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Institut National de la Santé et de la Recherche Médicale,

Institut de Neurosciences des Systèmes (INS), UMR1106
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Abstract

Virtual brain models are data-driven patient-specific brain models integrating in-

dividual brain imaging data with neural mass modeling in a single computational

framework, capable of autonomously generating brain activity and its associated brain

imaging signals. Along the example of epilepsy, we develop an efficient and accurate

Bayesian methodology estimating the parameters linked to the extent of the epilepto-

genic zone. State-of-the-art advances in Bayesian inference using Hamiltonian Monte

Carlo (HMC) algorithms have remained elusive for large-scale differential-equations

based models due to their slow convergence. We propose appropriate priors and a

novel reparameterization to facilitate efficient exploration of the posterior distribution

in terms of computational time and convergence diagnostics. The methodology is illus-

trated for in-silico dataset and then, applied to infer the personalized model parameters

based on the empirical stereotactic electroencephalography (SEEG) recordings of ret-

rospective patients. This improved methodology may pave the way to render HMC

methods sufficiently easy and efficient to use, thus applicable in personalized medicine.
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Some keywords: Bayesian inference, Brain-network modelling, Epilepsy, Hamiltonian

Monte Carlo, Personalized medicine.
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1 Introduction

The activity in the brain for cognition, perception and consciousness are governed by

the fundamental mechanism of neural network oscillations. Consequently, perturbations of

network activity play an important role in the pathophysiology of brain disorders such as

epilepsy [1, 2, 3]. When individual structural information from non-invasive brain imaging

is merged with mathematical modelling, then generative brain network models constitute

personalized in-silico platforms for the exploration of causal mechanisms of brain dysfunction

and clinical hypothesis testing [4]. Such data-driven computational whole-brain models are

referred to as virtual brain models in which a patient’s structural brain imaging data derived

from non-invasive magnetic resonance imaging (MRI) constrain the latent space trajectories

of the brain network model. Simple activation paradigms lack the functional complexity to

explain the richness of observed spatiotemporal behaviours linked to these brain dynamics

[5], leaving it essentially to non-linear network processes to explain the origin of the emergent

functional and pathological spatiotemporal patterns. The virtual brain models emphasize

the network character of the brain and bring dynamical properties to the structural data of

individual brains [6]. In the virtual brain models, the dynamics of a network node is given

by a neural mass model of lumped neuronal activity and is connected to other nodes via

a connectivity matrix representing white matter fibre tracts derived from diffusion tractog-

raphy of the brain [7, 1, 8]. This form of connectome-based virtual brain modelling [9, 10]

exploits the explanatory power of measured network connectivity imposed as a constraint

upon network dynamics and has provided important insights into the mechanisms under-

lying the emergence of the resting-state networks dynamics [11, 7, 12] of healthy subjects,

stroke [13], schizophrenic patients [14] and epilepsy [15]. So far, neural mass models have

proven successful in explaining the biophysical and dynamical nature of seizure onsets and

offsets [16].

In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone

(EZ), before recruiting other close or distant brain regions, the so-called propagation zone

(PZ). Partial seizures have been reported to propagate through large-scale brain network

in humans [17, 18, 15] and animals [19]. A possible treatment for the partial epileptic

patients is the surgical resection of the EZ, a localized region or network where seizures

arise, before recruiting secondary networks, PZ [20, 21, 22]. As a part of the standard
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presurgical evaluation, stereotactic electroencephalography (SEEG) recordings are used to

help correctly delineate the EZ. [23] suggests the calculation of Epileptogenicity Indices

corresponding to each of the regions in the brain based on the SEEG recordings. However,

in practice (surgery), the electrodes are placed sparsely with respect to the large and complex

structure of the brain. Therefore, such a model-free approach cannot identify the activities

in the brain regions which are far from the electrodes. Also, the SEEG recordings are based

on the unknown combination of the activities at different hidden sources. This is also not

captured in the calculation of Epileptogenicity Indices. Moreover, the seizure in partial

epilepsy propagates by activating different regions in the brain due to the connectivity of

the EZ(s) with other regions. The consideration of the virtual brain models enables the

prediction of the activity in all the brain regions simultaneously based on the measurements

at senors, which are placed sparsely, by taking the linear combination of the time-series of

different brain regions as the generating mechanism for the observed sensor activity.

We consider a Bayesian model inversion methodology to infer the activity of different

brain regions based on the SEEG measurements at the sparsely placed sensors in this paper.

Bayesian framework offers powerful and principled method for parameter inference, dealing

with uncertainty in estimation, and out-of-sample model prediction from experimental data

with a broad range of applications [24, 25, 26, 24, 27]. Within a neuroimaging context,

the Bayesian approach has been widely used for inference of neuronal population’s intrinsic

parameters and/or interactions between neuronal populations (effective connectivity) in a

pre-specified neuronal network from neurophysiological data [28, 29, 30, 31, 32, 33]. The

sampling from the posterior distribution provides the neuroscientist with an estimation of

parameter distributions over plausible ranges of the parameter space consistent with the

observed data, which makes the link to the underlying physiological mechanisms employed

in the network model and, thus, enable its scientific interrogation, for instance for resting

state and task paradigms [30, 29], and clinical translation, for instance in epilepsy [1, 34].

