtration by graded ideals arises. This defines
the structure of a semi-formal graded manifold on the “spectrum” of A, i.e. on H ×m.

2.4. Graded groups – global description. In [7] we have defined graded Lie groups
as monoid objects (in the category of graded manifolds) which are groups. The definition
works verbatim for any grading: Z2,N or Z, but now knowing the structure of Z-graded
manifolds (cf. Appendix A) we can be more explicit about the constructions and also
explain the subtleties of the integration procedure.
Let g be a finite dimensional graded super Lie algebra; as before with the degree deg(·)
compatible with the parity p(·), but p(·) is not necessarily (deg(·) mod 2). Decompose it
to parity even and odd parts:

g = g0 ⊕ g1.

Let us forget for a second about the grading and integrate g to a supergroup G, using
the approach from [9, 19] or any other appropriate technique. The result can be viewed
using the super (i.e. Z2-graded) Harish–Chandra pair: G ' (G0, g), in a straightforward
way for the [9, 19] method, and after some work for others.
Now consider the gradings on g, the Lie algebra part of this pair. It can be viewed as a
differentiation – the linear (Euler) vector field εg: as usual this differentiation has integer
eigenvalues and homogeneous functions lie in corresponding eigenspaces. And this is a
general fact: gradings are in one-to-one correspondence with such differentiations (see e.g.
[4] and references therein).

Let us ask ourselves the question, what object will be induced on the Lie supergroup by
means of the derivation of its Lie algebra, given by the linear Euler vector field?

The answer to this question is the Van Est correspondence between cocycles on a Lie
group and on its Lie algebra ([18]). The Van Est correspondence always works in one
direction, namely, each group p-cocycle corresponds to a p-cocycle on the Lie algebra
(for this, the differential of the group cocycle at the identity is used). Conversely, for
each Lie algebraic cocycle to correspond to a group cocycle, the group must be simply
connected. Given that a derivation of a Lie algebra can be viewed as a 1-cocycle on this
algebra with values in the adjoint representation, the Van Est correspondence produces a
1-cocycle on the corresponding simply connected Lie group also with values in the adjoint
representation of the Lie group on its Lie algebra; such a 1-cocycle is transformed by left
translations into a multiplicative vector field on the group (cf. [6] which is the extended
arxiv version of [7]).

Recall that a multiplicative vector field X on a graded group G is a vector field compatible
with multiplication m : G×G→ G, in a sense that (X,X) is m-related to X. In contrast
to what is described in [7] we are not integrating a homological odd vector field (nilpotent
differentiation), but an even one εg. Thus, when the even part of G is simply connected,
this gives a unique multiplicative vector field X on G.

Remark 5. We have denoted the graded group by G to stress the fact that the result of
integration came initially from the parity and consideration of associated superalgebras,
but we will drop the underlining from now on.
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It is then natural to give the following:

Definition 3 (Z-graded Lie supergroup). We call a Z-graded Lie group a Lie supergroup
G equipped with a multiplicative even vector field X, s.t. the corresponding differentiation
εg defines a Z-grading (in the above sense) on the corresponding Lie algebra g.

Remark 6. By a Z-graded Lie supergroup we mean global Z-graded Lie supergroup in
contrast to a local one described above in 2.3 or in [7] – the difference will be clear below.

Proposition 3. The structure of this multiplicative vector field X on G around its zero
locus is similar to the structure of the linear vector field εg on the Lie algebra g, i.e. X is
an Euler vector field with the same eigenvalues.

Proof. For simplicity, let us prove the assertion of the proposition for the case of an “even”
Lie group. The proof for the “super” case will not be fundamentally different, except that
one will need to use the notion of a superpoint (or work with the Hopf algebra of functions
on a supergroup in the spirit of [7]).

First, note that local integration of a multiplicative vector field X on a Lie group G gives
us a local automorphism of this group in a neighborhood of the identity, the infinitesimal
counterpart of which is the corresponding derivation εg in the Lie algebra g (see the
Van Est correspondence). This means that the exponential map, which diffeomorphically
identifies some neighborhood U0 of zero in the Lie algebra with a neighborhood Ue of
identity in the group, exp: (U0, εg)

∼→ (Ue, X), takes the linear Euler field εg on the Lie
algebra to the above mentioned multiplicative vector field X on the group. This argument
shows that there is a neighborhood of the identity in the group in which X has the
form of an Euler vector field; moreover, this neighborhood admits homogeneous (for the
multiplicative field X) coordinates obtained as a pullback of (some) linear homogeneous
coordinates on the Lie algebra, with the same weights as those linear coordinates.

