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Abstract—With the increasing penetration of renewables, the
power system is facing unprecedented challenges of low-inertia
levels. The inherent ability of the system to defense disturbance
and power imbalance through inertia response is degraded, and
thus, system operators need to make faster and more efficient
scheduling operations. As one of the most promising solutions,
machine learning (ML) methods have been investigated and
employed to realize effective inertia forecasting with considerable
accuracy. Nevertheless, it is yet to understand its vulnerability
with the growing threat of cyberattacks. To this end, this paper
proposes a methodological framework to explore the vulnerability
of ML-based inertia forecasting models, with a special focus
on data integrity attacks. In particular, a cost-oriented false
data injection attack is proposed, for the first time, with the
primary objective to significantly increase the system operation
cost while retaining the stealthiness of the attack via minimizing
the differences between the pre-perturbed and after-perturbed
inertia forecasts. Moreover, we propose four vulnerability assess-
ment metrics for the ML-based inertia forecasting models. Case
studies on the GB power system demonstrate the vulnerability
and impact of the ML-based inertia forecasting models, as well as
the stealthiness and transferability of the proposed cost-oriented
data integrity attacks.

Index Terms—Inertia forecasting, power system operation,
machine learning, cyber security, power system economics.

I. INTRODUCTION

DECARBONISATION agenda significantly increases the
penetration of RES, which drives the power system

towards a low inertia system as most of these technologies are
interfaced via converters that do not supply rotational inertia
to the system [1]. By definition, system inertia refers to the
ability of a system to oppose changes in frequency due to the
resistance provided by the kinetic energy stored in rotating
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masses synchronously connected to the power system [2]. As
disturbance or supply/demand imbalances occur, the inertial
response is first released, combined with the subsequent pri-
mary control, to determine the maximum frequency offset.
Therefore, it is of great importance to conduct accurate inertia
forecasting to determine appropriate frequency responses and
reserves in advance for system stability enhancement, and
cost-effective system operation [3].

In the literature, the prevailing inertia forecasting methods
mainly focus on the contribution from synchronous equipment
on the generation side. The authors in [3] forecast system
inertia using the current operation plan submitted by each
synchronous generator in the system, which contains the short-
term estimation of the unit state and operating limit. In [4]
authors use generation prediction and corresponding inertia
constants to realize short-term inertia prediction. As the system
inertia is evolving from a relatively controllable variable to a
time-varying variable affected by external uncertainties, more
accurate inertia forecasting methods, need to be developed
with the consideration of recessive-related data such as date,
weather, and renewable generation information [5]. In recent
years, data-driven methods such as ML have been applied
to power system inertia forecasting[5], [6], [7], [8], [9]. The
authors in [5] designed a power system inertia forecasting tool
based on artificial neural network (ANN) under a scenario
with high penetration of wind generation. It comprehensively
considers the power production from synchronous genera-
tors (SGs), renewable generation, and coupled motor loads,
achieving an effective and accurate estimation of regional
inertia. In [7], authors proposed a decomposable time series
model for inertia forecasting, which takes the trend, seasonal
and irregular components of the historical inertia value into
consideration.

Although existing studies have demonstrated the superior
performance of machine learning algorithms in terms of
accuracy of the forecasting task, with the growing threat
of cyberattacks, it is imperative to explore the vulnerability
and impact of machine learning-based forecasting models
before implementing them in practice. In particular, ma-
chine learning-based forecasting models highly rely on other
forecast information, such as power generation output from
various sources, system load, weather, etc. Compared with
conventional forecasting models that are trained based on real
measurements, the forecasted data used in inertia forecasting
are derived from other modules and transmitted through API,
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which becomes vulnerable to cyberattacks. In the machine
learning community, the adversarial attack against neutral
networks is first proposed in [10] and studied extensively.
The attack exploits the over-fitting property of the model and
can achieve error outputs with high confidence by adding
small perturbations to the test samples. On the other hand,
poisoning attacks utilize the data-driven models’ innate trust of
training data and implement false data injection to reshape the
spatial distribution of training set and hence indirectly affect
model performance [11]. In addition, a backdoor attack is an
advanced form of poisoning attack, which implants backdoor
into the model so that the model can identify the special
samples that are flagged by triggers and perform as the design
of the attacker [12].

All aforementioned approaches mainly focus on classifica-
tion problems, which aim to design perturbations that can
make the model misclassify the data input. However, very
few studies have been conducted to deal with regression
problems [13], especially in terms of subpopulation attack[14],
which aims to compromise the performance of particular
subpopulation samples rather than the global samples. In a
classification problem, it is easy to attack based on classes
defined by labels and attackers can design complex and flexible
attacks by the classifier’s consensus decision to samples with
the same label. For example, [15] can use malicious samples
with targeted labels to surround specific benign samples and
induce the model to misclassify the surrounded benign samples
to the targeted label. However, in the regression problem, the
model output continuous values based on a unified decision
function, it is difficult to observe intuitionally the decision
influence between samples and construct an attack based on
decision influence between samples. In the power system
community, recent studies have demonstrated the vulnerability
of present machine learning-based energy forecasting models
against data integrity attacks [16]. However, it only utilizes a
simple unconstrained attack method without considering the
potential countermeasures from the defender. In particular,
anomaly detection algorithms [17] have been widely applied,
and therefore significant and consistent attacks may be easily
detected and filtered. In this context, it becomes crucial to in-
vestigate the feasibility of attacks that simultaneously achieve
destructiveness and stealthiness.

Furthermore, existing attack methods can be classified as
targeted attacks and untargeted attacks. For a classification
task, the untargeted attack aims to misclassify the input data to
any other classes without a specific target, whereas the targeted
attack needs to set a target class pre-defined by attacker [18].
For a regression problem, the objective of the untargeted attack
is to maximize the forecast error, while the targeted attack
aims to minimize the distance between the forecasts and the
pre-determined output targets. It is of great importance to
note that, for power system applications, arbitrarily tampering
with the data to maximize the forecasting error renders the
possibility of being detected by defense mechanisms. In other
words, the attacks need to be designed as stealthy attacks
by injecting adversarial data with elaborately designed attack
targets to influence the system stability and operational cost. In
particular, as illustrated in [19], asymmetric system operation

costs are observed for load or RES output forecasting errors
with the same magnitude but over different periods or with
opposite signs and thus, the targeted attacks under full system
knowledge may result in higher operation cost with the same
level of injected perturbations.

For inertia forecasting, to ensure the frequency stability of
power systems, system operators need to maintain an adequate
level of system inertia, whereas inaccurate inertia forecasts
will lead to extra or improper scheduling and increase the
operation cost. Inertia forecasting errors will drive the cost
increment, but the exact economic consequence may vary in
different system conditions, time periods, and even the signs
of error [20]. In other words, higher inertia forecasting errors
do not necessarily mean higher operation cost. On this basis,
it is imperative to investigate the vulnerability and impact of
machine learning-based inertia forecasting models.