However, in previous studies, either the model considered is very simplistic i.e. linear models

[35] or the number of nodes considered in the brain is very small or the data is assumed to be

observed at the source level [34]. These considerations were possibly driven by the fact that

the Bayesian inference for high-dimensional non-linear models require huge computational

effort making them infeasible for application purpose.
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The Virtual Epileptic Patient (VEP; [1]) model as a personalized virtual brain model,

captures the activity of the brain regions during epilepsy. The measurements at the sensors

are considered to be linear combination of the activities generated at the brain regions. The

linear combination is determined by a known gain matrix considered in the model. The gain

matrix represents the contribution of different source activities at the sensors. The i, j-th

element of the matrix represents the inverse squared distance between the i-th sensor and the

j-th node. The matrix is not of full rank in practice as the number of sources are generally

more than the number of sensors and also, due to the sparse placement of SEEG electrodes.

The presence of the gain matrix as well as the non-linear hidden dynamics at brain regional

level, with large number of nodes and connectivity between the nodes induce correlations

in the posterior distributions of the model parameters making inference difficult. Moreover,

the activities of the brain regions during epilepsy are governed by the steady state behaviour

of the time-series given by the model equations.

An attempt at inversion for the VEP model was considered in [34] under the assumption

that the data are observed at source level for the different brain regions. The method cannot

be directly applied to the empirical data as the measurements are taken at different SEEG

electrodes and the observed activity at the electrodes are the combination of the activities

generated at different brain regions. In our model, we have accounted for this using the gain

matrix which maps the activities of different brain regions to the measurements at SEEG

electrodes. We propose an efficient method incorporating the steady state behaviour and

sparsity in the number of brain regions using the placement of appropriate priors on the

model parameters. We also propose a novel reparameterization of the model configuration

space based on the dominant linear combinations derived from the gain matrix making the

inference procedure computationally feasible.

It is well-known that gradient-free sampling algorithms such as Metropolis-Hastings,

Gibbs sampling and slice-sampling [27] generally fail to explore the parameter space effi-

ciently when applied to large-scale inverse problems [36, 37, 38], as often encountered in

the application of whole-brain imaging for clinical diagnoses. In particular, these traditional

Markov chain Monte Carlo (MCMC) algorithms mix poorly in high-dimensional parameter

spaces involving correlated variables [36, 37, 39]. In contrast, gradient-based algorithms

such as Hamiltonian Monte Carlo (HMC) [40, 41], although computationally expensive,
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they are far superior to gradient-free sampling algorithms in terms of the number of in-

dependent samples produced per unit computational time [42, 43]. This class of sampling

algorithms provides efficient convergence and exploration of parameter space even in very

high-dimensional spaces that may exhibit strong correlations between samples [36, 37, 39].

Nevertheless, the efficiency of gradient-based sampling methods such as HMC is highly sen-

sitive to the user-specified algorithm parameters [36, 37]. More advanced MCMC sampling

algorithms such as No-U-Turn Sampler (NUTS; [37]), a self-tuning variant of HMC [44] solve

these issues by adaptively tuning the algorithm parameters. It has been shown that these al-

gorithms efficiently sample from high-dimensional target distributions that allow us to solve

complex inverse problems conditioned on massive data sets as the observation [45, 46, 47].

MCMC has the advantage of being non-parametric and asymptotically exact in the limit of

long/infinite runs [24]. Of the other alternatives, Variational Inference (VI; [48, 49]) turns

the Bayesian inference into an optimization problem, which typically results in much faster

computation than MCMC methods [24, 47]. However, the classical derivation of VI requires

a major model-specific work on defining a variational family appropriate to the probabilistic

model, computing the corresponding objective function, computing gradients, and running

a gradient-based optimization algorithm [50]. Probabilistic programming languages (PPLs;

[44, 51]) provide efficient implementation for automatic Bayesian inference on user-defined

probabilistic models by featuring the next generation of MCMC sampling such as NUTS

[44, 52]. In particular, Stan [53] is a high-level statistical modeling tool for Bayesian infer-

ence and probabilistic machine learning, which provide the advanced inference algorithms,

enriched with extensive and reliable diagnostics. Although PPLs allow for automatic infer-

ence, the performance of these algorithms can be sensitive to the form of parameterization

[54, 39, 34]. An appropriate form of reparameterization in the probabilistic models to im-

prove the inference efficiency of system dynamics (governed by a set of nonlinear differential

equations) remains a challenging problem. We propose an approach to reparameterize the

model configuration space based on the correlations between the parameters induced by the

measurement function maps (gain matrix) so that the posterior distributions of the model

parameters are explored efficiently. The efficiency is shown in terms of inference diagnostics

and computational time. Moreover, we propose sparse priors on the model parameters to

consider the small number of EZ’s in the model and we also consider priors based on the
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behaviour of the model equations. We focussed on the self-tuning variant of HMC called

NUTS algorithm in this paper and the convergence diagnostics are monitored carefully to

ensure the reliability and accuracy of the estimations.

In Sec. 2, we illustrate the probabilistic model and discuss the proposed prior as well

as the reparameterization based approach. We show the results obtained from the NUTS

on synthetic datasets in Sec. 3. The analyses for 19 patients and the comparison of the

results with the clinical diagnostics are shown in the same section. We discuss the utility

and extension of the work in Sec. 4.

2 Materials and methods

The body of the work is based on the virtual brain models and Bayesian inference as schemat-

ically illustrated in Fig 1. The workflow to build the Bayesian VEP (BVEP) consists of two

main steps: constructing the VEP, a personalized virtual brain model of epilepsy spread [1],

and then embedding the VEP model in a Bayesian framework to infer the model parameters

with NUTS algorithm. We show that the proposed probabilistic framework in BVEP is able

to efficiently invert the nonlinear state-space equations to infer the hidden system dynamics.