Recall (cf. [6]) that the multiplicativity of X is equivalent to Xgh = gl(Xh) + hr(Xg) for
all g, h ∈ G, where gl and hr are the left- and right- translations by g and h, respectively.
Assume now that g belongs to the zero locus of X, i.e. Xg = 0. Then the multiplicativity
turns into the left translation property Xgh = gl(Xh) for any h ∈ G. The latter implies
that gl diffeomorphically maps the neighborhood Ue of the identity, constructed above, to
the neighborhood Ug = gl (Ue) of g and, thanks to the left translation property for X, it

“commutes” with X: gl : (Ue, X)
∼→ (Ug, X). This proves that the restriction of X onto

Ug will again admit homogeneous coordinates (with the same integer weights as the linear
coordinates on g), so X|Ug will also have the form of an Euler vector field. �

Remark 7. It would be interesting to compare the definition 3 with the Z-graded analog
of homogeneity structures from [4, 3].

It is also interesting to compare this definition with the one above in the categorical
language ([7] and section 2). In fact the following proposition holds true:

Proposition 4. Let G be a graded Lie group in the sense of Definition 3. Then the
following statements are true:

• The zero locus G0 of the multiplicative grading vector field X is a Lie subgroup of G;
• The formal neighborhood of G0 in G is isomorphic to the semi-formal group de-

termined by the Harish-Chandra pair (g, G0), i.e. to the result of the integration



12 ALEXEI KOTOV AND VLADIMIR SALNIKOV

described in Subsection 2.3. This isomorphism is homogeneous of degree zero, i.e.
equivariant w.r.t. the Euler vector fields.

Proof. As before, for simplicity, we assume that G is an “even” Lie group. According to
Proposition 3, for each point of the zero locus of the vector field X, there is a neighborhood
of this point, such that in this neighborhood the field X has the form of an Euler field.
From this it is easy to conclude that the condition on the zero locus G0 is described as
a joint set of zeros of some subset of local homogeneous coordinates, which means that
the zero locus of X is a smooth submanifold of G. It follows from the multiplicativity
condition for X that G0 is closed under group operations, and thus is a Lie subgroup of
G, which proves the first assertion of the proposition.

The second statement is a consequence of the Proposition 2 for the Harish-Chandra pair
(G0, g) and Proposition 3. �

3. Universal enveloping algebroids

The idea of applying the similar integration technique to algebroids sounds very natural
and may seem straightforward. And as we will see below, some constructions indeed
“work out of the box”, there are however important subtleties to take into account which
we will point out.

3.1. Commutative Hopf algebroids. In this subsection, we give or recall the necessary
information about commutative (but in general non-cocommutative) Hopf algebroids,
which reproduce in an algebraic context the properties of an algebra of functions on
a groupoid and are related to commutative Hopf algebras in the same way that Lie
groupoids are related to Lie groups. There is also a theory of non-commutative Hopf
algebroids ([14, 20]), which generalize in the same direction the properties of (quantum)
universal enveloping algebras. While for a Hopf algebra over a field, the dual vector space
also has the structure of a Hopf algebra, up to some modifications in infinite dimension
(for the correct definition of a product on the dual space in the topological case, one
should consider a topologically completed tensor product4, in the algebraic case, the so
called “finite dual space”), for Hopf algebroids the duality is less trivial and the definitions
of dual algebraic structures are different. Below we will see this using the example of a
universal enveloping algebroid.

Definition 4 (Hopf algebroid). A topological graded Hopf algebroid over a commutative
ring5 k is a pair of (Fréchet graded) commutative associative unital k−algebras (R,H)
with the structure maps:

(1) a left unit/source map ηL : R → H;
(2) a right unit/target map ηR : R → H;
(3) a comultiplication/composition map ∆: H → H ⊗̂RH, where the (completed) tensor

product is taken with respect to the left- and right- R−module structures, determined
by ηL and ηR, respectively;

(4) a counit/identity map ε : H → R;

4Already having in mind smooth functions, one realizes that the completion is necessary. And for
notations again, in the diagrams the hat in ⊗̂ will sometimes be omitted.