To this end, we propose a cost-oriented data integrity attack
that aims to stealthily increase the system operation cost
by implementing well-designed inertia misprediction at pre-
determined cost-sensitive time periods, via injecting perturba-
tions to the training or test stages. It is important to note that
the proposed cost-oriented attack is designed as a subpopu-
lation attack, whose goal is to realize inertia misprediction
in cost-sensitive periods and maintain the benign prediction
in the rest periods. To the best of our knowledge, it is the
first attempt to develop a subpopulation attack to a regression
problem. The main original contribution of this paper can be
summarized as the following:

1) This paper proposes the concept of cost-oriented attack
for machine learning models under the application of power
system inertia forecasting. More specifically, cost-oriented data
poisoning attacks and cost-oriented adversarial attacks are de-
veloped to increase the power system operation cost via cost-
informed attack period selection and minimum perturbation
injection calculated by gradient-based approaches.

2) The proposed attack design process explicitly considers
the stealthiness of the attack. In particular, the proposed attack
algorithms focus on a specific set of target points within cost-
sensitive periods, while maintaining normal accurate forecast-
ing for the rest intervals so that the overall forecasting error
can be closely retained before and after the attack.

3) The effectiveness and impacts of the proposed method-
ological framework are validated based on the GB power
system. Furthermore, the transferability of the proposed cost-
oriented attacks is revealed across different machine learning-
based inertia forecasting approaches.

4) A vulnerability assessment framework is developed for
machine learning-based inertia forecasting that, for the first
time, explores the potential risks of data integrity attacks in
the offline model training and online test stages, respectively.
Assessment metrics are proposed to assess the impacts of the
considered threats in terms of forecasting accuracy and power
system operation cost, respectively.

The rest of the paper is organized as follows. Section II
formulates the ML-based inertia forecasting models, the at-
tacker’s objective and capacity constraints, and then introduces
existing data integrity attack methods. The proposed cost-
oriented data integrity attacks are illustrated in Section III.
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Section IV presents the proposed vulnerability analysis frame-
work for ML-based inertia forecasting models with developed
assessment metrics. Section V conducts comprehensive nu-
merical experiments to evaluate the effectiveness and impacts
of the proposed methodological framework. Section V draws
the conclusions.

II. PROBLEM STATEMENT

A. Machine Learning-based Inertia Forecasting Model

This paper aims to investigate the vulnerability of a fam-
ily of ML-based inertia forecasting models that capture the
relationship between system inertia and selected correlated
features, including the power system operation data. Math-
ematically, let S = {(xt, yt+k)}Tt=1 denote the data set
of the power system historical data constructed for inertia
forecasting, here yt+k is the value of system inertia, k is the
model’s forecast horizon which is set as one day. xt represents
the input feature vector, composed of the system variables
available at timestamp t:

xt := (xforecast
t , xIFs

t , xstate
t , yt) (1)

where xforecast
t includes the features of the day-ahead fore-

casted synchronous generation P̂ gen and loads P̂ load, as well
as the forecasted renewable generation outputs (solar P̂ solar,
onshore wind P̂ onshore and offshore wind P̂ offshore) in the
region; xIFs

t represents the power flow with surrounding region
systems; xstate

t contains environment state information such
as dates, temperature and weather; yt is the historical ground
truth of inertia.

To fully explore the vulnerabilities of various machine
learning-based inertia forecasting models, a series of represen-
tative models, including Linear Regression (LR), Feedforward
Neural Network (FNN), Recurrent Neural Network (RNN),
and Long-short-term Memory Network (LSTM), are consid-
ered in this paper. The objective of training these models
is to obtain a function parameterized by θ that captures the
relationship between the input selected features and the output
predicted system inertia, expressed as follows:

fθ(x
forecast
t , xIFs

t , xstate
t , yt) = ŷt+k (2)

where fθ is a linear or a non-linear function depending on the
selected ML models.

B. Attackers’ Objective

Power system inertia is closely related to frequency stability.
The operators schedule generation or topology changes in
advance based on inertia forecasts. In this paper, the objective
of the attacker is assumed to influence the operation of power
systems and increase the operation cost by manipulating the
predicted value of system inertia. Specifically, over-prediction
in system inertia during the forecasting stage would lead to
insufficient inertia in real-time, and high-cost SGs with fast
responding capability have to be dispatched online for inertia
provision, causing significantly increased system operation

Power forecasting of
generation (fuel, wind,

solar ) and load

Net demand level of power 
system changes with time

ML-based Inertia Forecasting

FUELWIND SOLAR LOAD

False Data Injection with 𝑥 !"#$%&'( (APIs)

Operation Model
with

Extra Operation Cost

Operating
Condition

Inertia forecasting Errors 

Value of 
Errors

• Additional online devices
• Extra frequency response services
• Emergency services for misoperations
• …

Sign of 
Errors

𝑥)*

Over-prediction
Under-prediction

Fig. 1. General framework of cost-oriented attack.

cost or risk of inertia shortage. On the contrary, inertia under-
prediction results in more SGs being prepared during the day-
ahead scheduling period, leading to less efficient part-loading
operation.

The specific attack strategy is shown in Fig. 1. We find
that the impact intensity of inertia forecasting errors on the
scheduling model varies with the error values, error signs,
and the operation conditions when the error occurs. Therefore,
based on the knowledge of scheduling model, the attackers
aims to design the optimal attack targets for the expected
inertia forecasts under different system net demand xNd levels,
which balances the cost impact and stealthiness. The attacker
achieves the manipulation of inertia forecasts through false
data injection against the externally forecasted system load
and generation outputs.

C. Attackers’ Knowledge and Capability

To investigate the impact of attacker’s knowledge, we con-
sider two kinds of attack scenarios: white-box attacks and
black-box attacks. In white-box attack, as the worst case, we
assume that the attacker has the full knowledge of training
set Dtr, test set Dtest, model structures, and even model
parameters θ. Since this strong assumption may not always
hold, we also investigate black-box attack where the attacker
does not know the model information but can self-train an
alternative model f

′

θ based on the training set Dtr and use
the alternative model f

′

θ to generate the attack. In both attack
scenarios, attackers just have the ability to modify one and
only one kind of data set (Dtr or Dtest), which differs from
the backdoor attacks that require modification of both Dtr and
Dtest. In addition, black-box attacks can be used to evaluate
the transferability of attacks between different models with
more details given in Sec.IV and Sec.V.