This approach allows us to accurately estimate the spatial map of epileptogenicity in a per-

sonalized virtual brain model of epilepsy spread by taking advantage of flexible probabilistic

inference in PPLs such as Stan [39]. The brief description of the empirical data collection

process and the pre-processing steps are provided in Supplementary Sec. 1.1 and Sec. 1.2,

respectively. The detailed description of the whole-brain model is provided in Supplementary

Sec. 1.3 and the description of the gain matrix is provided in Supplementary Sec. 1.4.

2.1 Whole-brain model of epilepsy spread

Typically, to build a virtual brain model, the brain regions are defined using a parcellation

scheme and then placing a set of mathematical equations (here Epileptor model, [16]) to

capture the dynamics of the regional brain activity ([6, 1]). Taking such a data-driven ap-

proach to incorporate the subject-specific brain’s anatomical information, the network edges

are then represented by structural connectivity of the brain, which are obtained from non-

invasive imaging data of individual patients ([1, 8]). The brain regions are defined according
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Figure 1: Schematic illustration of workflow in the BVEP. The approach to build the BVEP

comprises two main steps: constructing the VEP model, and then embedding VEP in a

PPL tool to infer and validate the model parameters. To build the VEP model, we take

the following steps: First, the patient undergoes non-invasive brain imaging (MRI, diffu-

sion tractography, computed tomography (CT)). Based on these images, the brain network

anatomy including brain parcellation and the patient’s connectome are provided from the

reconstruction pipeline. Then, a neural population model is selected for each brain region

to define the network model. In VEP, the Epileptor model is defined on each network node

that are connected through structural connectivity derived from diffusion tractography. The

mapping from source to sensor space is encoded in the gain matrix, where the distance

between the sensors and the brain regions are obtained using MRI and tomography. The

SEEG recordings obtained from the patient are pre-processed to obtain the data feature,

which is the envelope time-series, as the target of fitting. Then, model fitting is performed

using NUTS algorithm within a PPL tool. Finally, the posterior distribution of excitabilities

are obtained for all the brain regions which help in the identification of EZ/PZ which could

be the target of resection.
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to the VEP atlas ([55]), a cortical and sub-cortical parcellation of the brain developed specif-

ically for the use in domains of epileptology and functional neurosurgery. The atlas considers

reasonable region sizes for improved performance of model inversion techniques ([55]). The

VEP atlas indicating the indices and the corresponding brain regions is shown in Tables 1

and 2 of the Supplementary. The structural connectivity matrix based on VEP atlas for a

randomly selected patient is shown in Fig 2A. In VEP model, the dynamics of brain network

nodes are governed by Epileptor equations ([16]) that are coupled through the structural

connectivity matrix. The Epileptor is a taxonomy of dynamical models of seizure evolution

and is able to realistically reproduce the dynamics of onset, progression and offset of seizure-

like events ([16, 18]). The 2D reduction of VEP model is an adiabatic expression of the

time-scale separation which is obtained by averaging some of the variables in the detailed

VEP model. The model equation for the 2D VEP are given as:

˙x1,i = 1− x3
1,i − 2x2

1,i − zi + I1

żi =
1

τ0
(4(x1,i − ηi)− zi −K

N∑
j=1

Cij(x1,j − x1,i)),

(1)

Depending on the value of excitability parameter η, the 2D Epileptor exhibits different

stability regimes. The details regarding linear stability analysis and parameter space explo-

ration of 2D Epileptor are provided in [18] and [1]. For η < ηC , a trajectory in the phase

plane is attracted to the single stable fixed-point of the system on the left branch of the

cubic x-nullcline. In this regime, the Epileptor is said to be healthy, meaning not triggering

epileptic seizure without external input. As the value of η increases, the z-nullcline moves

down and a bifurcation occurs at η = ηC corresponding to a seizure onset. For η > ηC , the

system exhibits an unstable fixed-point allowing a seizure to happen (the Epileptor is said to

be epileptogenic and corresponding brain region is referred to as EZ). Isolated nodes display

a bifurcation at the critical value ηC = −2.05 ([18, 1]). In this study, we use the 2D VEP

model for Bayesian inference of spatial map of epileptogenicity to reduce the computational

cost associated with the model parameter estimation. The 2D reduction allows for faster

inversion while enabling us to predict the envelope of fast discharges during the ictal seizure

states ([18, 1]).
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Based on the above dynamical properties, the spatial map of epileptogenicity across

different brain regions comprises the excitability values of EZ (high value of excitability),

PZ (smaller excitability value) and all other regions categorized as healthy zone (HZ). Note

however, that an intermediate excitability value does not guarantee that the seizure recruits

this area as part of the PZ, because the propagation is also determined by various other

factors including connectivity and non-linear brain state dependence.
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Figure 2: (A) Structural connectivity matrix of a patient, whose entries represent the con-

nection strength between the brain regions, is derived from diffusion MRI tractography.

Using VEP atlas, the brain of the patient is parcellated into 162 different regions and (B)

Gain matrix of a patient. Each element represents the inverse-squared distance between the

region and the sensor.