5In this article, a commutative ring is always a field of characteristic 0.
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(5) an antipode/conjugation/inverse map S : H → H,

satisfying the following axioms:

(1) counit laws (idH ⊗ ε) ◦∆ = (ε⊗ idH) ◦∆ = idH, εηL = εηR = idR;
(2) source/target laws ∆ ◦ ηL = ηL ⊗ 1, ∆ ◦ ηR = 1⊗ ηR;
(3) coassociativity (idH ⊗∆) ◦∆ = (∆⊗ idH) ◦∆;
(4) the comultiplication is a morphism of the unital algebras;
(5) the antipode identities µ ◦ (idH⊗ S) ◦∆ = ηL ◦ ε, µ ◦ (S ⊗ idH) ◦∆ = ηR ◦ ε, where µ

is the multiplication in H.

The last property (of the antipode) can be expressed by the following commutative diagram

H H⊗Hid·Soo

��

S·id // H

H⊗R H

::dd

R

ηL

OO

H
∆

OO

εoo ε // R

ηR

OO(3.16)

where id · S = µ ◦ (idH ⊗ S), S · id = µ ◦ (S ⊗ idH).

By omitting the antipode structure together with the antipode identity we obtain the notion
of a topological unital and counital graded bialgebroid. By dropping off the unit and the
counit structures and the related identities, we obtain the general notion of a topological
graded bialgebroid.

Remark 8. One notices easily that the above definition is a natural generalization (“oid-
ification”) of the definition of graded Hopf algebra recalled in [7], for the (graded) commu-
tative associative case.

The definition of a Hopf algebroid dualizes the notion of a groupoid in the following sense:
for any associative commutative ring B over k, Homk(H,B) and Homk(R,B) gives us the
set of morphisms and objects of a groupoid, respectively; we will say that this groupoid
structure is parameterized by B. The counit laws imply that the dual counit map ε∗

acts as a two-sided identity for the groupoid parameterized by a commutative k−ring.
Coassociativity corresponds to the associativity of the composition of morphisms.

Example 6 (Action groupoid). Let G be a Lie group acting on a manifold M . Denote the
action map by a, i.e. a : F(M)→ F(M×G), such that a(z, g) = g−1z for any g ∈ G, z ∈
M . Introduce the following notations: R = F(M) and H = F(M×G) = F(M)⊗̂kF(G).
The structure maps of the corresponding Hopf algebroid H are:

- left unit ηL : R → H, ηL(f)(z, g) = f(z), i.e. ηL = id⊗k 1;

- right unit ηL : R → H, ηR(f)(z, g) = f(g−1z), i.e. ηR = a∗;

- comultiplication ∆: H → H⊗R H = F(G×G×M),

∆(φ)(z, g1, g2) = φ(z, g1g2) ;

- antipode S : H → H, S(φ)(z, g) = φ(g−1z, g−1),
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for all f ∈ R, φ ∈ H, g, g1, g2 ∈ G, z ∈M .

3.2. Lie-Rinehart pairs and their universal enveloping algebras.

Definition 5 (Lie-Rinehart pair, [16]). Let k be a commutative ring, and let R be a
commutative k-algebra. Let L be a Lie ring that is also an R-module. Suppose that
we are given a Lie ring and R-module homomorphism (an anchor) ρ from L to the R-
derivations of R. If x ∈ L, we will denote the image of x under this homomorphism by
r 7→ x(r). Suppose finally that, for all x, y ∈ L and r ∈ R,

[x, ry] = r[x, y] + x(r)y

We will call such (R, L) an R−algebra or a Lie-Rinehart pair.

Let (R, L) be a Lie-Rinehart pair. The left R−module R⊕ L has a natural structure of
a Lie ring, given by

[(r1, x1), (r2, x2)] = (x1(r2)− x2(r1), [x1, x2])

for any r1, r2 ∈ R, x1, x2 ∈ L.

Definition 6 (Universal enveloping algebra of a Lie-Rinehart pair, [16]). Let U+(R⊕L)
be the subalgebra of the universal enveloping algebra of R ⊕ L, generated by the image
of the natural inclusion R ⊕ L ↪→ U+(R ⊕ L). The universal enveloping algebra of the
Lie-Rinehart pair is the quotient algebra

U(R, L) = U+(R⊕ L)/I ,(3.17)

where I is the two-sided ideal generated by elements r′(r+ x) = r′r+ r′x for all r, r′ ∈ R,
x ∈ L.