The characteristic variables contained in xforecast
t are pre-

dicted values of various system power conditions, which have
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less physical constraints compared with measured values.
Furthermore, these kinds of variables are imported from other
system modules via APIs, which are more vulnerable to be
tampered externally [16]. Therefore, considering the feasibility
of the attack, we assume the attacker can only tamper with
variables in xforecast

t for a data integrity attack. Note that
attackers strictly follow attack limits, keeping ground truth
y clean during data poisoning in the training phase, which is
different from current poisoning attacks, such as [21], [22].
Further, in order to avoid excessive data tampering being
detected by the system operator, the following constraint is
enforced to the disturbance added by the attacker:

||xjt − x
j
t

∗
|| ≤ ξ||xjt ||, ∀x

j
t ∈ xforecast

t (3)

where ξ represents the constraints of disturbance magnitude.

D. Existing Attack Methods

In the ML community, extensive studies have been con-
ducted on the security of machine learning algorithms. In this
subsection, we introduce two types of well-developed data
integrity attack methods.

1) Data Poisoning: Data poisoning occurs at the training
stage. The attackers contaminate the training set Dtr in order
to change the parameters of the target model and reconstruct
it [23]. Current data poisoning attacks focus on classification
tasks, which have specific attack targets defined by labels
(misclassification or assigned classification). According to the
discrete label characteristic, flexible strategies can be con-
structed, such as inducing test data to be classified as target
labels by deploying poison samples with the same label around
them [15].

Nevertheless, it is difficult to directly employ the above
methods to regression problems because the outputs of the
model are continuous values. Therefore, [21], the problem
of data poisoning attacks in regression is formulated as the
following continuous space bilevel optimization problem:

arg max
Dtr

W (fθ, Dval) (4a)

s.t. θ ∈ arg minL(Dtr, fθ) (4b)

where L represents the loss function for training, by training
on contaminated training set Dtr the attacked model is ma-
nipulated. Dval represents an untrained identically distributed
validation set, as attackers are restricted to have no access to
the test set, the attack effect is evaluated by model performance
on Dval. As the output at a single timestamp lacks specific
meaning in regression problems, the current works design the
attack effect W with overall performance, such as maximizing
the MSE (Mean Square Error) of the output [22], [21].

2) Adversarial Attacks: Regarding the test stage, the adver-
sarial attack was first proposed in [10], where they found that
the mapping of input and output of deep neural networks is
mainly discontinuous. This is shown by the fact that adding
small imperceptible disturbance to the input samples can
lead to image misclassification with high confidence. Thus,
adversarial attacks manipulate the input of samples during the
test phase without changing or polluting the existing model.

In the literature, the adversarial attack has been studied as
a great threat to ML algorithms in various application fields.
In the power systems community, the vulnerabilities arising
from adversarial attacks have been explored and shown in a
series of key applications, including the MLP-based false data
injection detection [24], RNN-based energy theft detection
[25], and CNN-based voltage stability assessment [26]. For
a regression problem, the authors in [16] proposed a black-
box adversarial attack against the deep learning-based load
forecasting models by tampering with the temperature features
transmitted by the APIs. The attack aims to cause a consistent
upper or lower deviation on load forecast, with the disturbance
added to the temperature features as little as possible. It can
be mathematically expressed as the following optimization
problem [16]:

arg min
δ

κfθ(xt + δxt) + βΦ(δ). (5)

where δ represents the disturbance, β and Φ are used to
constrain the magnitude of disturbance, and κ sets the direction
of deviation (higher or lower).

Overall, for both data poisoning and adversarial attacks,
most of the existing methods in the literature only aim to
degrade the overall forecasting performance (e.g., maximizing
the Mean Square Error (MSE) [22]). However, significantly
decreased forecasting performance can be easily aware by the
system operator or detected via deployed detection mecha-
nisms. In other words, stealthiness can not be guaranteed if
the attack target only considers its effectiveness.

III. COST-ORIENTED DATA INTEGRITY ATTACKS

This section introduces the proposed cost-oriented data
integrity attack to investigate the vulnerability and impact
of ML-based inertia forecasting models. In particular, cost-
oriented data poisoning attacks and cost-oriented adversarial
attacks will be defined and illustrated, respectively.

A. Cost-oriented Target Selection

To design an effective and stealthy cost-oriented attack, the
first step is to determine the attack target for inertia forecasting
via understanding its impacts on system operational costs
under different operating conditions. In other words, this step
aims to determine the cost-sensitive periods and the targeted
sign (i.e., positive or negative) of difference between the
original and the manipulated inertia forecasting outputs.

Let xt and ŷt+k denote the system operation condition at
timestamp t and the corresponding forecasted system inertia in
the future, respectively, the system operation cost C( ˆyt+k|xt)
can be calculated based on the simulation model. More de-
tails of the employed stochastic optimization model and the
decisions made at different stages are illustrated in [27]. Then
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Fig. 2. Average system operation cost increment under inertia misprediction
with λ < 0 (a) and λ > 0 (b) .

the proposed cost-oriented attack for inertia forecasting can be
described as the following problem:

arg max
ATrigger

T∑
t=1

C((1 + λt+k) ˆyt+k|xt)− C( ˆyt+k|xt) (6a)

s.t. |λt+k| < Maxλ,∀t ∈ [1, T ] (6b)
T∑
t=1

sgn(|λt+k|) = Numλ (6c)

where λt+k represents the change ratio before and after attack
at timestamp t + k. In particular, λt+k 6= 0 and λt+k = 0
indicate that the value of system inertia forecast at timestamp
t + k is being or not being manipulated, respectively. If
λt+k 6= 0, the sign of λt+k represents the direction of
targeted forecast value (i.e., > 0 increase or < 0 decrease)
, which is determined based on the calculated operation cost;
ATrigger = {λt+k|λt+k ∈ R}Tt=1 is the trigger set, aiming at
maximizing the difference of system operation costs over all
the time stamps T before and after the attack via obtaining the
optimal manipulated system inertia forecasts (1 + λt+k)ŷt+k;
Maxλ represents the maximum value of λt+k; Numλ indicates
the restricted number of timestamps can be manipulated. Note
that the smaller number of Numλ means that the attack is
more stealthy.

To achieve the aforementioned objective, the first step is
to investigate the influence of inertia forecasting errors under
different levels of net demand quantified via the incremental
system operation cost compared with the no attack case, as
depicted in Fig. 2. For the case of positive λ (Fig. 2-(b)), the
system inertia is overpredicted during the forecasting process
leading to less CCGTs (slower SGs with lower marginal cost)
to be prepared. As a result, when the actual value of total
inertia is available to system operators at the real-time stage,
they can only turn on additional OCGTs (faster SGs with
higher marginal cost) to compensate for the forecasting error,
thus inducing more operational cost. Understandably, a larger
magnitude of the attack causes higher cost increment. In the
extreme case, where no sufficient OCGTs are available in real-
time, the system may risk destabilizing in the event of a large
outage.

Furthermore, this cost increment increases approximately
in a linear manner as the net demand decreases from around
σ2 = 42 (GW) since the increased wind power makes the
inertia from SGs more critical in maintaining the frequency
constraints and attacks with the same magnitude would require

more OCGTs to compensate shorted system inertia, hence,
the larger cost increment. This increasing trend becomes
saturated below the net demand of σ1 = 17 (GW), as the
additional wind power, in this case, cannot be utilized due
to the frequency constraints. Therefore, the system operating
conditions and the cost are not influenced.