2.2 Probabilistic whole-brain model

The key component in constructing a probabilistic virtual brain model within a Bayesian

framework is the generative model. Given a set of observations, the generative model is a

probabilistic description of the mechanisms by which observed data are generated through

some hidden states and unknown parameters [56, 57]. In this study, the generative model

therefore has a mathematical formulation guided by the dynamical model that describes

the evolution of model’s state variables, given parameters, over time. This specification is

necessary to construct the likelihood function [58, 59]. The full generative model is then
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completed by specifying prior beliefs about the possible values of the unknown parameters

which are the spatial map of epileptogenicity [29] and the other auxiliary parameters of the

generative model. The BVEP brain model presented in this study is built upon two main

steps. First, the VEP model equation that provides the basic form of the data generative

process describing how the epileptic seizures are generated. Second, the linear combination

of the source signals which are observed with independent measurement errors at the sensor

level. The generative model in the BVEP is formulated based on a system of nonlinear

ordinary differential equations of the form (so-called state-space representation):

ẋ(t) = f(x(t),θ),

y(t) = h(x(t),θ) + v(t), (2)

where, N denotes the number of nodes, x(t) = (xt,1, zt,1, . . . xt,N , zt,N) ∈ R2N is a 2N-

dimensional vector of system’s states evolving overtime, x(t = 0) = xt0 is the initial state

vector at time t = 0. Here, the set of unknown parameters θ ∈ Rp, where p = 3N + 2 (N

parameters corresponding to excitability, 2N parameters corresponding to xt0 , the coupling

parameter K and the slow timescale parameter τ0), contains all the unknown parameters of

the VEP model to be estimated. In addition, y(t) ∈ RM denotes the measured data subject

to the measurement error v(t), where M denotes the number of electrodes. The measure-

ment noise denoted by v(t) ∼ N(0, σ2I) is assumed to follow a Gaussian distribution with

mean zero and unknown variance σ2. Moreover, f(.) is a vector function that describes the

dynamical properties of the system and h(.) represents a measurement function which is

represented as h(x) = a Gx+ b, where G represents the gain matrix of dimension M ×N ,

a ∈ R+ and b ∈ RM represent scale and offset parameters, respectively. In this paper, we

shall be considering the inference of the model given by the equations combining Eq. 1 and

Eq. 2 and given as the following:

˙x1,i = 1− x3
1,i − 2x2

1,i − zi + I1

żi =
1

τ0
(4(x1,i − ηi)− zi −K

N∑
j=1

Cij(x1,j − x1,i)),

y(t) = Gx1,t + ν(t),

(3)
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where x1,t ∈ RN represents the vector denoting the activity of the fast-variable x1 at time

t. Therefore, the total number of parameters to be estimated is 3N +M + 4. In Bayesian

inference, we seek the posterior density P (θ|Y ), which is the conditional distribution of

model parameters given the observations [27, 30]. Bayes’s Theorem expresses this posterior

density in terms of likelihood and prior as follows:

P (θ|Y ) =
P (θ)P (Y |θ)

P (Y )
,

where the denominator P (Y ) represents the probability of the data and it is known as

evidence or marginal likelihood (in practice amounts to simply a normalization term [24]).

We employ the NUTS, a self-tuning variant of HMC algorithm in this paper to sample

from posterior density P (θ|Y ) of the model parameters. The performance of HMC is highly

sensitive to the step size and the number of steps in leapfrog integrator for updating the

position and momentum variables in Hamiltonian dynamic simulation [37]. If the number of

steps in the leapfrog integrator is chosen too small, then HMC exhibits an undesirable random

walk behaviour similar to Metropolis-Hastings algorithm, and thus algorithm poorly explores

the parameter space. If the number of leapfrog steps is chosen too large, the associated

Hamiltonian trajectories may loop back to a neighbourhood of the initial state, and the

algorithm wastes computation efforts [37, 39]. NUTS extends HMC with adaptive tuning of

both the step size and the number of steps in leapfrog integration to sample efficiently from

posterior distributions [37, 54, 39].

2.2.1 Mathematical formulation of probabilistic model

We propose a Bayesian estimation of the model parameters involved in the model given by

the VEP equations in its 2D formulation using the NUTS algorithm. Let us denote the

observed data by D = {yi,t, i = 1 . . . ,M, t = 1 . . . , T}, and the parameter vector by Θ. We

denote the matrix of eigenvectors of G⊤G as V . Then, we consider the following independent

priors on the regional parameters in the reparameterized space:
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η∗i ∼ N(µη∗ , ση∗IN),

z∗init ∼ N(µz∗ , σz∗IN),

x∗
init ∼ N(µx∗ , σx∗IN),

(4)

and the following independent prior densities for the other auxiliary parameters in the

model:

a ∼ N+(µa, σa),

b ∼ N(µb, σbIM),

σ ∼ lognormal(µσ, τ),

K ∼ N+(µK , σK),

1

τ0
∼ N+(µτ0 , στ0). (5)

We consider the non-centered parameterization for all the parameters for efficient sam-

pling from the respective posterior distributions. [60].

To incorporate the information that only few regions are epileptogenic, the mean and

standard deviation of the prior distribution on η is considered in such a way that apriori all

the brain regions are healthy. This choice of prior for the case of partial epilepsy is practically

meaningful because with such a prior knowledge, a region is considered to be healthy unless

there is a sufficient evidence based on the data contradicting this assumption and hence, it

reduces the false positives. Also, the following relation in the prior means of the regional

variables should be considered so that the HMC exploration happens near the stable fixed-

points of the 2D Epileptor equations and the HMC sampler start sampling in a physically

meaningful space of the high-dimensional parameter space. We consider (V µz∗ , V µx∗) to be

the fixed-points for a healthy region with parameter V µη∗ . In the analyses shown in the

paper, we start the likelihood calculation after 10 time points which reduces the dependence

between the regional variables xinit, zinit and η and shows better mixing of the HMC chain.