Example 7 (Lie algebroid, cf. [13, 15]). A Lie algebroid (E, [·, ·], ρ) over a smooth base M
gives us a Lie-Rinehart pair with L = Γ(E), R = F(M), where the anchor homomorphism
is induced on sections of E by ρ (we will denote it by the same symbol). The corresponding
universal enveloping algebra is known as the universal enveloping algebroid of E.

In the case where a Lie-Rinehart pair (R, L) is fixed, we denote its universal enveloping
algebra U(R, L) simply as U. It has a natural R−bimodule structure with respect to the
left- and right- multiplication on elements of the ring. By construction, U is an associative
(generally non-commutative) algebra. The tensor product of m copies of U over k

Tmk (U) = U⊗k · · · ⊗k U︸ ︷︷ ︸
m

(3.18)

is also an associative unital algebra. Taking into account the fact that the Lie-Rinehart
pair, and hence its universal algebra, are fixed, we will denote (3.18) simply as Tmk . If R
is a unital ring, then so are U and Tmk , with the unit being canonically induced by the
one in R.

Consider Um, the tensor product of m copies of U over R regarded as left R−modules;
in other words, Um = Tmk /IR, where IR is a right Tmk −ideal, generated by elements

ru1 ⊗k · · · ⊗k ui ⊗k · · · ⊗k um − u1 ⊗k · · · ⊗k rui ⊗k · · · ⊗k um(3.19)
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for all i = 2, . . . ,m, r ∈ R, and u1, . . . , um ∈ U. If R is unital then in formula (3.19) it
suffices to take all ui equal to 1. Observe that Um has one canonical structure of a left
R−module and m different canonical structures of right R−modules, given by the right
multiplication of elements r ∈ R on different components of the tensor product:

u1 ⊗ · · · ⊗ ui ⊗ · · ·um 7→ u1 ⊗ · · · ⊗ uir ⊗ · · ·um
for i = 1, . . . ,m. Note also that, while Um is a right Tmk −module, it is no more a
left Tmk −module, since IR is not a two-sided ideal. Thus Um is not an algebra. The
situation can be ”corrected” by replacing Um with Um, where the latter is defined as
the locus of coincidence of m right R−module structures on Um. i.e. with the space of∑

α uα1 ⊗ · · · ⊗ · · ·uαm ∈ Um, such that∑
α

uα1 ⊗ · · · ⊗ ruαi ⊗ · · · ⊗ · · ·uαm =
∑
α

uα1 ⊗ · · · ⊗ ruαj ⊗ · · · ⊗ · · ·uαm

for all i, j = 1, . . . ,m. One can easily verify that Um is an associative ring with the
obvious multiplication rule

(u1 ⊗ · · · ⊗ · · ·um) (v1 ⊗ · · · ⊗ · · · vm) = u1v1 ⊗ · · · ⊗ · · ·umvm
for all u1, v1, . . . , um, vm ∈ U. Indeed, let πR be the projection Tmk → Um. From

πR(ūv̄) = πR(ū)v(3.20)

for any ū, v̄ ∈ Tmk and the fact that left multiplication by elements of Um preserve IR ⊂ Um

we immediately deduce that πR(ūv̄) depends only on πR(ū) and πR(v̄).

Remark 9. As far as we know, the above construction of Um was proposed and used in
[8], while the interpretation of Um for the unital case that follows (see below) appeared in
[15].

When R is unital, there is an alternative construction of Um. Consider a subalgebra T
m

k of
Tmk consisting of elements that preserve IL under left multiplication. From (3.20) it turns
out that the action of elements from this subalgebra on the quotient space Um = Tmk /IR
is uniquely determined by their value at the unity 1⊗m and hence by their image under

the projection map πR. Now Um = πR

(
T
m

k

)
, such that πR : T

m

k → Um is an epimorphism

of rings.

Definition 7 (Left R−bialgebra). [8] Let R be a commutative k−ring. A left R− bial-
gebra consists of

(1) A possibly noncommutative algebra B containing R.
(2) A morphism of left R−modules ε : B → R which is a twisted ring homomorphism:

ε(uv) = ε(uε(v))

(3) A homomorphism of algebras ∆: B → B⊗RB which is identical onR, coassociative
and and has the left and right counit properties with respect to ε.

Here B⊗RB is defined in the same way as Um for m = 2, i.e. as locus of coincidence of
two right R−module structures on B.



16 ALEXEI KOTOV AND VLADIMIR SALNIKOV

Proposition 5. [8] The universal enveloping algebra of a Lie-Rinehart pair admits a
natural structure of a left R−bialgebra with ε being the standard augmentation and ∆ the
coproduct induced by the standard one on the universal enveloping algebra of L, such that
∆(x) = x⊗1+1⊗x for all elements of the Lie algebra L, combined with ∆(r) = r⊗1 = 1⊗r
for all r ∈ R.