On the other hand, the attacks with λ < 0 (Fig. 2-(a)) also
induce positive cost increment as more CCGTs are prepared
to be online during the forecasting process to compensate for
the inertia shortage due to the attacks. However, this increment
is negligible at high net demand since the discounted system
inertia, in this case, is enough after the attack due to the large
amount of online SGs. Similarly to the previous case, the cost
increment almost remains a constant below the net demand of
σ1 = 17 (GW) for the same reason, and the cost increment is
approximately proportional to the magnitudes of the attacks.

Overall, it can be observed that the attack impact on the
system operation cost is asymmetrical in terms of sign of
injected attack vector, and vary regularly with the system
operating condition. To this end, the attack target for cost-
oriented approaches can be determined as follows:

sign(λt+k) =


1, (xNdt < σo) AND (∆xt

C(λt+k) > 0)

−1, (xNdt < σo) AND (∆xt
C(λt+k) < 0)

0, other

(7a)
∆xt

C(λt+k) = C((1 + λt+k) ˆyt+k|xt)− C((1− λt+k) ˆyt+k|xt)
(7b)

where xNd = P̂ load − P̂ solar − P̂ onshore − P̂ offshore rep-
resents the day-ahead forecast value of net demand level,
σo ∈ (σ1, σ2),

σ1 ←
dC((1 + λ)y|xNd)

dxNd
= 0,

d2C((1 + λ)y|xNd)
dxNd2

< 0

(8a)

σ2 ←
dC((1 + λ)y|xNd)

dxNd
= 0,

d2C((1 + λ)y|xNd)
dxNd2

> 0

(8b)

First, the sign of attack target λt+k need to be determined,
corresponding to the selection of attack intervals (λt+k 6= 0)
and attack directions (over-prediction or under-prediction). As
shown in Fig. 2, the system can be divided into three cost-
sensitive levels by demarcation points σ1 and σ2, which are
the extreme points of cost increment-net demand curve. To
make the attack intervals preferably cover the high-sensitive
intervals and exclude the low-sensitive intervals, the attack
interval can be finally defined as xNd < σo, σo ∈ (σ1, σ2).

For the points within attack intervals (λt+k 6= 0), the
next step is to further determine whether over-prediction
(λt+k > 0) or under-prediction (λt+k < 0) can lead to higher
cost increment with Eq. 7b. It is worth mentioning that by
modifying σo ∈ (σ1, σ2), we can control the size of attack
intervals and balance the effectiveness and concealment of the
cost-oriented attack. More specifically, the attack can be more
stealthy by making σo closer to σ1 or increase operation cost
as much as possible by making σo closer to σ2.
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Furthermore, for the magnitude of λt+k, it can be designed
large enough to significantly enhance the attack effect as the
cost increment is proportional to the magnitude of λt+k under
the same net demand level. However, the impacts of attack
will be restricted by the attackers’ capability as illustrated in
Eq. 3 as well as the upper limits that how much the decision
boundary of the ML model can be changed.

After determining the cost-oriented target ATrigger =
{λt+k}Tt=1, the general attack vector generation problem can
be expressed as follows:

arg min
θorDtest

1

Ntest

Ntest∑
t=1

(fθ(xt)− (1 + λt+k)yt+k)2 (9a)

s.t. xt ∈ Dtest, t = 1, 2, ..., Ntest (9b)

where xt are optimized to minimize the objective function that
measures the proximity of the inertia forecasts to the attack
target; Dtest represents the test set.

To achieve this target, we propose Cost-Oriented Data
Poisoning (CODP) and Cost-Oriented Adversarial Attack
(COAA) for the offline training and online test stages, respec-
tively, considering the pre-determined cost-sensitive periods
and the attack targets. In particular, the CODP generates
the Trojan model by poisoning the training set, whereas the
COAA keeps the established model and modifies the test set
to generate adversarial samples. The details of the design are
given in the following parts.

B. Cost-oriented Data Poisoning

For the proposed CODP approach, let Dtr = Dp ∪ Dc

denotes the training set, we randomly select the samples in
the training set with proportion αp as poisoning set Dp, while
the rest of samples in Dc will not be tampered. By adding
disturbance to Dp, we can change the spatial distribution of
the whole training set and reconstruct the mapping relationship
between input features and predicted inertia value with the
model parameterized by θp. In this way, the poisoned model
will work abnormally (i.e., stealthily increase the system
operation cost with targeted inertia forecasts). Note that the
validation set Dval is applied in CODP to evaluate attack
effect W and generate attack, as the data poisoning attackers
are restricted from obtaining knowledge of test set. However it
should be emphasized that the generated attack will be finally
applied to test set so that to achieve a complete CODP attack,
as shown in Fig. 3.

The ML-based inertia forecasting model is first initialized
based on clean data set (Dc ∪ D0

p), and obtains the output
forecasts ŷ on validation set. On this basis, as illustrated
in Sec. III-A, the cost-oriented target λ ∈ ATrigger can be
determined with Eq. 7 before executing the poisoning attack.
Under the attack target λ, the proposed CODP attack can be

Algorithm 1 Cost-oriented Data Poisoning

Initialization: Training set (Dc ∪ D(0)
p ), the initial poisoning set

D
(0)
p = (xt, yt+k)

Np
t=1, validation set Dval, Searching step size α0,

convergence coefficient β
Output: Dbest

p

1: θ(0) ← argminθL(Dc ∪D(0)
p )

2: ŷ ← fθ(0)(x), x ∈ Dval
3: ATrigger ← argmaxC((1 + λ)ŷ|x)− C(ŷ|x), x ∈ Dval .