The fixing of xinit has also been considered in some analyses to reduce computational time

as we need to estimate N fewer parameters in that case. This is accurate as there is only
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one stable fixed-point in the 2D epileptor phase-space for the healthy regions and hence,

the stable fixed-point is reached quickly if the initialization is close to the fixed-point in the

phase-plane. In the simulation studies, we found that the fixing of xinit does not introduce

large bias and EZ, PZ and HZ are identified well. Also, in the data analysis, we take the

number of timepoints in ictal seizure state in such a way that the prior density placed on τ0,

the time-scale of the system, is appropriate. For example, we consider the mean of the prior

close to 10 with low standard deviation when approximately 150 timepoints are considered

and mean of the prior close to 75 with low standard deviation when approximately 500

timepoints are considered. We perform prior predictive checks to fix the mean and standard

deviation of τ0. The posterior distribution of Θ can be written as:

π(Θ|D) ∝ π(Θ)×
M∏
i=1

T∏
t=1

f(yi,t|Θ), (6)

where π(Θ) = π(xinit)π(zinit)π(a)π(b)π(σ)π(K)π(τ0) denotes the prior density of the model

parameters Θ.

3 Results

3.1 Validation on synthetic SEEG data

In order to study the performance of the proposed reparameterization approach using The

Virtual Brain (TVB; [61]), we generate a dataset at the source level from the VEP model (see

Eq 1) by considering the structural connectivity and the gain matrix of a real patient. While

generating the data, we consider the Euler-Maryama integration with dt=0.1 and τ0 = 10.0,

a = 1, K = 1. The offset parameters are generated from multivariate normal distribution

with mean 10 and covariance matrix as IM . The structural connectivity considered during

the data generation corresponds to the anatomical information of a real patient with partial

epilepsy and is shown in Fig 2A. Then, we consider the gain matrix of the same patient

having dimension 161× 162, and multiply it with this generated source level data (see Eq 3

and Supplementary Eq 1.3). The sensor level data is generated by adding an independent

Gaussian noise with zero mean and standard deviation σ = 3.0 at every time point and

for every sensor. We consider two of the regions to be EZ’s and four regions to be PZ’s

while rest of the regions are considered to be HZ’s. The data considered for the estimation
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contains a seizure envelope and the number of timepoints considered are 130 for each sensor.

The excitability parameters for the EZ, PZ and HZ are considered to be -1.6, -2.4 and -3.5

respectively. The prior mean and standard deviation of the excitability parameters for all

the regions are considered to be −3.5 and 0.1, respectively. The parameters of the prior

distribution considered for this analysis and as described by Eq. 4 and Eq. 5 are provided

in Table 1. The performance of the method in terms of the fitted time-series are shown in

the Fig 3. We show the generated time-series and the mean of the estimated time-series

at the sensors. It can be seen from Fig 3 that the fitted time-series are able to closely

replicate the true time-series at the sensors. We also show the violin plots based on the

posterior distribution of the excitability parameters obtained from four HMC chains for all

the 162 regions in Fig 4A. It can be seen that the estimated EZ’s from the reparameterization

method coincides precisely with the true EZ’s. Also, all the PZ’s are correctly identified.

We also show the true source activity as well as the mean of the estimated source activities

in Supplementary Fig 4. It can be seen that the EZ’s and PZ’s are well identified with

little bias. There is no miscalssification of the HZ as EZ or PZ and vice versa. We also

show the violin plots for η∗ in Fig 4B. It can be seen that the reparameterization makes

the HMC to explore the first few linear combinations while the rest of the weakly estimable

combinations are very close to their prior distributions. This is due to the low-rank of the

gain matrix and practically, this is because many of the regions are far from the sensors and

are not anatomically connected to any region which is close to the sensors. We also show

the posterior samples obtained from an MCMC chain for two regions: an EZ and a PZ in

Fig 7 A and B. In terms of diagnostics, there are no divergences in the generated samples.

The R̂ values (the well-established diagnostics for convergence on Monte Carlo sampling)

for the posterior samples corresponding to all the parameters are less than 1.1 indicating

reliability of the estimates based on the convergence for the posterior distributions of the

parameters and hidden-state variables. The run-time of the algorithm with 1000 warmup

and 250 sampling iterations using a computer equipped with 8 GB RAM and 3.60 GHz Intel

Core(TM) i7-7700 processor is approximately 12 hours. Therefore, by placing appropriate

priors combined with the gain matrix based reparameterization, the HMC algorithm can

efficiently and accurately discriminate between the epileptogenic and healthy regions.

In the right column of Fig 7, the posterior samples obtained without using the reparame-
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Figure 3: True (A) and Estimated (B) synthetic time-series measured at sensor level. The

true time-series is generated using the 2D reduction of the VEP model considering the

personalized structural connectivity and the gain matrix of a randomly selected patient.
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Figure 4: (A) Violin plot of the posterior distribution of η in the VEP model. The dots in

cyan colour show the true values and the posterior distribution for different regions is shown

in blue. The red dashed horizontal line shows the critical value of excitability for uncoupled

Epileptor model. (B) Violin plot of the posterior distribution of η∗ using reparameterization

method. The dashed horizontal line in cyan colour shows the prior mean.

terization are shown. It can be seen from the posterior samples, that even with large warmup

iterations, the mixing between the generated samples is very low as can be seen for an EZ,

and for a PZ, many generated samples get stuck at the same value. This results in large

autocorrelation between the samples rendering the effective sample size per iteration very

low (e.g. it is less than 25 for more than 80% of the excitability parameters). The plots for

log-probabilities are also shown in the Fig 7C and Fig 7F, and again it can be seen that the

reparameterization based approach improves the mixing in the log-probabilities and shows

faster convergence to the typical set.