Proposition 6. Let (R, L) be a Lie-Rinehart pair, U = U(R, L) be its universal envelop-
ing algebra. Consider H = HomR(U,R), the set of homomorphisms of left R−modules.
Then H has a canonical structure of a unital and counital commutative bialgebroid (see
the remark after Definition 4), where the multiplication, comultiplicaion, left- and right-
units are dual to the corresponding structures on U. In addition, X admits an antipode,
which turns it into a Hopf algebroid.

The proof of the Proposition 6 would essentially reproduce the formal integration pro-
cedure for Lie algebroids written in [8]. However, we did not find in the above paper
an explicit construction of the antipode, which is defined in a more complex way than
other structural morphisms, since it is not directly determined in terms of the universal
enveloping algebroid (without involving auxiliary constructions). The latter is explained
by the fact that the antipode in a groupoid interchanges left-invariant vector fields parallel
to the source-fibers (corresponding to sections of the Lie algebroid) and right-invariant
fields parallel to the target-fibers. In the case of action Lie algebroids, this obstacle is
bypassed due to the flat Cartan connection, which singles out the elements of the Lie
algebra as flat sections. In a more general case, an explicit construction of the antipode
would require a more general (non-flat) connection. We are going to write more about
this in another article.

Example 8 (Action algebroid). Let g be a Lie algebra acting on a manifold M . Denote
the action map by ρ, i.e. ρ : g → Γ(TM) is a Lie algebra morphism. Let E = g ×M
be the coresponding action algebroid, where the bracket on Γ(E) and the anchor map are
canonically extended from the bracket on g and the action map ρ by use of the combination
of the linearity and the Leibniz rule.

Let R = F(M) be the algebra of functions on the base M and let H = HomR(U(E),R) =
R ⊗k U(g)∗ be the space of left R−modules morphisms U(E) → R (see Proposition 6).
The structure maps of the Hopf algebroid H are explicitly defined6 as follows: for all
u ∈ U(g), z ∈M , f ∈ R

– left unit ηL : R → H, ηL(f)(z, u) = f(z), i.e. ηL = id⊗k 1;

– right unit ηR : R → H, ηR(f)(z, u) = (uf)(z), where

(x1 · · ·xm)f = ρ(x1) · · · ρ(xm)(f) , ∀x1, . . . , xm ∈ g

For all φ ∈ H, u, v ∈ U(g), z ∈M ,

– comultiplication ∆: H⊗R H = R⊗k (U(g)⊗ U(g))∗,

∆(φ)(z, u, v) = φ(z, uv) ;

6In what follows, we will denote the elements of the universal enveloping algebra U(g) and the universal
enveloping algebroid U(E) by the same letters, which is naturally motivated by the fact that one is a
subspace in the other. But in order to avoid confusion, we nevertheless in each case will indicate the
exact belonging of the elements.
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– (algebroid) antipode S : H → H,

S(φ)(u, z) =
∑
α

ηR
(
φ(S(u(2)

α ), ·)
)
(u(1)

α , z) ,(3.21)

where (in Sweedler’s notations)

∆(u) =
∑
α

u(1)
α ⊗ u(2)

α(3.22)

and φ(S(u
(2)
α ), ·) is viewed as a function of z ∈ M . Here S : U(g) → U(g) in the

standard antipode in the universal enveloping algebra (1.1).

The proof that the introduced structures satisfy all the properties of a commutative Hopf
algebroid, under the assumption that the action of the Lie algebra can be integrated to
the action of the Lie group, follows from the Proposition 7 below. The motivated reader,
however, can verify all these properties by simple algebraic calculations without appealing
to the indicated proposition.

Remark 10. Below we will give a simple interpretation of the right unit map (in particu-
lar, this proves that ηR is a monomorphism of algebras). First of all, note that U(E) is a
R−bimodule. Then H, considered as the space of left R−module morphisms U(E)→ R,
can be uniquely endowed with the structure of a right R−module by the formula

(φfR) (u) : = φ(uf)

for any f ∈ R, u ∈ U(E). On the other hand, for all x1, . . . , xm ∈ g one has

x1 · · ·xmf =
m∑
p=0

∑
σ∈Sh(p,m−p)

(
xσ(1) · · ·xσ(p)

)
(f)xσ(p+1) · · ·xσ(m)

or, equivalently, in Sweedler’s notations (3.22)

uf =
∑
α

u(1)
α (f)u(2)

α =
∑
α

ηR(f)
(
u(1)
α , ·

)
u(2)
α .