Identify attack target
4: w(0) ←W (Dval,ATrigger, θ

(0))
5: for i = 0, 1, ..., Nupdate − 1 do . Loops for update θp
6: for t = 1, 2, ..., Np do . Loops for update Dp
7: x

(i+1)
t ← Lsearch(x

(i)
t ,∇xtW (Dval,ATrigger, θ

(i)), w(i))

8: D
(i+1)
p ← x

(i+1)
t

9: end for
10: θ(i+1) ← argminθL(Dc ∪D(i+1)

p )
11: w(i+1) ←W (Dval,ATrigger, θ

(i+1))
12: if ||w(i+1) − w(i)|| < εstop then
13: break . satisfy condition and early termination
14: end if
15: end for
16: Dbest

p ← D
(i+1)
p

Def: Lsearch(xt,∇xtW,w):
Output: xbestt

1: x(0)t ← xt, α(0) ← α0, w(0) ← w
2: for j = 0, 1, ..., Nsearch − 1 do
3: xforecast

t
(j+1)

= xforecast
t

(j) − α(j) · ∇xforecast
t

W . Inject
disturbance on specific features xforecast

4: θ(j+1) ← argminθL(Dc ∪Dp(xforecast(j+1)
t ))

5: w(j+1) ←W (Dval,ATrigger, θ
(j+1))

6: if w(j+1) > w(j) then
7: xbesti ← xforecast

t
(j)

8: break
9: end if

10: α(j+1) ← β · α(j)

11: xbesti ← xforecast
i

(j+1)

12: end for

expressed with a bilevel optimization problem [21], [28]:

arg min
Dp

W =
1

Nval

Nval∑
t=1

(fθp(xt)− (1 + λt+k)yt+k)2

(10a)
s.t. θp ∈ arg min

θp

L(Dp ∪Dc, fθ) (10b)

xt ∈ Dval, t = 1, 2, ..., Nval (10c)

where the upper-level objective function W is defined to
minimize the gap between inertia forecasts and cost-oriented
target, and the decision vector is poisoning samples xp ∈ Dp;
the lower-level objective function L(Dp ∪ Dc, fθ) represents
the loss function of ML-based inertia forecasting model,
corresponding to the process of training to update the poisoned
model θp. It can be found that the calculation of W depends on
the lower-level decision vector poisoned model θp, meanwhile,
the update of θp also considers the change of upper-level
decision vector Dp.

To solve the above bilevel optimization problem, the Gra-
dient Decent Method is employed in this work. The poi-
soning samples xp ∈ Dp will be modified with gradi-
ent ∇xp

W to optimize the upper-level objective function
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W (Dval,ATrigger, θp). Considering the dependency of θp on
xp in the lower-level objective function, the gradient can be
made a decomposition with the chain rule [21], [28]:

∇xp
W = ∇xp

θp(xp)
T · ∇θpW. (11)

where ∇xp
θp(xp)

T involves the training process of inertia
forecasting model, and the influence of xp on model pa-
rameters θp is also reflected. For the neural network model,
∇xp

θp(xp)
T is a non-convex problem and it is difficult to

obtain an accurate numerical solution. Therefore, we choose
the linear regression model as the forecasting model in the
CODP and demonstrate its transferability to other ML-based
models [22]. For linear regression model f(x, θ) = ωTx+ b,
the loss function L can be expressed as:

L =
1

Ntr

Ntr∑
t=1

(ωTxt + b− yt+k)2 + η · Ω(ω) (12)

where Ω(ω) is the regularization term for feature selec-
tion. Under different regularization strategies, it is defined
as Ω(ω) = 0 (Least Squares), Ω(ω) = ‖ω‖1 (LASSO) and
Ω(ω) = 1

2‖ω‖2
2 (Ridge). Thus the lower-level optimiza-

tion representing the training process can be translated with
Karush-Kuhn-Tucker (KKT) equilibrium condition:∇θL(Dc∪
Dp) = 0. In order to ensure the validity of the above condition
when updating xp [21], [28], we set its derivative with respect
to xp to be zero, which is finally expressed as:

∇xp
(∇θL(Dc ∪Dp)) = 0 (13a)

∇xp∇θL+∇xpθ
T · ∇2

θL = 0 (13b)

∇xp
θp(xp)

T = −∇xp
∇θL · (∇2

θL)−1 (13c)

Due to the regularization term, the L could be not dif-
ferentiable (e.g., Ω(ω) = ‖ω‖1), and this is solved with
subgradients referring to [28]. Specifically, the ∇xpθp(xp)

T

can be obtained from Eq. 13 as:

∇xp
θp(xp)

T = − 2

Ntr

[
M ω

] [Σ + ηv µ
µT 1

]−1

(14)

where Σ = 1
Ntr

∑
t xtx

T
t , µ = 1

Ntr

∑
t xt, and M = xpω

T +
(f(xp)−yp)I. The term v is zero in Least Squares and LASSO,
and the identity matrix I in Ridge.

Meanwhile, the gradient ∇θpW can be expanded as:

∇θpW =

[
2

Nval

∑Nval

t=1 (fθ(xt)− (1 + λt+k)yt+k) · xt
2

Nval

∑Nval

t=1 (fθ(xt)− (1 + λt+k) · yt+k)

]
(15)

On this basis, each xp ∈ Dp can be updated through line
search, where we conduct multi-step search and shrink step
size after each step, until object function stops decreasing or
reach the searching times. While the whole poisoning set Dp

is updated with line search, we will retrain the model θp with
the updated poisoning set and test the poisoning effect with
objection function W (θp). The above processes are iterated
alternately, and the poisoning set D(i+1)

p is constructed based

on the model updated in the previous round θ
(i)
p in each

iteration. The algorithm will end up after finite iterations or
meet the stop condition ||wi+1 − wi|| < εstop in advance.
Finally, the poisoned model θbestp and poisoning set Dbest

p can
be obtained. Overall, the complete algorithm of the proposed
CODP is presented in Algorithm 1.

Algorithm 2 Cost-oriented Adversarial Attack
Initialization: Existing forecasting model fθ , test set (xt, yt+k) ∈
Dtest, t = 1, 2, ...Ntest
Output: xt∗ ∈ D∗

test

1: ŷ ← fθ(x), x ∈ Dtest
2: ATrigger ← C((1 + λ)ŷ|x)− C(ŷ|x) . Identify attack target
3: for t = 1, 2, ..., Ntest do
4: if λt 6= 0 then . Locate cost-sensitive periods
5: x∗t = FGSM(xt, fθ, λt+k)
6: D∗

test ← x∗t
7: end if
8: end for
9: return D∗

test

Def: FGSM(xt, fθ, λt+k) :

1: for i = 1, 2, ..., Nsearch do . Loops for searching the gradient
2: for j ∈ xforecast do . Features can be attacked
3: W(xt, λt+k, θ) = (fθ(xt)− (1 + λt+k)yt+k)

2

4: xjt
(i+1)

= xjt
(i) − α · sign(∇

x
j
t
(i)W(xt, λt+k, θ))

5: end for
6: end for

C. Cost-oriented Adversarial Attack

To achieve the cost-oriented target, another way to influence
the performance of the ML-based inertia forecasting model
is to directly inject false data into the test set. Therefore,
we propose the Cost-oriented Adversarial Attack (COAA) to
generate adversarial samples for the test set and keep the
original training set and forecasting model. According to Eq. 7,
we first determine the cost-sensitive periods λt+k 6= 0 for the
online test stage so that the inertia forecasts in these intervals
are expected to perform abnormally as designed.