It can be concluded that the reparameterization based approach solves the issues consid-

ered without reparameterization in terms of computational time as well as the diagnostics.

Therefore, the proposed novel approach based on reparameterization should be considered

for efficient estimation of the parameters of the VEP model. The consideration of priors

also play a critical role in removing some inherent degeneracy in the model and makes

the parameters identifiable. Some examples considering these issues are shown in the next

subsections.
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Table 1: Parameters of prior distribution considered for the analysis of simulated data in

Sec. 3.1.

Parameter Value Parameter Value

µη∗ -3.5 ση∗ 0.1

µz∗ 5.0 σz∗ 0.1

µx∗ -2.0 σx∗ 0.1

µa 0.0 σa 2.0

µb 0.0 σb 10.0

µσ 0.0 τ 1.0

µK 0.0 σK 10.0

µτ0 0.1 στ0 0.01

3.1.1 Robustness with respect to Laplace prior

In Fig. 5, we show the violin plots of the posterior distribution of η when we consider

the prior distribution of η as Laplace with mean -3.5 and scale parameter 0.1. The data

considered for this analysis is the same as in Sec. 3.1 and the prior distribution for other

parameters is the same as in Sec. 3.1. It can be seen that the posterior distribution of η

contains the true values and none of the EZ, PZ or HZ are mis-classified. The diagnostics

are also good with no divergences and none of the R-hat values are more than 1.1. This

shows the robustness of the procedure with respect to different sparse priors.

3.1.2 Model identifiability using prior

We consider the effect on the posterior distribution of η due to the change in its prior mean.

The model is non-identifiable for η for the regions which are HZ and the offset parameter

b. This is due to the constant time-series of hidden states of HZ’s when they are at their

stable fixed-points. The Bayesian inference procedure makes the parameters identifiable by

the consideration of the narrow prior on η, and none of the EZ, PZ and HZ are mis-classified.

The posterior distribution of η based on the same data considered in Sec. 3.1 is shown in

Fig 6. The mean of the prior on η for this analysis is considered to be −3.0. The prior

distribution for all the other parameters are considered to be the same as in Sec. 3.1. It can
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Figure 5: Violin plot of the posterior distribution of spatial parameter mask η in the VEP

model. The dots in cyan colour show the true values and the posterior distribution for

different regions is shown in blue. The red dashed horizontal line shows the critical value of

excitability for uncoupled Epileptor model.

be seen that the posterior distribution of η for the HZ’s are close to the prior mean showing

that the consideration of the prior helps in removing degeneracy in η and none of the regions

are mis-classified.

1 21 41 61 81 101 121 141 161
Brain regions
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η i

) EZ
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Figure 6: Violin plot of the posterior distribution of spatial parameter mask η in the VEP

model. The dots in cyan colour show the true values and the posterior distribution for

different regions is shown in blue. The red dashed horizontal line shows the critical value of

excitability for uncoupled Epileptor model.

3.2 Bayesian inference of empirical SEEG data

While modelling the empirical SEEG data using the VEP model (Eq 1, Eq 3 and Supple-

mentary Eq. 1.3), it should be noted that the dynamics explained by the model captures

the envelope of the hidden-state variables and hence, the envelope of SEEG observations.

Therefore, in the pre-processing step, we consider filtering of the data before analysing to
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Figure 7: Monitoring the MCMC convergence in VEP model based on the trace plots ob-

tained from the posterior samples using reparameterization (A, C, E) and without reprame-

terization (B, D, F) for an Epileptogenic zone (EZ) (A, D), a Propagation zone (PZ) (B, E)

and log-probability (C, F). Using reparameterization (left column), MCMC samples show

well mixing indicating that the HMC converges to the target distribution whereas without

reparameterization (right column), HMC is still exploring the typical set and manifest high

auto-correlation.
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remove very high frequency and very low frequency signals. Then, we extract the envelop

in the SEEG time-series and consider the logarithm of the time-series of the envelope as

the target of estimation. We consider the connectivity and gain matrices for the patients as

discussed in Supplementary Sec. 1.1 and 1.4. We illustrate the reparameterization method

as applied to a real SEEG dataset obtained from a partial epilepsy patient. We run four

parallel HMC chains to obtain the posterior samples in this case. For this particular analysis,

we consider the prior distribution of η as Gaussian with mean −3.0 and sd 0.3.

The mean estimated source activities along with the violin plots of the posterior dis-

tribution of η for all the regions are shown in Fig 8. We next select the probable EZ’s in

this case by choosing only those regions for which P (η ≥ −2.05) > 0.25 and show the pos-

terior distributions of excitability parameters using violin plots for these selected regions.