Thus for any φ ∈ H

(φfR) (u) = φ(fu) = (ηR(f)⊗ φ) (∆(u)) = (ηR(f)φ) (u)

which shows that fRφ coincides with the multiplication on ηR(f) in H.

Proposition 7. Let G = M×G be an action Lie groupoid, E = g×M be the corresponding
action Lie algebroid, and HG and HE be the associated Hopf algebroids (see examples 6
and 8). Then there is a canonical epimorphism of Hopf algebroids HG → HE, defined as

follows: HG 3 φ̃ 7→ φ ∈ HE,

φ(z, u) =

(
∂

∂λ1

· · · ∂

∂λm

)
λ1=···=λm=0

φ̃(z, eλ1x1 · · · eλmxm)(3.23)

for u = x1 · · ·xm ∈ U(g), x1, . . . , xm ∈ g.

Proof. The proof is straightforward computations. �
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Remark 11. The following points are here to interpret the meaning of “straightfor-
ward computations” from the proof of the proposition 7 and in particular their link to the
example 8:

• The structural mappings in the Example 8 are obviously consistent with the structural
mappings in the Example 6 and the epimorphism from the Proposition 7. On the other
hand, Definition 4 of a commutative Hopf algebroid generalizes the properties of the
algebra of functions on a groupoid, and the action groupoid is certainly a groupoid,
hence HG is “beyond suspicion” a Hopf algebroid. Thus, even without knowing that all
structures from the Example 8 satisfy the properties of the Hopf algebroid, Proposition
7 automatically convinces us of this thanks to the epimorphism and functoriality rules
(whenever an action algebroid corresponds to an action groupoid).

• The epimorphism described in Proposition 7 is naturally interpreted as a morphism
of Hopf algebroids dual to the embedding of a formal neighborhood of a unit section
in a groupoid into the groupoid itself.

The next proposition will combine the known construction of Harish-Chandra pairs for
Lie algebras with the examples 6 and 8. A more general approach to Harish-Chandra
pairs for Lie algebroids and Lie groupoids, based on the idea that was first announced in
[10], will be proposed in our next article.

Definition 8. Let E = g×M be an action algebroid, E ′ = h×M be an action subalgebroid,
where h ⊂ g is a Lie subalgebra. Let (H, g) be a Harish-Chandra pair and G′ = M ×H be
an action groupoid integrating E ′, such that

h∗ρ(x)
(
h−1
)∗

= ρ
(
Adh−1(x)

)
: F(M)→ F(M)(3.24)

for any h ∈ H and x ∈ g, where h∗ is the canonical pullback automorphism of R = F(M)
induced by h: h∗(f)(z) = f(hz) for all f ∈ R, z ∈M . We call (G′, E) a Harish-Chandra
pair for action groupoid / algebroid.

Proposition 8. Define

H = HomU(h) (U(g),F(M ×H)) = {φ ∈ Homk(U(g),F(M ×H) |(3.25)

φ(z, h, xu) =

(
∂

∂λ

)
λ=0

φ(z, heλx, u) , ∀x ∈ h, u ∈ U(g), z ∈M} .

Then H is a commutative Hopf algebroid with the following structure maps:

– left unit: ηL(f) = f ⊗ 1⊗ 1, i.e. ηL(f)(z, h, u) = f(z) ,∀h ∈ H, u ∈ U(g), z ∈M ;

– right unit: ηR =
(
ηG′

R ⊗ id
)

(ηER), where ηER and ηG′

R are the right units for E and G′,
respectively;

– comultiplication: ∆(φ)(z, h1, u1, h2, u2) = φ(z, h1h2, Adh
−1
2 (u1)u2),

for all h1, h2 ∈ H, u1, u2 ∈ U(g), z ∈M ;

– antipode: S(φ)(z, h, u) =
(
SG′ ⊗ id

) (
SE
)

(1,3)
(φ) (z, h, Adh(u)), where the subscript

(1, 3) means that we have inserted the identity into the second slot of a triple tensor
product. Here we identified H with F(M)⊗k F(H)⊗k U(g).