Then the next step is to generate adversarial samples only
within the cost-sensitive periods of the online test stage so as
to precisely achieve the different effects between the sensitive
and non-sensitive periods. In particular, the adversarial exam-
ple at timestamp t can be obtained via solving the following
problem:

arg min
xforecast
t

∗
(fθ(xt)− (1 + λt+k)yt+k)2 (16a)

s.t. xt ∈ Dtest ∧ λt+k 6= 0, (16b)

Given the white-box model fθ, the gradient between object
function W (xt, λt+k, θ) = (fθ(xt) − (1 + λt+k)yt+k)2 and
input features xt can be computed efficiently using backprop-
agation. Therefore, we use the Fast Gradient Method (FGSM)
[29] to solve the optimization problem. We search for the
optimal adversarial sample with multiple iterations, in each
iteration i, xi is updated depending on the sign of the gradient:

x
(i+1)
t = x

(i)
t − α · sign(∇

x
(i)
t

(W (xt, λt+k, θ)). (17)



IEEE TRANS. SMART GRID, ACCEPTED 8

Note that we only manipulate the features in xforecast
t =

(P̂ load
t , P̂ gen

t , P̂ solar
t , P̂ onshore

t , P̂ offshore
t ) considering the lim-

itation of attackers’ capability given in Eq. 3. The detailed
information is elaborated in Algorithm 2.

IV. VULNERABILITY ANALYSIS FRAMEWORK

This section proposes the vulnerability analysis framework
for the ML-based inertia forecasting models, which is designed
to provide a reference from the perspective of security for the
selection and improvement of the ML-based inertia forecasting
models. In Sec. III, we propose two cost-oriented attacks from
the perspective of power systems operation cost. The genera-
tion processes of the proposed attacks can be summarized in
Fig. 3 in the white-box case. Then the generated attack vectors
can be used to evaluate the vulnerability of different tested
ML-based inertia forecasting models in the black-box case
due to the characteristic of transferability. In particular, the
proposed CODP and COAA methods can generate a tampered
malicious training set Dc ∪Dp or test set D∗test, respectively,
which are the carrier of attacks. Thus we can explore the
vulnerabilities in the offline training and online test stages by
applying the tampered malicious data set to various forecasting
models, as shown in Fig. 3.

Based on the output of influenced inertia forecast, we design
the following metrics to quantify the changes in the forecasting
performance of the model before and after the attack and
assess the vulnerability:

MAPEpre =
100

Nt

∑
t

∣∣∣ytrue,t − ypre,t
ytrue,t

∣∣∣ (18a)

MAPEatk =
100

Nt

∑
t

∣∣∣ytrue,t − yatk,t
ytrue,t

∣∣∣ (18b)

Rate =
MAPEatk −MAPEpre

MAPEpre
(18c)

where t ∈ Ab or Ap or {1, ..., Ntest}, the corresponding
capacity of which is Nt.

Suc =
Ns
Np
∗ 100%; (19)

Rag =
100%

Ns

∑
t∈As

∣∣∣ypre,t − yatk,t
ypre,t

∣∣∣ (20)

Rerr =
Nb
∑
t∈Ap

|ytrue,t−yatk,t

ytrue,t
|

Np
∑
t∈Ab

|ytrue,t−yatk,t

ytrue,t
|

(21)

where Ab = {t ∈ Z |λt = 0}, Ap = {t ∈ Z |λt 6= 0},
As = {t ∈ Ap |λt(yatk,t − ypre,t) > 0}; the ytrue, ypre and
yatk are the true value and the predicted value before and after
the attack of inertia, respectively; the Ap and Ab represent the
cost-sensitive and non-sensitive periods in test set; within the
cost-sensitive periods, we defined the area where the predicted
value changes in the desired direction (e.g., over-prediction
when λt > 0) after the attack as successful attack intervals,
which was represented by As; the Nb, Np and Ns denote the
number of samples in their corresponding intervals.

Training Set

Design cost-sensitive
periods and object

function

Validation Set

Define cost-sensitive
periods

Generate Adversarial 
Samples within periods

Model Training

Generate Poisoning 
Samples by minimize 𝑊

Model Training

Test Set

Applying

𝐷!"#𝐷$%

𝑓&

𝐷'()'∗

𝐷'()'

𝐷+ ∪ 𝐷,

𝑓&,

𝐷'()'

Cost-oriented Data PoisoningCost-oriented Adversarial Attack

𝑥!"# < 𝜎$

Training poisoned model
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𝐷+ ∪ 𝐷,

Applying on clean test
set 𝐷'()'

Training model with
clean training set 𝐷'-

Applying on adversarial
samples 𝐷'()'∗

Construct tested inertia forecasting model based on ML
algorithm 𝑓′

Calculate quantitative indicators in
cost-sensitive and non-sensitive
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Calculate diversity factor of errors 
𝑅(--

𝑅(-- < 𝛾.

𝒜%&'(()&
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Fig. 3. The proposed vulnerability assessment framework for ML-based
inertia forecasting model under cost-oriented attacks.

As the cost-oriented attacks are designed to have dif-
ferent effects inside and outside cost-sensitive periods, the
quantitative indicators will be calculated respectively. First,
as the forecasting error is an important index to evaluate
the performance of forecasting models, we can observe the
attack effect on model performance based on error variation
before and after attack. We calculate the forecasting errors
before (MAPEpre) and after (MAPEatk) attacks by regions,
as well as the proportion of change Rate between them.
In non-sensitive periods, the closer between MAPEpre and
MAPEatk, the less impact the attack has in these periods.
In other words, the attack is more secluded and the model
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is less robust. Second, as illustrated in Eq. 7, the attack
target is designed with a specified misprediction direction,
thus we compare the inertia forecast before and after attack
to evaluate whether the attack accurately achieves an over-
prediction or under-prediction effect. Suc ∈ [0, 100%] is the
success rate, i.e., the proportion of samples whose predicted
values misestimate in the desired direction (λt > 0 or λt < 0)
after attack within this periods. And Rag is the average value
of the variation rangeability of predicted values before and
after the attack of the above samples. A higher Suc and Rag
indicate lower robustness of the model.

Comprehensively, the model with lower error in non-
sensitive periods and higher error in cost-sensitive periods
indicates lower robustness, which means a more significant
impact difference between different periods. It will generate
higher operation cost increment under the same global error
level, proved in the experiments in Sec. V. Therefore, we pro-
pose a comprehensive index Rerr to evaluate the vulnerability
of ML-based inertia forecasting models under cost-oriented
attacks, which can quantify the diversity factor of error levels
inside and outside cost-sensitive periods. As shown in Fig. 3,
after calculating the diversity factor of error, based on a user-
defined threshold γo, the models with Rerr < γo indicate
satisfied robustness and thus can be recommended to be used
in practice; while those models having high diversity factor
(i.e., Rerr > γo) are suggested to improve their robustness
further (e.g., via adversarial training approach).