For this specific dataset, based on our methodology and the obtained HMC samples, there

are six brain nodes which have at least 0.25 probability to be epileptogenic. Two of the

identified regions (Right Amygdala and Right Thalamus) have more than 0.95 probability

to be epileptogenic. There are three EZ’s and eight PZ’s identified by the clinicians for this

patient. Among the selected six regions (Right F3 pars Orbitalis, Right Temporal Pole,

Right Fusiform Gyrus, Right Hippocampus Anterior, Right Amygdala and Right Thala-

mus), Right Hippocampus anterior and Right Amygdala are also identified by the clinicians

as EZ while two of the regions, Right Temporal Pole and Right Thalamus are identified by

clinicians as PZ. Two regions which are identified clinically as HZ namely, Right F3 pars

Orbitalis and Right Fusiform Gyrus are among the selected six regions as EZ and six of

the clinically identified PZ’s are shown to be HZ according to the proposed methodology

based on four chains. The posterior distributions of η corresponding to three of the EZ’s

namely, Right Temporal Pole, Right Fusiform Gyrus and Right Hippocampus anterior have

substantial posterior probabilities of η < −2.05, and hence, not to be EZ. The mean esti-

mated phase-planes corresponding to an identified EZ and an identified HZ are shown in

Fig 9. The practical application of the methodology creates additional issues. We discuss

the issue of multi-modality in the posterior distribution of the parameters in Supplementary

Sec 1.9. The consideration of sparsity in the number of EZ’s using priors is discussed in

Supplementary Sec. 1.8.
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Figure 8: Bayesian estimation for empirical SEEG data of a selected patient: (A) Mean

estimated hidden states for the fast variable and (B) slow variable, at source level. The

brain regions identified by clinicians corresponding to EZ’s, PZ’s and HZ’s are shown in red,

yellow and green, respectively. (C) Estimated posterior distribution for all the brain regions

(D) and the regions having highest probabilities to be identified as EZ by the VEP. (E)

Heatmap of the predicted spatial map of epileptogenicity using VEP model reported to the

clinicians. The regions identified as EZ’s with more than 0.75 probability and with more

than 0.25 probability are shown in red and yellow, respectively.
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Figure 9: Estimated phase-planes: The phase-plane showing the hidden states corresponding

to (A) a region identified as EZ and (B) a region identified as HZ. The black dot represents

the fixed point based on the 2D Epileptor equations. The mean phase-plane shows limit-

cycle for the estimated EZ, while the mean phase-plane shows all the values close to the

stable fixed-point for the HZ.

3.3 Group analysis

We consider the SEEG data obtained from nineteen epileptic patients who underwent stan-

dard clinical evaluation at La Timone hospital in Marseille for the study. The details of the

patients considered for the analysis are provided in Supplementary Table 3. We compare the

results obtained from the proposed methodology with the clinical diagnostics. We consider

the same prior density for the excitability parameters for all the regions meaning that there

is no assumed difference between the excitabilities corresponding to different regions a priori.

Also, the prior distribution for excitabilities in all the analyses are considered such that a

priori all the regions are considered to be healthy with at least 0.95 probability. We run

four parallel HMC chains for each dataset. The convergence diagnostics of the chains are

assessed and no divergences are obtained in the considered chains. The within-chain split-R̂

values [63] are also less than 1.5 for all η in most of the chains which is acceptable for such

complicated multimodal posterior distributions [62]. To compare the results, we combine the

obtained posterior distribution of the excitabilities and consider a region i to be epileptogenic

for a patient if the probability of its excitability is given by P (ηi > −2.05) > 0.25. The cutoff

−2.05 corresponds to the critical value of an isolated node given 2D Epileptor dynamics. We

show the scatter-plot of the number of identified EZ’s by the proposed methodology against
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the number of identified EZ’s based on the clinical diagnostics for each of the analysed

patient in Fig 10A. It can be seen that generally the numbers of identified EZ’s from our

methodology are more than those based on the clinicians’ diagnostics. This may be due to

the consideration of all the regions in our estimation unlike the selection of the regions among

only those few regions which are close to the electrodes by the clinicians. These estimates

can help the clinicians in identifying some unexplored regions which could be epileptogenic

and where the electrodes could not be implanted. In Fig 10B, we plot the proportion of the

number of regions identified as EZ by our inference methodology among different groups of

regions classified as EZ, PZ and HZ according to the clinical diagnostics for patients belong-

ing to Engel I (n=10), Engel II (n=2), Engel III (n=4) and Engel IV (n=3). The Engel

scores are based on the outcome of the surgery: (i) Engel I: patients who are seizure free,

(ii) Engel II: patients who show rare disabling seizures, (iii) Engel III: patients with minimal

improvement and (iv) Engel IV: patients with no improvement. Every index in the plot

represents a patient and the plotted points represent the proportions. The round dots, the

triangular dots and the ’+’ dots show the proportion for the clinically classified EZ’s, PZ’s

and HZ’s, respectively. It can be seen from the figure that in general, the proportion of re-

gions identified as EZ based on the methodology which are clinically identified as HZ is very

low showing that the consideration of high probability of the prior density helps in lowering

the false positive rates. It can be observed that the proportion of EZ’s identified from our

methodology is slightly higher among the clinically identified EZ’s for Engel-I patients with

respect to other groups of patients but general statistical conclusions should not be drawn

because of the low sample size of the number of patients in different groups. From Fig 10C,

it can be observed that some of the clinically identified PZ’s are identified as EZ’s using the

methodology. The proposed BVEP workflow with the reparameterization method can help

the clinicians to examine these regions more closely before surgery.

It can be seen that obtained estimates match some of the clinically identified EZ’s in most

of the patients which shows that the personalized BVEP model can be considered to model

the epilepsy propagation in the brain. Though, as a precaution, we recommend running

multiple parallel chains and including some clinical information in the prior to make better

use of the proposed methodology in real life therapeutic applications. The methodology may

therefore help in identifying the epileptogenic regions for the patients based on the SEEG
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data which in turn can be considered to be resected during surgery to stop the recurrence

of seizures in the patients.