Proof. The proof is a straighforward combination of the proof of Hopf properties for
action algebroid / groupoid, and Harish-Chandra pairs for groups / algebras. �
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The following relatively simple example illustrates the notion of the universal enveloping
algebra of a Lie algebroid and its properties, including the Hopf algebroid properties for
its dual, without resorting to action algebroids.

Example 9 (Differential operators in the context of universal enveloping algebras and
Hoph algebroids). Consider the tangent Lie algebroid E = TM over M , whose sections
are vector fields and the anchor map is the identity. One can verify that the universal
enveloping algebra U(TM) coincides with scalar differential operators on M , denoted by
D(M). The tensor product of m copies of D(M), being considered as left F(M)−modules,
is isomorphic to the space of scalar m−linear polydifferential operators. The dual left
F(M)-module H = HomF(M)(D(M),F(M)) is isomorphic to J(M), the space of infinite

jets of scalar functions on M . More precisely, given an element φ =
∑

l f
(1)
l j

(
f

(2)
l

)
,

where f
(1)
l , f

(2)
l ∈ F(M) and j(f) denotes the infinite jet prolongation of a function f ,

and a differential operator p ∈ D(M), the explicit formula for the pairing is

p ⊗ φ 7→ 〈p, φ〉 =
∑
l

f
(1)
l p

(
f

(2)
l

)
.

The left- and right- F(M)−module structures on J(M) are determined by the multiplica-
tion on f and j(f), respectively, where f ∈ F(M); it is compatible with the F(M)−bimodule
structure on D(M). Indeed, one has

〈fp, φ〉 = 〈p, fφ〉 = f〈p, φ〉
〈pf, φ〉 = 〈p, j(f)φ〉

for all f ∈ F(M), φ ∈ J(M), and p ∈ D(M). The bialgebroid structure on H is canoni-
cally induced by the one on differential operators, however, the antipode can be implicitly
defined without direct use of the duality with differential operators as the only commu-
tative algebra automorphism that maps elements of the form f1j(f2) to f2j(f1) for all
f1, f2 ∈ F(M). Taking into account that TM is the Lie algebroid for the pair groupoid
M ×M , the Hopf algebroid H = J(M) constructed from TM is identified with functions
on the formal neighborhood of the diagonal7 in the Cartesian product M ×M , and the
epimorphism from Proposition 7 in this case is nothing more than taking the infinite jet
of functions on M ×M at the diagonal in the normal direction.

Instead of conclusion / perspectives

In this paper we have revisited some algebraic constructions in the context of Z-graded
manifolds, this has permitted to fill the gaps in the general theory of integration of graded
Lie algebras. We have also noticed that some of the techniques can be extended to the
algebroid / groupoid setting. In the current study we have restricted the examples to “not
very infinite dimensional” situations, but some of the constructions should be doable in the
most general setting. We have seen that in some cases vector fields on an algebra can be
transferred to the corresponding group preserving similar properties. A more complicated
question of equipping a Z-graded manifold with a differential structure (degree 1 odd
homological vector field) and describing the local structure of it is addressed in [12]. For
the current setting it will result in an interesting concept of so-called Q-groups.

7As far as we know, such an interpretation of the jet space should be attributed to Grothendieck [5].



20 ALEXEI KOTOV AND VLADIMIR SALNIKOV

Acknowledgements. We are thankful to MARGAUx — the Nouvelle-Aquitaine Feder-
ation for Research in Mathematics — the stay of A.K. in La Rochelle while writing this
paper has been supported by its program “Chaire Aliénor”. A.K. also appreciates the
support of the Faculty of Science of the University of Hradec Králové.

Appendix A. Definitions, notations and conventions

As usual, a Z-graded vector space V decomposes into a direct sum:

(A.1) V =
⊕
i∈Z\0

V di
i = . . .⊕ V d−l

−l ⊕ V
d−l+1

−l+1 ⊕ · · · ⊕ V
d−1

−1 ⊕ {0} ⊕ V d1
1 ⊕ · · · ⊕ V

dk
k ⊕ . . . ,

where V ’s are vector spaces, the subscripts of V •• denote the degree of elements of the
respective subspace, and the superscripts – the dimension of it. Add to it an open set
V0 ≡ U ⊂ Rn to obtain U = (V0 ⊕ V ) = (U, V ).

The degrees will be denoted by deg(·) ∈ Z, and we will write the word “degree” with no
adjective, in contrast to for example “polynomial degree”, that we will specify if needed.
We will also use the notion of parity of different objects: p(·) ∈ Z2 ≡ {0, 1}.
It is responsible for commutation relations:

ab = ε(a, b)ba,

where ε(a, b) = (−1)p(a)p(b) is the Koszul sign.