V. CASE STUDY

A. Data Set and Model Construction

We evaluate the performance of the proposed approaches
based on a three-year power system data set of Great Britain
from 2016 to 2018, which is composed by public data from
Elexon’s BM reports ENTSO-E’s data transparency platform
National Grid’s data explorer[U+FF0C] and the Nordpool
website . These data are combined under a consistent time
zone with 30mins time granularity, and the finished features
are summarized in Tab. I, containing short-term prediction
values of system power, interconnector flows with outside,
environmental indicators such as weather characteristics, sea-
sonal factors, and time factors, as well as system inertia. The
details about the construction of the data set can be obtained
in [9].

TABLE I
SELECTED FEATURES FOR INERTIA FORECASTING MODEL.

Feature type Feature name
Day-ahead forecast capacity load, coal, solar, onshore, offshore
Interconnector flows French, Dutch, Irish, East-West
Environment state season, data, weekday or weekend,

hour, temperature
Inertia total system inertia (TARGET)

Regarding the ML-based day-ahead inertia forecasting
model, the first two-year data from 1st January 2016 to 31st
December 2017 are used as the training set in the COAA,
whilst it is divided into the training set and verification set

with a proportion of 3:1 in the CODP. Furthermore, the
rest of the one-year data in 2018 is used as the test set to
evaluate the model performance under different attack methods
consistently. In terms of the employed forecasting model, we
select four representative algorithms [30]: LR, FNN, RNN,
and LSTM to assess their vulnerability. Meanwhile, we need
to emphasize that the vulnerability assessment framework is
universal and applicable to all kinds of machine learning
models. For the COAA, we assume that the attackers only
have access to querying and tampering with the test set. On
the other hand, for the CODP, the attackers are assumed to
have access to querying and tampering with the training set,
hence the validation set is utilized to evaluate the attack effect
in the test phase.

B. Impact Analysis: Forecasting Performance (White-Box)

The objective of this part lies in investigating the impacts
of proposed cost-oriented approaches in terms of the inertia
forecasting performance under the assumption of white-box.
Furthermore, the final target of the generated white-box attack
is to influence a black-box inertia forecasting model based on
transferability, as illustrated in Sec. IV. Therefore, the CODP
is constructed on an LR forecasting model, which can satisfy
the convex optimization condition for gradient calculation, and
the COAA is constructed on an LSTM forecasting model for
deep learning. According to the cost impact analysis of the
data set in Sec. V-A on the operation simulation model, as
shown in Fig. 2. The division index of cost-sensitive periods
is xNdt < σo (under normalization σo = 0.35) and the cost-
oriented target is set as λt+k > 0 for over-prediction effect
with higher cost increment. The data tampering is limited
within features in xforecast. For the CODP, the proportion of
poisoning samples αp is set to 0.5.

First, to visualize the effects of proposed approaches, Fig. 4
illustrates the inertia forecasts under CODP and COAA at-
tacks over the same period, respectively. Note that the cost-
sensitive periods are represented by gray shade, and the true
value, predicted value before and after the attack of system
inertia are indicated by the curves in green, blue, and orange
(or red), respectively. As can be seen, the predicted inertia
forecasts are evidently increased during the cost-sensitive
periods, whereas the inertia values of non-sensitive periods are
generally kept at the same levels compared with the non-attack
case, demonstrating the effectiveness and the stealthiness of
the proposed methods. It should be emphasized that, for the
proposed CODP, the poisoning samples are randomly injected
into the training dataset without the limitation of injection
periods. It works by modifying the learned regression rules
of the poisoned model in order to guarantee stealthiness via
distinguishing the forecasting performance within and outside
the targeted periods.

Furthermore, to quantitatively investigate the impacts of
the proposed methods across different levels of disturbance
constraints ξ, the results of both COAA and CODP approaches
are given in Tab. II and Tab. III with ξ = 5%, ξ = 10%,
ξ = 20% and ξ = 30%, respectively. First, it can be
seen that both of the proposed COAA and CODP methods
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TABLE II
EFFECT OF WHITE-BOX CODP ATTACKS WITH DIFFERENT LEVELS OF DISTURBANCE CONSTRAINTS (ξ).

ξ
Non-sensitive Periods Cost-sensitive Periods Global Periods

MAPEpre MAPEatk Rate MAPEpre MAPEatk Rate Suc Rag MAPEpre MAPEatk Rate

5%

9.337

9.554 2.32%

11.653

13.035 11.86% 99.19% 2.81%

9.959

10.488 5.31%
10% 9.563 2.42% 13.591 16.63% 99.85% 3.81% 10.644 6.88%
20% 9.573 2.52% 13.818 18.58% 99.89% 4.16% 10.712 7.56%
30% 9.624 3.07% 14.078 20.80% 100.00% 4.62% 10.819 8.64%

TABLE III
EFFECT OF WHITE-BOX COAA ATTACKS WITH DIFFERENT LEVELS OF DISTURBANCE CONSTRAINTS (ξ).

ξ
Non-sensitive Periods Cost-sensitive Periods Global Periods

MAPEpre MAPEatk Rate MAPEpre MAPEatk Rate Suc Rag MAPEpre MAPEatk Rate

5%

9.383 9.383 0.00% 10.908

11.717 7.42% 100.00% 3.83%

9.792

10.059 2.73%
10% 12.596 15.48% 100.00% 6.08% 10.316 5.35%
20% 12.742 16.82% 100.00% 6.47% 10.358 5.78%
30% 12.759 16.98% 100.00% 6.51% 10.362 5.83%

(a) Cost-orientedData Poisoning (b) Cost-orientedAdversarial Attack

Actual value
Predicted value under attack 𝜉 = 5% Predicted value under 𝜉 = 30%

Predicted value without attack Cost-sensitive periods

(a) Cost-sensitive Data Poisoning (b) Cost-sensitive Adversarial Attack

Fig. 4. Inertia forecasts under white-box CODP (a) and COAA (b) with
different levels of disturbance constraints (ξ = 5%, 30%).

can achieve the pre-determined attack targets indicated by
the overpredicted inertia forecasts at most timestamps (i.e.,
Suc > 99%) and the increment of forecasting error between
7% to 20% during the cost-sensitive periods. Moreover, under
the same level of ξ, the proposed CODP can result in more
severe impacts on the forecasting performance than that of
the COAA, as shown by the 7.4% to 59.8% higher metric
values of Rate of errors within cost-sensitive periods; while
the COAA can influence the forecasting performance closer to
the target with higher metric values of Suc and Rag. On the
other hand, with the increasing value of ξ, the constraint of
injection magnitude is relaxed, and thus higher Rag and Rate
can be obtained for both CODP and COAA approaches.