The results obtained from the group analysis show that the proposed methodology can

be a highly valuable alternative to the model-free approach employed by the clinicians to

identify the EZ’s. In the model-free approach, the EZ’s are identified as the brain regions

which are close to the electrodes showing large activities during the seizure. The model-based

approach used in BVEP is different from the model-free approach considered by the clinicians

due to the following reasons: a) The VEP models the activity of all the regions in the brain

and hence, even the subcortical EZ’s can be identified in contrast to the model-free approach

where only the brain regions which are close to the electrodes can be identified as EZ’s. b)

The Bayesian estimation technique is able to quantify the probability of being epileptogenic

for each of the brain regions. This probabilistic quantification, which enables one to identify

different modes of getting the same fit, is missing from the model free approach. Therefore,

the regions identified by the clinicians and VEP estimates could be different and moreover,

each of the brain regions is assigned a probability of being epileptogenic in the BVEP model.

The BVEP estimation is also highly valuable when the surgery fails and VEP discovers

more regions with associated probabilities of being EZ, rather than clinicians making binary

estimation.

4 Discussion

This work is an attempt to merge the theoretical understanding of the whole-brain dynam-

ics with the physically measured data using state-of-the-art advances in PPLs and Bayesian

inference algorithms. We have provided an efficient probabilistic methodology to infer the

posterior distribution of the model parameters involved in the biophysically realistic VEP

model of epilepsy spread in the brain. The estimated time-series provides good fit on the ex-

tracted envelope from the raw SEEG data which makes the methodology more valuable. The

prior distribution constraints the model parameters to be in a biophysically relevant space

and the obtained posterior distribution quantifies the uncertainty in the regional excitability

parameters. The proposed reparameterization method enables the accurate estimation of

the uncertainty by efficiently generating samples from the complicated posterior distribution
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Figure 10: Comparison of VEP estimates with the clinical diagnostics: (A) The number of

identified EZ’s based on clinical diagnostics (x-axis) vs the number of identified EZ’s based

on VEP methodology (y-axis). The blue dashed line y = x is drawn as a reference. (B)

The proportion of EZ identified by the VEP among the clinically classified EZ, PZ and HZ

for patients with different Engel scores for individual patients, (C) and by group, based on

Engel scores.

of the model parameters. The estimated joint distribution of the excitability parameters

provide the probabilities of different plausible sets of regions to be identified as epileptogenic

together. The obtained estimates also inform about the nodes whose activities could not be

observed due to their low connectivity with the regions close to the electrodes. The posterior

distribution of the excitability parameters of these regions are similar to their corresponding

prior distributions.

We provide a link between the virtual brain models, personalized treatment and system-

atic Bayesian inversion in PPLs. The accuracy and the reliability of the estimation is care-

fully investigated by the HMC diagnostics. The virtual brain models combine the anatomical

connectivity with mathematical formulation of brain activity. However, the main challenge

lies in inferring the system dynamics explained by the model during the activity. In this

study, dynamical systems provided useful tools for the inversion of slow-fast system dynamics

having incomplete observations in the phase-plane. For instance, η is the bifurcation param-

eter in the Epileptor model, i.e. small changes made to its value causes a sudden change

in the system behaviour. This allows us to classify all the brain regions in three categories
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based on the values of η and the structural connectivity. The knowledge that the considered

system exhibits only one fixed-point in the phase-plane allows us to avoid the mismatch be-

tween the observed time-series and the estimated time-series without losing the biophysical

relevance of the model. We incorporate this knowledge systematically in the model inversion

by constraining the activity using the prior density over the regional parameters. The priors

for initial values (xinit, zinit) and spatial parameter mask η are considered in such a way

that the activity of the fast variable remains close to its stable fixed-point during the seizure

for the healthy regions. The initialisation of the time-series of hidden state-space variables

close to the steady-state avoids the initial transition in the time-series. This illustrates the

important role which the system dynamics can play in guiding the estimation methodology

for the physically relevant inversion of high-dimensional complex models.

The multimodality in the posterior distribution necessitates the application of MCMC

methods compared to maximum a-posteriori estimation (MAP) and VI as shown in Fig 6C

of the Supplementary. The application of other methodologies for identification of EZ/PZ

such as Approximate Bayesian Computation (ABC)-related methods are not feasible for ap-

plication in virtual brain models with large number of parcellations as these methods suffer

from the curse of dimensionality which means that the number of simulated samples needed

to provide a good estimate of the posterior can be prohibitively expensive. The reduction of

the data to low-dimensional summary statistics and the distance tolerance discard some of

the information about the parameters in the data which reduces the quality and accuracy of

inference. Moreover, for such non-linear models, it is challenging to extract low-dimensional

summary statistics which is sufficient statistic for the unknown parameters. Additionally,

the ABC methods are sensitive to a threshold value to accept or reject samples. This makes

the application of ABC related methods prohibitive in high-dimensional non-linear mod-

els. The NUTS algorithm considers the gradient information which avoids random-walk in

high-dimensional space and allows it to converge to high-dimensional target distributions

much more quickly. Therefore, the estimation using self-tuning and gradient-based NUTS

algorithm should be considered when such non-linear large network models are applied to

real datasets. However, as the proposed methodology is personalized and each seizure of

every patient is analysed separately, group-level information regarding epilepsy is not incor-

porated in the method. Therefore, hierarchical Bayesian methods for group analysis should
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be considered in future studies to combine information obtained from several patients across

multiple seizures .
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