Remark 12. The parity has to be compatible with the degree, in the sense that the subsets
of even (p = 0) and odd (p = 1) objects are also consistently graded. We will comment on
the geometric interpretation of this condition below, but for now it just means that parity
depends on the degree. A frequent situation in the literature is p(·) = (deg(·) mod 2), but
in general and in what follows it does not have to be like this.

Convention: To stress the potential independence of degrees and parities, when the
commutation relations are important we should in principal add the word or prefix “super”
to the phrase. But for the sake of readability we will often omit it, when it does not lead
to confusion. E.g. “graded Lie super algebra” will be just “graded Lie algebra”, and
“graded vector superspace” just “graded vector space”.

Definition 9. A graded manifold M is a topological space for which the sheaf of functions
O(M) is locally modelled as functions on (U, V ).

Definition 10. We say that the graded vector space V (resp. graded manifold M) is

• of finite degree if in (A.1) |i| <∞.
• of finite graded dimension if di = dim(Vi) <∞,∀i ∈ Z.
• of finite dimension if it is of finite graded dimension and of finite degree.

Definition 11. For a ring R, a Z-graded R−module is the direct sum of R−modules:

E =
⊕

i∈Z\{0}

Ei .

E is of finite degree if only a finite subset of modules Ei are not equal to zero.
If every Ei is a free module of finite rank di, then E is said to be of finite graded rank di.
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If d =
∑

i∈Z\{0} di <∞, then E is called a graded R−module of finite (global) rank d.
If R is a field k, the word “rank” is to be replaced with “dimension”.

Let E be a Z-graded R−module. We denote by T kE its k−th tensor power over R

T kE = E⊗ . . .⊗ E︸ ︷︷ ︸
k

.

viewed as an R−module, and the direct sum of all tensors by T (E) =
⊕

k≥0 T
kE.

We define the symmetric powers of E over R:

Sym(E) := T(E)/ 〈x⊗ y − ε(x, y)y ⊗ x |x, y ∈ E〉 .
Sym(E) will be regarded as a free graded commutative R−algebra or R−coalgebra, de-
pending on the situation.

In [11] we have introduced the following increasing (decreasing) filtration of Sym(E∗)
(Sym(E), respectively):
for all p > 0, F pSym(E∗) is the graded ideal of the symmetric algebra, generated by
elements of degree ≤ −p; FpSym(E) is the graded coideal of the symmetric coalgebra,
cogenerated by elements of degree < p, i.e.

FpSym(E) : = {a ∈ Sym(E) |∆(a) ∈ Sym(E)⊗ Sym(E)<p} ,(A.2)

where ∆ is the comultiplication in the algebra Sym(E).

Let R be the graded projective limit of Sym(E∗)/F pSym(E∗) for p→∞:

R : =
⊕
i∈Z

lim←−
(

Sym(E∗)/F pSym(E∗)
)
i
,(A.3)

where (
Sym(E∗)/F pSym(E∗)

)
i

= Sym(E∗)i/F
pSym(E∗)i .

Proposition 9. For any p ≥ 0, FpSym(E) has finite graded dimension.

Proposition 10. One has the canonical isomorphism of graded R−modules

R '
(

Sym(E)
)∗

= Hom (Sym(E), R) .(A.4)

And since Sym(E) is a graded R−coalgebra with the standard comultiplication

∆: Sym(E)→ Sym(E⊕ E) = Sym(E)⊗ Sym(E) , ∆(v) = v ⊗ 1 + 1⊗ v ∀v ∈ E ,

we immediately deduce that R is an R−algebra.
Considering the sheaf OM of functions on a graded manifold M in view of the above
filtrations, we can construct a canonical N2−graded manifold M , associated to M , the
structure sheaf of which is OM : = OM . M and M will thus be isomorphic in the category
of Z-graded manifolds.
In [11] we have proven the Z-graded analog of the Batchelor’s theorem:

Proposition 11. There exists a non-canonical isomorphism of Z−graded smooth mani-
folds between M and the total space of V = V− ⊕ V+, where V± are N-graded vector bun-
dles. That is M = M+ ×M0 M−, where the fibered product of graded manifolds is defined
algebraically in terms of the corresponding sheaves of functions: OM = OM+ ⊗OM0

OM−.
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