Additionally, the stealthiness of the proposed approaches
can be quantitatively demonstrated via the following results:
1) both CODP and COAA approaches can result in higher
forecasting errors during the cost-sensitive periods (i.e., Rate
is up to 20.8%) while keeping normal forecasting performance
during the non-sensitive periods (i.e., Rate < 3.1%); 2) the
overall forecasting performance is almost retained at the same

Su
c
(%
)

Ra
g
(%
)

White-Box LR LSTM RNN FNN White-Box LR LSTM RNN FNN

(a) Under CODP attacks (b) Under COAA attacks

Fig. 5. Transferability analysis of black-box CODP (a) and COAA (b) based
on various ML-based inertia forecasting models

level before and after the injection of attacks with the metric
values of Rate between approximately 2.73% to 8.64%. In
particular, the MAPE within non-sensitive periods remains
the same under each COAA attack thanks to the point-by-point
attack strategy of the cost-oriented adversarial attack, which
performs more stealthy than CODP attack without considering
the data integrity attack injection path (training or test phase).

C. Impact Analysis: Forecasting Performance (Black-Box)

This subsection aims to explore the transferability of the
proposed methods on different ML-based models and then
make a comparison among them. As illustrated in Sec. IV,
we implement black-box attacks based on the malicious data
set (Dp and D∗t ) generated in the above white-box attacks. To
fairly analyze the transferability of the proposed methods, we
select CODP(ξ = 10%) and COAA(ξ = 5%), which exhibit
similar forecasting performance influence (e.g., Rag and Suc).

The result is shown in Fig. 5, which focuses on the effect
of targeted attack (over-prediction) within the cost-sensitive
periods. We carried out multiple black-box attacks for each
model. The average value and distribution range (extreme
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values) of the metrics Rag and Suc are represented in the
histograms with error bars, respectively.

As can be seen, the pre-determined attack effects still exist
when applying the proposed cost-oriented attacks to the black-
box models, which can be demonstrated with the metrics of
Suc > 69% and Rag > 1.2%. Meanwhile, compared with the
white-box attacks, the attack effects in the black-box cases are
diminished to some extent: the success rate Suc of CODP
within cost-sensitive periods exhibits a significant decrease
between 1.4% to 29.9%; while the COAA attack maintains
a high Suc but the metric value of Rag is decreased by
53.2%− 66.5%.

D. Impact Analysis: System Operation Cost

In this subsection, we aim to explore further the impact of
the proposed approaches in terms of the system operation cost
based on the system operation model introduced in Sec. III-A.
Here we compare the cost-oriented attacks with existing data
integrity attacks, including the global no-target data poisoning
(G-DP) in [21] and the global target adversarial attack (G-
AA) in [16], which were developed to diminish the overall
forecasting performance.

To quantify the impacts on system operation costs, the
increased rate of system operation cost under conventional
global attack and the proposed cost-oriented attack (i.e., the
ratio of change in system operation cost before and after the
injection of attack) are calculated and presented in Tab.IV. To
ensure fairness, we make the above attacks have nearly the
same global errors under white-box assumption.

As can be seen, the cost increment induced by the proposed
COAA and CODP in both white-box and black-box cases is
more than twice the costs of the corresponding global attacks,
respectively. Furthermore, it can be found that cost-oriented
attacks, CODP and COAA, exhibit higher transferability than
G-DP and G-AA regarding the impacts of operation cost, as
shown by the fact that the average cost increments under
black-box attacks are 51.58% (CODP) and 46.1% (COAA) of
those under white-box attacks, and the corresponding metric
values for G-DP and G-AA are only 30.39% and 36.00%,
respectively.

TABLE IV
INCREASE RATE OF OPERATION COST UNDER GLOBAL ATTACK AND

COST-ORIENTED ATTACK.

Type Name White
box

Black-box

LR LSTM RNN FNN

Data
Poisoning

G-DP[21] 2.81% 0.29% 0.73% 1.30% 1.72%

CODP 4.97% 1.61% 2.29% 3.00% 4.03%

Adversarial
Attack

G-AA[16] 2.30% 1.61% 0.76% 0.91% 0.30%

COAA 5.20% 3.79% 2.03% 2.48% 1.15%

Moreover, the significant impacts of the injection periods
selection for the proposed cost-oriented attacks are further
investigated via comparing the system operation costs be-
tween the cases with randomly selected periods (i.e., random
adversarial attack) and cost-oriented periods with low net
demand level xNd < λo, as shown in Fig. 6. Note that

FNNWhite-box RNNLSTMLR

Fig. 6. System operation cost under COAA and RAA (ξ = 20%)
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Fig. 7. Operation cost increment (M£/h) and Rerr under COAA across
different levels of disturbance constraint (ξ).

the total injection periods of both attacks are kept the same.
For the white-box case, it can be seen that the average cost
increment induced via cost-oriented injection is significantly
higher (i.e., approximately 207%) than random attacks, and
this impact difference is even more significant with about 3.2
times higher cost increments in the black-box case. Therefore,
the investigated ML-based inertia forecasting model is more
vulnerable during the cost-sensitive periods, and more protec-
tion resources should be allocated there.

Additionally, a sensitivity analysis across different levels
of disturbance constraints (ξ) is also provided in Fig. 7,
quantified via the increment of system operation cost (M£/h)
and Rerr. It is understandable that, with the increasing level of
injected disturbance, the model is more vulnerable, and higher
operation costs will be obtained. For example, the average
cost increment for all ML models increases from 2.42 M£/h
(ξ = 5%) to 6.64 M£/h (ξ = 20%) along with the decrements
of forecasting accuracy. This provides an idea of mitigating
such attacks via applying outlier detection during the cost-
sensitive periods to identify the data with high disturbance.
Finally, the consistency between Rerr and operation cost
also demonstrates the effectiveness of the proposed metric
to quantify the vulnerability of ML-based inertia forecasting
models under various potential threats.
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VI. CONCLUSION

This paper proposes a novel vulnerability assessment frame-
work for ML-based inertia forecasting models, considering
the economic impact on system operation when the inertia
forecasting models suffer potential attacks. In this framework,
we propose cost-oriented data integrity attacks, which aim
to stealthily maximize the system operation cost by locating
the cost-sensitive periods and injecting disturbances following
the pre-defined cost-oriented target. In particular, the CODP
and COAA approaches are designed for the training and test
processes, respectively, along with a series of vulnerability
assessment metrics. Case studies based on real data collected
from the GB power systems are carried out to analyze
the vulnerability under the proposed attacks in both white-
box and black-box cases based on multiple state-of-the-art
forecasting models. The results demonstrate the effectiveness
and stealthiness of the proposed approaches in terms of both
forecasting accuracy and power system cost increment. At the
same level of inertia forecasting errors, the operation cost
increment under the proposed cost-oriented attacks is up to
approximately 226% of that under the existing untargeted data
integrity attacks.

Future work will be conducted to develop the corresponding
detection and defense mechanisms to build a robust ML-
based inertia forecasting model, which may include conducting
adversarial training, adding a cost-sensitive term into the loss
function, or developing anomaly detection techniques consid-
ering the probability distribution of input data. Moreover, it
is also feasible and valuable to extend the concept of cost-
oriented attack to other forecasting tasks in power systems,
such as load or renewable energy forecasting.
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